It has been postulated that the major physiological role of adenosine is protection of the central nervous system in conditions such as ischemia, hypoxia, or prolonged neuronal excitation. Under these conditions adenosine is released, and exerts multiple effects, including vasodilation, inhibition of neuronal activity, and enhancement of glycogenolysis, resulting in neuroprotection. In this article, published as well as unpublished data on the multiple effects of exogenous adenosine and application of adenosine-related agents, performed using the arterially perfused cat eye, will be reviewed and discussed within the framework of the neuroprotective role of adenosine. The isolated, arterially perfused eye preparation has the advantage of combining integrity of the eye structure, exact control of arterial concentration and timing of applied pharmacological agents, and access to electrophysiological parameters of both retina and optic nerve, as well as the ability to control and monitor perfusate flow. The absence of red blood cells in the perfusate prevents adenosine from being metabolized prior to reaching the eye.
Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina / Macaluso, Claudio; Frishman, Lj; Frueh, B; KAELIN LANG, A; Onoe, S; Niemeyer, G.. - In: DOCUMENTA OPHTHALMOLOGICA. - ISSN 0012-4486. - 106:(2003), pp. 51-59.
Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina
MACALUSO, Claudio;
2003-01-01
Abstract
It has been postulated that the major physiological role of adenosine is protection of the central nervous system in conditions such as ischemia, hypoxia, or prolonged neuronal excitation. Under these conditions adenosine is released, and exerts multiple effects, including vasodilation, inhibition of neuronal activity, and enhancement of glycogenolysis, resulting in neuroprotection. In this article, published as well as unpublished data on the multiple effects of exogenous adenosine and application of adenosine-related agents, performed using the arterially perfused cat eye, will be reviewed and discussed within the framework of the neuroprotective role of adenosine. The isolated, arterially perfused eye preparation has the advantage of combining integrity of the eye structure, exact control of arterial concentration and timing of applied pharmacological agents, and access to electrophysiological parameters of both retina and optic nerve, as well as the ability to control and monitor perfusate flow. The absence of red blood cells in the perfusate prevents adenosine from being metabolized prior to reaching the eye.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.