Background Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. Methods A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. Findings The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. Interpretation When the coefficient of friction is used in finite element analysis, it is used for the debonded stem–cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3–0.4, measured in the present study, is appropriate in finite element models.

Static Coefficient of Friction Between Stainless Steel and PMMA Used in Cemented Hip Implants / N., Nuno; Groppetti, Roberto; Senin, Nicola. - In: CLINICAL BIOMECHANICS. - ISSN 0268-0033. - 21:(2006), pp. 956-962. [10.1016/j.clinbiomech.2006.05.008]

Static Coefficient of Friction Between Stainless Steel and PMMA Used in Cemented Hip Implants

GROPPETTI, Roberto;SENIN, Nicola
2006

Abstract

Background Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. Methods A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. Findings The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. Interpretation When the coefficient of friction is used in finite element analysis, it is used for the debonded stem–cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3–0.4, measured in the present study, is appropriate in finite element models.
Static Coefficient of Friction Between Stainless Steel and PMMA Used in Cemented Hip Implants / N., Nuno; Groppetti, Roberto; Senin, Nicola. - In: CLINICAL BIOMECHANICS. - ISSN 0268-0033. - 21:(2006), pp. 956-962. [10.1016/j.clinbiomech.2006.05.008]
File in questo prodotto:
File Dimensione Formato  
Static-coefficient-of-friction-between-stainless-steel-and-PMMA-used-in-cemented-hip-and-knee-implants_2006_Clinical-Biomechanics.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 275 kB
Formato Adobe PDF
275 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1507525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact