We study a class of non smooth vector valued maps, defined on n-dimensional domains, which allow for fractures of any integer dimension lower than n.We extend some well known features about (n−1)-dimensional jumps ofSBV functions and 0-dimensional singularities, or cavitations, of the distributional determinant of Sobolev functions. Variational problems involving the size of the fractures of any dimension are then studied.

Fractures and vector valued maps / Mucci, Domenico. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 22:4(2005), pp. 391-420. [10.1007/s00526-004-0282-9]

Fractures and vector valued maps

MUCCI, Domenico
2005-01-01

Abstract

We study a class of non smooth vector valued maps, defined on n-dimensional domains, which allow for fractures of any integer dimension lower than n.We extend some well known features about (n−1)-dimensional jumps ofSBV functions and 0-dimensional singularities, or cavitations, of the distributional determinant of Sobolev functions. Variational problems involving the size of the fractures of any dimension are then studied.
2005
Fractures and vector valued maps / Mucci, Domenico. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 22:4(2005), pp. 391-420. [10.1007/s00526-004-0282-9]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1445533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact