In this note we investigate a problem formulated by Pleijel in 1955. It asks for the cone over a convex plane domain K having minimal surface among all cones over K with the same given height h. For cones based on reflection symmetric polygonal K we analyze the behaviour, as h go to 0 and as h go to infinity, of the position of the apex for the minimizing cone and characterize the coordinate of the limit points by necessary conditions. Furthermore, the question whether there are convex domains such that the minimal cone does not change with h is discussed. The results about the location of the optimal point in the limits h go to 0 and h go to infinity presented here give the more or less explicit algebraic coordinates of the optimal apex. A complete (but implicit) characterization of this point was given by B. Cheng in [1].
Cones based on reflection symmetric convex polygons: Remarks on a problem by A. Pleijel / Belloni, Marino; Horstmann, D; Kawohl, B.. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - 19:5(2007), pp. 933-953. [10.1515/FORUM.2007.036]
Cones based on reflection symmetric convex polygons: Remarks on a problem by A. Pleijel
BELLONI, Marino;
2007-01-01
Abstract
In this note we investigate a problem formulated by Pleijel in 1955. It asks for the cone over a convex plane domain K having minimal surface among all cones over K with the same given height h. For cones based on reflection symmetric polygonal K we analyze the behaviour, as h go to 0 and as h go to infinity, of the position of the apex for the minimizing cone and characterize the coordinate of the limit points by necessary conditions. Furthermore, the question whether there are convex domains such that the minimal cone does not change with h is discussed. The results about the location of the optimal point in the limits h go to 0 and h go to infinity presented here give the more or less explicit algebraic coordinates of the optimal apex. A complete (but implicit) characterization of this point was given by B. Cheng in [1].File | Dimensione | Formato | |
---|---|---|---|
2007-BeHoKa-Forum.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
215.97 kB
Formato
Adobe PDF
|
215.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.