In this paper we provide upper bounds for the Hausdorff dimension of the singular set of minima of general variational integrals \int F(x, v, Dv) dx, where F is suitably convex with respect to Dv and Hölder continuous with respect to (x, v). In particular, we prove that the Hausdorff dimension of the singular set is always strictly less than n, where ⊂ R^n.
The singular set of minima of integral functionals / Kristensen, J.; Mingione, Giuseppe. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 180:(2006), pp. 331-398. [10.1007/s00205-005-0402-5]
The singular set of minima of integral functionals
MINGIONE, Giuseppe
2006-01-01
Abstract
In this paper we provide upper bounds for the Hausdorff dimension of the singular set of minima of general variational integrals \int F(x, v, Dv) dx, where F is suitably convex with respect to Dv and Hölder continuous with respect to (x, v). In particular, we prove that the Hausdorff dimension of the singular set is always strictly less than n, where ⊂ R^n.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ARMAsingmin.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
505.77 kB
Formato
Adobe PDF
|
505.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.