Let $X$ be a large integer. We prove that, for any fixed positive integer $k$, a suitable asymptotic formula for the number of representations of an even integer $N \in [1, X]$ as the sum of two primes and $k$ powers of $2$ holds with at most $O_k(X^{3/5} (\log X)^{10})$ exceptions.
On the sum of two primes and k powers of two / Languasco, A; Pintz, J; Zaccagnini, Alessandro. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 39:5(2007), pp. 771-780. [10.1112/blms/bdm062]
On the sum of two primes and k powers of two
ZACCAGNINI, Alessandro
2007-01-01
Abstract
Let $X$ be a large integer. We prove that, for any fixed positive integer $k$, a suitable asymptotic formula for the number of representations of an even integer $N \in [1, X]$ as the sum of two primes and $k$ powers of $2$ holds with at most $O_k(X^{3/5} (\log X)^{10})$ exceptions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
771.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
189.71 kB
Formato
Adobe PDF
|
189.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.