Exact evaluation of <Tr S^p> is here performed for real symmetric matrices S of arbitrary order n, up to some integer p, where the matrix entries are independent identically distributed random variables, with an arbitrary probability distribution. These expectations are polynomials in the moments of the matrix entries; they provide useful information on the spectral density of the ensemble in the large n limit. They also are a straightforward tool to examine a variety of rescalings of the entries in the large n limit.

Real symmetric random matrices and path counting / Cicuta, Giovanni. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 72:(2005), pp. 026122-1-026122-10. [10.1103/PhysRevE.72.026122]

Real symmetric random matrices and path counting

CICUTA, Giovanni
2005-01-01

Abstract

Exact evaluation of is here performed for real symmetric matrices S of arbitrary order n, up to some integer p, where the matrix entries are independent identically distributed random variables, with an arbitrary probability distribution. These expectations are polynomials in the moments of the matrix entries; they provide useful information on the spectral density of the ensemble in the large n limit. They also are a straightforward tool to examine a variety of rescalings of the entries in the large n limit.
2005
Real symmetric random matrices and path counting / Cicuta, Giovanni. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 72:(2005), pp. 026122-1-026122-10. [10.1103/PhysRevE.72.026122]
File in questo prodotto:
File Dimensione Formato  
Abstract_PRE2005.doc

non disponibili

Tipologia: Abstract
Licenza: Creative commons
Dimensione 20 kB
Formato Microsoft Word
20 kB Microsoft Word   Visualizza/Apri   Richiedi una copia
PhysRevE.72.026122.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 137.92 kB
Formato Adobe PDF
137.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1444216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact