In this paper we prove two main results. Theorem I: Let X be a 1-convex manifold with 1-dimensional exceptional set S. Then X is Kähler if and only if S does not contain any effective curve which is a boundary. Theorem II: Let X be a 1-convex manifold with 1-dimensional exceptional set S. If H2(X,Z) is finitely generated, then X is embeddable if and only if it is Kähler.

On the embedding of 1-convex manifolds with 1-dimensional exceptional set / Alessandrini, Lucia; Bassanelli, Giovanni. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 51:(2001), pp. 99-108. [10.5802/aif.1817]

On the embedding of 1-convex manifolds with 1-dimensional exceptional set

ALESSANDRINI, Lucia;BASSANELLI, Giovanni
2001-01-01

Abstract

In this paper we prove two main results. Theorem I: Let X be a 1-convex manifold with 1-dimensional exceptional set S. Then X is Kähler if and only if S does not contain any effective curve which is a boundary. Theorem II: Let X be a 1-convex manifold with 1-dimensional exceptional set S. If H2(X,Z) is finitely generated, then X is embeddable if and only if it is Kähler.
2001
On the embedding of 1-convex manifolds with 1-dimensional exceptional set / Alessandrini, Lucia; Bassanelli, Giovanni. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 51:(2001), pp. 99-108. [10.5802/aif.1817]
File in questo prodotto:
File Dimensione Formato  
EmbeddingFourier2001.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 796.93 kB
Formato Adobe PDF
796.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1455717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact