In this paper we apply the Cartan-Kahler theory of exterior differential systems to solve the Cauchy problem for the integrable system of Lie minimal surfaces and discuss the underlying geometry. One purpose for this work is to show how methods and language from the theory of exterior differential systems may prove to be useful in the study of real analytic initial value problems, especially for gaining insight into the geometric aspects of the initial conditions and the solutions.

On the Cauchy problem for the integrable system of Lie minimal surfaces / Musso, E; Nicolodi, Lorenzo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 46:11(2005), pp. 113509-113523. [10.1063/1.2116267]

On the Cauchy problem for the integrable system of Lie minimal surfaces

NICOLODI, Lorenzo
2005-01-01

Abstract

In this paper we apply the Cartan-Kahler theory of exterior differential systems to solve the Cauchy problem for the integrable system of Lie minimal surfaces and discuss the underlying geometry. One purpose for this work is to show how methods and language from the theory of exterior differential systems may prove to be useful in the study of real analytic initial value problems, especially for gaining insight into the geometric aspects of the initial conditions and the solutions.
2005
On the Cauchy problem for the integrable system of Lie minimal surfaces / Musso, E; Nicolodi, Lorenzo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 46:11(2005), pp. 113509-113523. [10.1063/1.2116267]
File in questo prodotto:
File Dimensione Formato  
jmp.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 166.16 kB
Formato Adobe PDF
166.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1628473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact