This lecture announces results concerning compact complex manifolds M which are Kähler outside an analytic subset Y of codimension at least 2 (the authors conjecture that such a manifold has always a Kähler modification). The question is to determine to what extent the “exceptional” subset Y is an obstruction for M to be Kähler. The results are restricted to the case when Y is a curve. The first theorem asserts that the (n−1, n−1)-current defined by Y always yields to an obstruction in the spirit of Harvey-Lawson’s criterion when M is not Kähler. The authors also obtain numerical conditions.

Compact complex manifolds which are Kähler outside an analytic subset / Alessandrini, Lucia; Bassanelli, Giovanni. - (1996), pp. 27-34. (Intervento presentato al convegno Seminari di geometria del Dip. di Matematica dell'Università di Bologna tenutosi a Bologna nel 1994 - 1995).

Compact complex manifolds which are Kähler outside an analytic subset

ALESSANDRINI, Lucia;BASSANELLI, Giovanni
1996-01-01

Abstract

This lecture announces results concerning compact complex manifolds M which are Kähler outside an analytic subset Y of codimension at least 2 (the authors conjecture that such a manifold has always a Kähler modification). The question is to determine to what extent the “exceptional” subset Y is an obstruction for M to be Kähler. The results are restricted to the case when Y is a curve. The first theorem asserts that the (n−1, n−1)-current defined by Y always yields to an obstruction in the spirit of Harvey-Lawson’s criterion when M is not Kähler. The authors also obtain numerical conditions.
1996
Compact complex manifolds which are Kähler outside an analytic subset / Alessandrini, Lucia; Bassanelli, Giovanni. - (1996), pp. 27-34. (Intervento presentato al convegno Seminari di geometria del Dip. di Matematica dell'Università di Bologna tenutosi a Bologna nel 1994 - 1995).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1506149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact