We consider a class of parabolic systems of the type: $$ u_t - div \ a(x,t,Du) =0 $$ where the vector field $a(x,t,F)$ exhibits non standard growth conditions. These systems arise when studying certain classes of non-Newtonian fluids such as electrorheological fluids or fluids with viscosity depending on the temperature. For properly defined weak solutions to such systems, we prove various regularity properties: higher integrability, higher differentiability, partial regularity of the spatial gradient, estimates for the (parabolic) Hausdorff dimension of the singular set.

Regularity results for parabolic systems related to a class of Non Newtonian fluids / Acerbi, Emilio Daniele Giovanni; Mingione, Giuseppe; Seregin, G. A.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 21:(2004), pp. 25-60. [10.1016/j.anihpc.2002.11.002]

Regularity results for parabolic systems related to a class of Non Newtonian fluids

ACERBI, Emilio Daniele Giovanni;MINGIONE, Giuseppe;
2004-01-01

Abstract

We consider a class of parabolic systems of the type: $$ u_t - div \ a(x,t,Du) =0 $$ where the vector field $a(x,t,F)$ exhibits non standard growth conditions. These systems arise when studying certain classes of non-Newtonian fluids such as electrorheological fluids or fluids with viscosity depending on the temperature. For properly defined weak solutions to such systems, we prove various regularity properties: higher integrability, higher differentiability, partial regularity of the spatial gradient, estimates for the (parabolic) Hausdorff dimension of the singular set.
2004
Regularity results for parabolic systems related to a class of Non Newtonian fluids / Acerbi, Emilio Daniele Giovanni; Mingione, Giuseppe; Seregin, G. A.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 21:(2004), pp. 25-60. [10.1016/j.anihpc.2002.11.002]
File in questo prodotto:
File Dimensione Formato  
amsPOI21.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 390.96 kB
Formato Adobe PDF
390.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1440778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 146
social impact