In this paper, we present a general approach to finite-memory detection. From a semi-tutorial perspective, a number of previous results are rederived and new insights are gained within a unified framework. A probabilistic derivation of the well-known Viterbi algorithm, forward–backward, and sum-product algorithms, shows that a basic metric emerges naturally under very general causality and finite-memory conditions. This result implies that detection solutions based on one algorithm can be systematically extended to other algorithms. For stochastic channels described by a suitable parametric model, a conditional Markov property is shown to imply this finite-memory condition. This conditional Markov property, although seldom met exactly in practice, is shown to represent a reasonable and useful approximation in all considered cases. We consider, as examples, linear predictive and noncoherent detection schemes. While good performance for increasing complexity can often be achieved with a finite-memory detection strategy, key issues in the design of detection algorithms are the computational efficiency and the performance for limited complexity.
A unified framework for finite-memory detection / Ferrari, Gianluigi; Colavolpe, Giulio; Raheli, Riccardo. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - 23:(2005), pp. 1697-1706. [10.1109/JSAC.2005.853812]
A unified framework for finite-memory detection
FERRARI, Gianluigi;COLAVOLPE, Giulio;RAHELI, Riccardo
2005-01-01
Abstract
In this paper, we present a general approach to finite-memory detection. From a semi-tutorial perspective, a number of previous results are rederived and new insights are gained within a unified framework. A probabilistic derivation of the well-known Viterbi algorithm, forward–backward, and sum-product algorithms, shows that a basic metric emerges naturally under very general causality and finite-memory conditions. This result implies that detection solutions based on one algorithm can be systematically extended to other algorithms. For stochastic channels described by a suitable parametric model, a conditional Markov property is shown to imply this finite-memory condition. This conditional Markov property, although seldom met exactly in practice, is shown to represent a reasonable and useful approximation in all considered cases. We consider, as examples, linear predictive and noncoherent detection schemes. While good performance for increasing complexity can often be achieved with a finite-memory detection strategy, key issues in the design of detection algorithms are the computational efficiency and the performance for limited complexity.File | Dimensione | Formato | |
---|---|---|---|
FeCoRa_JSAC05.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
461.72 kB
Formato
Adobe PDF
|
461.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.