Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the catabolism of tryptophan. By creating a local microenvironment in which levels of tryptophan are low, IDO-expressing antigen-presenting cells (APC) could regulate T cell activation. This may be relevant to control both viral and bacterial replication as well as neoplastic cell growth. Interferon-alpha (IFN-alpha) is an antiviral cytokine affecting cellular differentiation. In addition, it reduces proliferation of CD4(+) T cells by several molecular mechanisms. To dissect the molecular steps responsible for the INF-mediated antiproliferative activity, we sought to determine whether activated primary CD4(+) T cells in the presence of IFN-alpha would produce IDO. We demonstrate here that IDO mRNA is not present in resting CD4(+) T cells. Stimulation with anti-CD3 plus interleukin-2 (IL-2) induces expression of IDO mRNA (about 2000 copies/150,000 cells), as determined by semiquantitative RT-PCR. When cells were stimulated in the presence of IFN-alpha, expression of IDO mRNA was significantly increased (more than 12,000 copies/150,000 cells). Functional analysis of IDO activity paralleled the results obtained with RT-PCR, demonstrating increased production of active enzyme in CD4(+) T cells stimulated in the presence of IFN-alpha. Our results indicate that IFN-alpha modulates levels of IDO produced by activated CD4(+) T cells. This would likely affect bystander cells by modifying levels of tryptophan in the local microenvironment.
Human primary CD4 + T cells activated in the presence of IFN-alpha 2b express functional indoleamine 2,3-dioxygenase / Curreli, S.; Romerio, F.; Mirandola, Prisco; Barion, P.; Bemis, K.; Zella, D.. - In: JOURNAL OF INTERFERON AND CYTOKINE RESEARCH. - ISSN 1079-9907. - 21:(2001), pp. 431-437. [10.1089/107999001750277916]
Human primary CD4 + T cells activated in the presence of IFN-alpha 2b express functional indoleamine 2,3-dioxygenase
MIRANDOLA, Prisco;
2001-01-01
Abstract
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the catabolism of tryptophan. By creating a local microenvironment in which levels of tryptophan are low, IDO-expressing antigen-presenting cells (APC) could regulate T cell activation. This may be relevant to control both viral and bacterial replication as well as neoplastic cell growth. Interferon-alpha (IFN-alpha) is an antiviral cytokine affecting cellular differentiation. In addition, it reduces proliferation of CD4(+) T cells by several molecular mechanisms. To dissect the molecular steps responsible for the INF-mediated antiproliferative activity, we sought to determine whether activated primary CD4(+) T cells in the presence of IFN-alpha would produce IDO. We demonstrate here that IDO mRNA is not present in resting CD4(+) T cells. Stimulation with anti-CD3 plus interleukin-2 (IL-2) induces expression of IDO mRNA (about 2000 copies/150,000 cells), as determined by semiquantitative RT-PCR. When cells were stimulated in the presence of IFN-alpha, expression of IDO mRNA was significantly increased (more than 12,000 copies/150,000 cells). Functional analysis of IDO activity paralleled the results obtained with RT-PCR, demonstrating increased production of active enzyme in CD4(+) T cells stimulated in the presence of IFN-alpha. Our results indicate that IFN-alpha modulates levels of IDO produced by activated CD4(+) T cells. This would likely affect bystander cells by modifying levels of tryptophan in the local microenvironment.File | Dimensione | Formato | |
---|---|---|---|
046.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.06 MB
Formato
Adobe PDF
|
6.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.