A molecular understanding of volatile anesthetic mechanisms of action will require structural descriptions of anesthetic-protein complexes. Porcine odorant binding protein is a 157 residue member of the lipocalin family that features a large beta-barrel internal cavity (515 +/- 30 angstroms(3)) lined predominantly by aromatic and aliphatic residues. Halothane binding to the beta-barrel cavity was determined using fluorescence quenching of Trp16, and a competitive binding assay with 1-aminoanthracene. In addition, the binding of halothane and isoflurane were characterized thermodynamically using isothermal titration calorimetry. Hydrogen exchange was used to evaluate the effects of bound halothane and isoflurane on global protein dynamics. Halothane bound to the cavity in the beta-barrel of porcine odorant binding protein with dissociation constants of 0.46 +/- 0.10 mM and 0.43 +/- 0.12 mM determined using fluorescence quenching and competitive binding with 1-aminoanthracene, respectively. Isothermal titration calorimetry revealed that halothane and isoflurane bound with K(d) values of 80 +/- 10 microM and 100 +/- 10 microM, respectively. Halothane and isoflurane binding resulted in an overall stabilization of the folded conformation of the protein by -0.9 +/- 0.1 kcal.mol(-1). In addition to indicating specific binding to the native protein conformation, such stabilization may represent a fundamental mechanism whereby anesthetics reversibly alter protein function. Because porcine odorant binding protein has been successfully analyzed by X-ray diffraction to 2.25 angstroms resolution [1], this represents an attractive system for atomic-level structural studies in the presence of bound anesthetic. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules.

Binding of the volatile general anesthetics halothane and isofluorane to a mammalian beta barrel protein / JOHANSSON J.S.; MANDERSON G.A.; RAMONI R.; GROLLI S.; ECKENHOFF R.G.. - In: THE FEBS JOURNAL. - ISSN 1742-464X. - 272(2)(2005), pp. 573-581.

Binding of the volatile general anesthetics halothane and isofluorane to a mammalian beta barrel protein

RAMONI, Roberto;GROLLI, Stefano;
2005

Abstract

A molecular understanding of volatile anesthetic mechanisms of action will require structural descriptions of anesthetic-protein complexes. Porcine odorant binding protein is a 157 residue member of the lipocalin family that features a large beta-barrel internal cavity (515 +/- 30 angstroms(3)) lined predominantly by aromatic and aliphatic residues. Halothane binding to the beta-barrel cavity was determined using fluorescence quenching of Trp16, and a competitive binding assay with 1-aminoanthracene. In addition, the binding of halothane and isoflurane were characterized thermodynamically using isothermal titration calorimetry. Hydrogen exchange was used to evaluate the effects of bound halothane and isoflurane on global protein dynamics. Halothane bound to the cavity in the beta-barrel of porcine odorant binding protein with dissociation constants of 0.46 +/- 0.10 mM and 0.43 +/- 0.12 mM determined using fluorescence quenching and competitive binding with 1-aminoanthracene, respectively. Isothermal titration calorimetry revealed that halothane and isoflurane bound with K(d) values of 80 +/- 10 microM and 100 +/- 10 microM, respectively. Halothane and isoflurane binding resulted in an overall stabilization of the folded conformation of the protein by -0.9 +/- 0.1 kcal.mol(-1). In addition to indicating specific binding to the native protein conformation, such stabilization may represent a fundamental mechanism whereby anesthetics reversibly alter protein function. Because porcine odorant binding protein has been successfully analyzed by X-ray diffraction to 2.25 angstroms resolution [1], this represents an attractive system for atomic-level structural studies in the presence of bound anesthetic. Such studies will provide much needed insight into how volatile anesthetics interact with biological macromolecules.
Binding of the volatile general anesthetics halothane and isofluorane to a mammalian beta barrel protein / JOHANSSON J.S.; MANDERSON G.A.; RAMONI R.; GROLLI S.; ECKENHOFF R.G.. - In: THE FEBS JOURNAL. - ISSN 1742-464X. - 272(2)(2005), pp. 573-581.
File in questo prodotto:
File Dimensione Formato  
FEBS J anestatici abs.pdf

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 83.3 kB
Formato Adobe PDF
83.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
OBP anestetici gassosi.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 223.97 kB
Formato Adobe PDF
223.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/1445305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact