We study here Kähler-type properties of 1-convex manifolds, using the duality between forms and compactly supported currents, and some properties of the Aeppli groups of q-convex manifolds. We prove that, when the exceptional set S of the 1-convex manifold X has dimension k, X is p-Kähler for every p > k, and is k-Kähler if and only if "the fundamental class" of S does not vanish. There are classical examples where X is not k-Kähler even with a smooth S, but we prove that this cannot happen if 2k ≥ n = dim X, nor for suitable neighborhoods of S; in particular, X is always balanced (i.e., (n - 1)-Kähler).

1-convex manifolds are p-Kähler / Alessandrini, Lucia; Bassanelli, Giovanni; Leoni, M.. - In: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG. - ISSN 0025-5858. - 72:(2002), pp. 255-268. [10.1007/BF02941676]

1-convex manifolds are p-Kähler

ALESSANDRINI, Lucia;BASSANELLI, Giovanni;
2002-01-01

Abstract

We study here Kähler-type properties of 1-convex manifolds, using the duality between forms and compactly supported currents, and some properties of the Aeppli groups of q-convex manifolds. We prove that, when the exceptional set S of the 1-convex manifold X has dimension k, X is p-Kähler for every p > k, and is k-Kähler if and only if "the fundamental class" of S does not vanish. There are classical examples where X is not k-Kähler even with a smooth S, but we prove that this cannot happen if 2k ≥ n = dim X, nor for suitable neighborhoods of S; in particular, X is always balanced (i.e., (n - 1)-Kähler).
2002
1-convex manifolds are p-Kähler / Alessandrini, Lucia; Bassanelli, Giovanni; Leoni, M.. - In: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG. - ISSN 0025-5858. - 72:(2002), pp. 255-268. [10.1007/BF02941676]
File in questo prodotto:
File Dimensione Formato  
1ConvexHamburg2002.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 668.29 kB
Formato Adobe PDF
668.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1449729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact