In this paper we prove two main results. Theorem I: Let X be a 1-convex manifold with 1-dimensional exceptional set S. Then X is Kähler if and only if S does not contain any effective curve which is a boundary. Theorem II: Let X be a 1-convex manifold with 1-dimensional exceptional set S. If H2(X,Z) is finitely generated, then X is embeddable if and only if it is Kähler.
On the embedding of 1-convex manifolds with 1-dimensional exceptional set / Alessandrini, Lucia; Bassanelli, Giovanni. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 51:(2001), pp. 99-108. [10.5802/aif.1817]
On the embedding of 1-convex manifolds with 1-dimensional exceptional set
ALESSANDRINI, Lucia;BASSANELLI, Giovanni
2001-01-01
Abstract
In this paper we prove two main results. Theorem I: Let X be a 1-convex manifold with 1-dimensional exceptional set S. Then X is Kähler if and only if S does not contain any effective curve which is a boundary. Theorem II: Let X be a 1-convex manifold with 1-dimensional exceptional set S. If H2(X,Z) is finitely generated, then X is embeddable if and only if it is Kähler.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
EmbeddingFourier2001.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
796.93 kB
Formato
Adobe PDF
|
796.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.