We propose a new space-time coding scheme for the quasi-static multiple-antenna channel with perfect channel state information at the receiver and no channel state information at the transmitter. In our scheme, codewords produced by a trellis encoder are formatted into space-time codeword arrays such that decoding can be implemented efficiently by minimum mean-square error (MMSE) decision-feedback interference mitigation coupled with Viterbi decoding, through the use of per-survivor processing. We discuss the code design for the new scheme, and show that finding codes with optimal diversity is much easier than for conventional trellis space-time codes (STCs). We provide an upper bound on the word-error rate (WER) of our scheme which is both accurate and easy to evaluate. Then, we find upper and lower bounds on the information outage probability with discrete independent and identically distributed (i.i.d). inputs (as opposed to Gaussian inputs, as in most previous works) and we show that the MMSE front-end yields a large advantage over the whitened matched filter (i.e., zero-forcing) front-end. Finally, we provide a comprehensive performance/complexity comparison of our scheme with coded vertical Bell Labs layered space-time (V-BLAST) architecture and with the recently proposed threaded space-time codes. We also discuss the concatenation of our scheme with block space-time precoders, such as the linear dispersion codes.

On low-complexity space-time coding for quasi-static channels / CAIRE G; COLAVOLPE G.. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 49(2003), pp. 1400-1416. [10.1109/TIT.2003.811904]

On low-complexity space-time coding for quasi-static channels

COLAVOLPE, Giulio
2003

Abstract

We propose a new space-time coding scheme for the quasi-static multiple-antenna channel with perfect channel state information at the receiver and no channel state information at the transmitter. In our scheme, codewords produced by a trellis encoder are formatted into space-time codeword arrays such that decoding can be implemented efficiently by minimum mean-square error (MMSE) decision-feedback interference mitigation coupled with Viterbi decoding, through the use of per-survivor processing. We discuss the code design for the new scheme, and show that finding codes with optimal diversity is much easier than for conventional trellis space-time codes (STCs). We provide an upper bound on the word-error rate (WER) of our scheme which is both accurate and easy to evaluate. Then, we find upper and lower bounds on the information outage probability with discrete independent and identically distributed (i.i.d). inputs (as opposed to Gaussian inputs, as in most previous works) and we show that the MMSE front-end yields a large advantage over the whitened matched filter (i.e., zero-forcing) front-end. Finally, we provide a comprehensive performance/complexity comparison of our scheme with coded vertical Bell Labs layered space-time (V-BLAST) architecture and with the recently proposed threaded space-time codes. We also discuss the concatenation of our scheme with block space-time precoders, such as the linear dispersion codes.
On low-complexity space-time coding for quasi-static channels / CAIRE G; COLAVOLPE G.. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 49(2003), pp. 1400-1416. [10.1109/TIT.2003.811904]
File in questo prodotto:
File Dimensione Formato  
01201064.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 989.49 kB
Formato Adobe PDF
989.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/1450607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 27
social impact