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MetalGAN: Multi-Domain Label-Less1

Image Synthesis Using cGANs and Meta-Learning2
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Abstract6

Image synthesis is currently one of the most addressed image processing topic
in computer vision and deep learning fields of study. Researchers have tack-
led this problem focusing their efforts on its several challenging problems,
e.g. image quality and size, domain and pose changing, architecture of the
networks, and so on. Above all, producing images belonging to different
domains by using a single architecture is a very relevant goal for image gen-
eration. In fact, a single multi-domain network would allow greater flexibility
and robustness in the image synthesis task than other approaches. This pa-
per proposes a novel architecture and a training algorithm, which are able
to produce multi-domain outputs using a single network. A small portion
of a dataset is intentionally used, and there are no hard-coded labels (or
classes). This is achieved by combining a conditional Generative Adversarial
Network (cGAN) for image generation and a Meta-Learning algorithm for
domain switch, and we called our approach MetalGAN. The approach has
proved to be appropriate for solving the multi-domain label-less problem and
it is validated on facial attribute transfer, using CelebA dataset.
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1. Introduction10

Image generation or synthesis consists in the act of producing a novel11

image—representing a subject of interest or whatever else—from an input12

that could be a random noise matrix, another (real) image, or a combination13

of these two possibilities, eventually put beside a label or a condition that14

somehow controls the output. The required output should belong to a specific15

domain, or it should have been obtained following a precise style. Conversely,16

in some cases the image domain or style could be not decided a-priori, and17

the developed system should perform multi-domain image generation.18

Since the recent advances of deep learning techniques and architectures19

on image generation, the image synthesis task has become more and more ac-20

cessible and understood. Examples of such techniques are the use of Genera-21

tive Adversarial Networks (GANs) (in particular Deep Convolutional GANs,22

called DCGANs) and conditional GANs (cGANs), which should have dif-23

ferent architectures, such as U-Nets and StyleGAN, and different training24

methods, like pix2pix, cycleGAN, and so on. A high number of specific25

approaches were developed to face the aforementioned variety of image gen-26

eration tasks, leading to a vast literature for each specific sub-problem. A27

brief outline of the major methodologies are reported in the next section.28

This paper focuses on the specific problem of image-to-image translation.29

Image-to-image translation is the act of transforming an arbitrary image in30

another, more useful, representation of the same data. Image colorization,31

semantic segmentation, style transfer are examples of image-to-image transla-32

tions. In particular, this work approaches the task of transforming the input33

image over a range of so-called domains, i.e. recognizable sets of similar im-34

ages which share common characteristics. One of the scope of this work is to35

develop a single architecture that is able to handle many different domains,36

i.e. a multi-domain image-to-image generator system. More specifically, in37

a system like that, the architecture is required to learn multiple mapping38

functions, that is one for each domain. In our case, the multiple domains39

are represented by different facial attributes like “blond hair” or“pale skin”40

and the mapping functions have the objective to apply these attributes on41

any face passing through the architecture. Moreover, the idea is to make the42

model capable to learn new, unseen, domains by using few images for each43

new domain, in order to gain a great flexibility and generalization capability44

of the proposed architecture and to tackle also those applications or domains45

where there is scarcity of available data. Hence, the topic covered in this46

2



work is multi-domain image-to-image translation, deeply entranced with the47

concept of domain adaptation.48

One interesting take on this topic is that many of these image-to-image49

transformations are linked by a common way of working. For example, chang-50

ing hair color, e.g. switching the domain to the new one of “people with blond51

hair”, needs to correctly segment hair in the same way of changing the do-52

main in “people with black hair”. Similarly, changing a face into its older53

version and add glasses to a face both need to correctly locate the subject’s54

eyes. Yet, for long time, a single neural network for each of these tasks had55

to be created, even if the tasks were quite similar. A solution to this kind56

of problem has been proposed with StarGAN (Choi et al., 2018), which had57

the intuition of bringing together multiple image-to-image transformations58

in the same network architecture.59

Another observation is that most of the existing approaches to image-60

to-image translations perform a full training with input-output examples of61

images, to achieve high quality results. An evident drawback of this approach62

is that they need very large datasets to be trained. Dataset could be labeled63

or unlabeled, but usually the domain switch is controlled by a conditioning64

label, which indicates the target domain to transform the image to. Hence,65

image-to-image translation often requires a lot of labeled images, where the66

label denotes the domain(s). It is worth noting that an image could have67

more than one label: this is the reason for not addressing labels as classes.68

Regarding the adaptation of the model to new domains with few images,69

a similar issue is the few-shot learning problem. Few-shot problems are often70

addressed by using meta-learning techniques, thanks to their ability to switch71

among a distribution of tasks during training. Training in a meta-learning72

settings means creating a learning system that includes another learning sub-73

system: the sub-system trains a model (such as a neural network) on a single74

task sampled from the distribution, and the meta-learning system trains the75

sub-system, thus adapting the model to all tasks. Meta-learning methods76

have proved to be successful in classification and regression scenarios, but77

there are still few papers (Liu et al., 2019; Zhang et al., 2018) in the field of78

image generation.79

Linked to domain adaptation, another known problem of traditional train-80

ing settings is that once a new set of tasks emerges, e.g. a new domain is81

added to the target (or desired) outputs, a full retraining of the whole sys-82

tem is needed. This happens even if the new task is similar to tasks that83

the network has already learned. The full re-training includes incorporating84
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the new domain in the input examples and also it often needs architecture85

changes.86

The main proposal of this article, and its principal contributions are:87

• a system that consists in a single cGAN (i.e., two networks, a generator88

and a discriminator) performing image-to-image translation, trained on89

multiple domains;90

• both networks do not contain any reference to the label or domain of91

the input or output (label-less) therefore allowing a much more flexible92

architecture;93

• the system is able to switch task with just few examples of a new, un-94

seen domain, by means of a meta-learning training algorithm. This was95

impossible in previous architectures, representing a great limitation;96

• the system uses knowledge accumulated at training time with well-97

known, largely represented classes, to easily learn new, unknown tasks98

in few iterations.99

Taking into account all these contributions and the main proposed idea to100

fuse together meta-learning and GAN, we named our approach MetalGAN.101

The paper is organized as follows. Section 2 presents an extensive eval-102

uation of the state-of-art. Section 3 introduces a complete overview of the103

system: main idea and notations, architecture of the network and algorithm.104

Section 4 describes the experimental results. Finally, Section 5 presents our105

conclusions.106

2. Related Work107

Image-to-image translation. The main topic of this paper, i.e. image-108

to-image translation, has become a hot topic in machine learning researcher109

community after the introduction of encoder-decoder networks like U-Nets110

(Ronneberger et al., 2015), Fully Convolutional Neural networks (FCN ) (Long111

et al., 2015) and conditional GANs (Mirza and Osindero, 2014). The GAN112

approach, that can be considered a form of Artificial Curiosity as inter-113

estingly stated in (Schmidhuber, 2020), to image synthesis has proven an114

unprecedented quality of output results, reaching photorealism in many do-115

mains, such as face synthesis. While traditional GANs (Goodfellow et al.,116

2014) generate images from noise, conditional GANs (cGANs) (Mirza and117
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Osindero, 2014) in their many variations are able to generate images from118

labels or other input images, or both. To this extent, cGANs are often used119

to perform lots of different image-to-image translation tasks like producing120

sketch colorization and texture generation (Sangkloy et al., 2017; Xian et al.,121

2018), super-resolution of images (Ledig et al., 2017) or to generate a photo-122

realistic image from a semantic label map (Wang et al., 2018; Park et al.,123

2019). cGANs can be trained in both a paired (Isola et al., 2017; Zhu et al.,124

2017b) or unpaired way (Zhu et al., 2017a; Almahairi et al., 2018; Kim et al.,125

2017a).126

In our approach, we use cGANs without a paired dataset with only input127

image but label-less, in order to maintain a great generalization capability128

of the generator network. Moreover, we introduced skip connections in the129

generator network, as in U-Nets.130

Multi-domain image-to-image translation. A common trait of most of131

the image-to-image methods is that they are only able to produce outputs132

belonging to a single domain or class. Regarding multi-domain facial at-133

tributes transfer, our main work of reference is StarGAN (Choi et al., 2018),134

though there exist other relevant works like (He et al., 2019; Xiao et al., 2017;135

Kim et al., 2017b). StarGAN proposes an unified method for multi-domain136

image-to-image translation. It achieves great results in image synthesis tak-137

ing strength from the multiple domain adaptations and it learns multiple138

domains at the same time using only one underlying representation. The139

main differences between StarGAN and the proposed method are: in our140

approach, networks do not use labels information (while StarGAN do); our141

training method relies on a small number of images per-iteration; and also a142

few-shot-like approach is employed when dealing with new domains during143

inference.144

Few-shots learning. Few-shot problems are usually tackled with meta-145

learning techniques, since recent results show great performance of meta-146

learners on typical few-shot datasets and learning settings. There are many147

types of meta-learners. Some learn how to parameterize the optimizer of148

the network (Hochreiter et al., 2001; Ravi and Larochelle, 2016), while oth-149

ers use a network as optimizer (Li and Malik, 2017; Andrychowicz et al.,150

2016; Wichrowska et al., 2017). Furthermore, using a recurrent neural net-151

work trained on the episodes of a set of task is one of the most general152

approach (Santoro et al., 2016; Mishra et al., 2017; Duan et al., 2016; Wang153
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et al.). For our work, the most relevant meta-learners are the ones based on154

hyper-parameterized gradient descent such as Reptile (Nichol et al., 2018)155

and MAML (Finn et al., 2017). In fact, we use the Reptile algorithm applied156

to a generation problem, where Reptile tasks are identified with our domains.157

Reptile was already used in combination with GANs in (Clouâtre and De-158

mers, 2019) in order to generate very simple black and white images (such159

as MNIST digits) or in (Zhang et al., 2018) that introduced an adversarial160

discriminator, conditioned on tasks.161

Regarding few-shot image-to-image translation, a new method was re-162

cently introduced in (Liu et al., 2019), coupling an adversarial training scheme163

with a novel network design. Unlike our method, it does not use meta-164

learning and does not act as a proper domain transfer algorithm, but rather165

as a style transfer one: for example, in the case of face image translation166

task, the translation output maintains the pose of the input content image,167

but the appearance is similar to the the faces of the target person.168

3. Overview of the System169

3.1. Idea and Notations170

As briefly outlined in the introduction, there are some key points from171

which our work originates, namely, the need of a few-shots setting, the use172

of a single GAN architecture, the absence of labels, and the multi-domain173

adaptation. All these key points require a proper definition.174

Starting from the most potentially ambiguous definition, we call a “do-175

main” a set of images which share a well-defined common characteristic,176

clearly recognizable by using a single label or keyword: for example, “black-177

hair” in a dataset of faces denotes the domain of people with a black hair178

color. Given the example above, it is also clear that the type of dataset is also179

important: if the dataset contains both dogs and cats images, “black-hair”180

should have another meaning; if it contains only landscapes, “black-hair”181

should have no meaning at all. Moreover, domains are not mutually exclu-182

sive, rather they could intersect each other.183

Closely related to the concept of domain, there is the concept of “label”.184

Usually, when approaching multi-domains problems, labels are employed to185

identify which domains a certain image belongs to. This helps the networks186

in detecting a target domain and thus generating images belonging to such a187

domain. In our case, label-less means that the domain of the input and the188

target images have to be inferred from other information.189
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In a classic few-shots classification setting, from which we borrow the190

notations, there are n classes {c1, c2, . . . , cn} and a certain number k of input191

examples per-class, e.g. {x1, x2, . . . , xki} are the input of the i-th class ci.192

During training only N classes per iteration are used over the total number193

of classes n, and for each of these N classes only K input examples over194

the total number of examples of a class are used, where K << k. Then,195

the trained N -classifier has to classify a new example of a random class c̃.196

In our case, domains are treated as classes, and the generator-discriminator197

(from now on, called G and D) networks are trained on a single domain per198

meta-iteration (N = 1), in order to make G and D able to learn the domain199

they are working on, without labels. The number K of examples per domain200

varies according to the type of experiment performed (see Section 4), but we201

choose to perform an almost full training and a few-shot inference to allow G202

to learn adequately the reconstruction of images, and then to switch domain.203

The architecture of our multi-domain GAN is detailed in Section 3.2.204

Finally, in the meta-learning nomenclature, we defined a task as a group205

of K images that belong to the same domain, used for the inner-iteration of206

the algorithm, explained in detail in Section 3.3.207

Our approach uses a single GAN on different tasks. This forces the un-208

derlying weights structure of both G and D networks to learn a general yet209

effective representation for describing all tasks. G and D networks are con-210

ditioned with the use of a meta-learning algorithm, on each task/domain.211

Other approaches, like StarGAN, instead, needs target labels that condition212

the output for both G and D networks. In detail, the conditioning is implic-213

itly provided by the task selection performed during meta-learning. For each214

meta-iteration, a single task is selected, and the network is trained on that215

single task for a number of internal iterations. In the next meta-iteration216

the training is performed on another, different but related task. With this217

training algorithm the network learns, meta-iteration after meta-iteration, a218

representation that is good (but not optimal) in performing all tasks, and219

just needs a little final push (few epochs of training) to be moved in the220

direction of the target task.221

3.2. Architecture of the Network222

One of the strengths of our proposal is that it completely removes the223

need of providing specific labels for the data, because the network does not224

use one-hot labels or similar. If data are already labeled, labels are only225

useful in the preprocessing phase for dividing into domains the dataset, since226
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the main algorithm works task-by-task. It is worth noting that such domains227

could overlaps. On the other hand, unlabeled data has to be clustered into228

domains, a passage that can be completely automated (in contrast with man-229

ual labeling), but using a clustering method, domains does not overlap. A230

clusterization followed by a meta-learning approach is shown in a preliminary231

work on colorization (Fontanini et al., 2019).232

Our system is composed by a single cGAN. In particular, since the objec-233

tive is to generate the face of a person with only a bunch of new attributes,234

without changing the peculiar traits of the person itself and without using235

labels, we conditioned the cGAN with the input face, in order to maintain the236

identity of the person, and, at the same time, changing the target attributes.237

The generator network G is the same as the StarGAN one with the addi-238

tion of skip-connections (inspired by the classic U-Net), but input labels are239

removed. The introduction of skip-connection in the generator architecture240

aims at enhancing the quality of the reconstruction; in other words, they are241

useful for keeping contents of the input image unchanged in the output image242

(for example, the face of a person remains the same, despite the changing of243

hair color).244

On the other side, the D structure is the PatchGAN from pix2pix (Isola245

et al., 2017). Since during each task the network tunes itself on a single do-246

main, there is no need of a domain classification output for our discriminator.247

Instead, we choose to classify images both as real or fake and as belonging or248

not to the current domain. By doing so our discriminator has two outputs:249

Dadv(x) and Ddom(x), one for each probability distribution.250

Finally, we define a set of losses in order to train our architecture.251

Adversarial Loss. For the discriminator, we use an adversarial loss to dis-252

tinguish between real and generated images:253

Ladv(D,G) = Ey∼pτ [logDadv(y)] + Ex∼pdata [1− logDadv(G(x))] , (1)

where y is sampled over a distribution of current task images pτ (real sam-254

ples), and x over the distribution of the whole dataset pdata (G(x) are the255

generated samples).256

In particular, during each task, D tries to classify if an image (or a batch257

of images) y belongs or not to the current domain distribution τ (all images258

in the batch must belong to the domain). For example, if the current task is259
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Figure 1: Complete network architecture. First, the discriminator is trained to distinguish
between fake images (a) and real ones (b) and between images belonging to the current
domain (b) and images that do not belong to it (c). Then, the generator is trained to fool
the discriminator by labeling its outputs as real and as belonging to the current domain
(d). Finally, the reconstruction step is executed and its results are labeled as part of the
current domain (e).
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to produce people with blond hair, the discriminator has to determine if an260

image contains a person with blond hair or not, while in classic adversarial261

settings it should simply decide if the image contains a face or not. The262

adversarial loss formula (1) does not reflect explicitly this aspect, since the263

only difference is the nature of the input y: in our work, y is not concatenated264

to any label.265

Domain Loss. After we select a new task, during the training of the dis-266

criminator, we want images sampled from the current task to be classified as267

such and, on the other side, images sampled from the whole dataset to be268

classified as not belonging to the current task.269

L′dom(D) = 2 · Ey∼pτ [logDdom(y)] + Ex∼pdata [1− logDdom(x)] , (2)

where the multiplicative factor before Ey∼pτ [logDdom(y)] is motivated by the270

fact that we need to take into account that an image x may also belong to the271

domain identified by the current task, since it is drawn from the whole data272

distribution. For this reason, the first part of the equation strongly reinforces273

the classification of examples of the target domain, while the second part274

weakly penalizes every domain (that is, also the target one).275

Instead, during the generator training, the goal is that all the generated276

images, even the ones obtained from the reconstruction of the input, would277

be classified as belonging to the current task.278

L′′dom(D,G) = Ex∼pdata [logDdom(G(x))] + Ey∼pτ [logDdom(G(y))] (3)

Adversarial and domain losses are visually described in Figure 1.279

Reconstruction Loss. This loss is crucial to guarantee that the generator280

maintains the content information of the source image. G has to be already281

tuned on the current domain/task in the meta-learning training. Since we282

completely removed the labels from our architecture and we tune the network283

on a new domain at each iteration, we cannot use a cycle consistency loss like284

in StarGAN, because G is able to produce images of only one target domain285

each task. The solution we choose to adopt is to apply the reconstruction286

loss on the images y belonging to the target domain. The reason is that if287
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an image already belongs to the target domain, it should be left unchanged288

by G. The equation for the reconstruction loss is as follows:289

Lrec(G) = Ey∼pτ [||G(y)− y||1], (4)

where || · ||1 denotes the L1 norm in the space of target images.290

Feature Matching Loss. In order to regularize the training, we also include291

a feature matching loss following the work of (Wang et al., 2018) and (Liu292

et al., 2019). Feature Loss stabilizes the training since it is required to the293

Generator to produce natural statistic at multiple scale. We extract features294

from the discriminator layers located before the prediction layer. This feature295

extractor is called Dfeat. The definition of the feature matching loss is as296

follows:297

Lfeat(Dfeat, G) = Ex,y∼pdata,pτ [||Dfeat(G(x))−Dfeat(y)||1]. (5)

Full Objective. Finally, our full objective becomes:298

LD = Ladv + L′dom, (6)

LG = wadvLadv + wdomL′′dom + wrecLrec + wfeatLfeat, (7)

for the discriminator and generator, respectively. Furthermore, wadv, wdom,299

wrec, wfeat are the weights assigned to the loss functions. The discriminator300

loss functions do not have weights assigned since adversarial and domain301

losses should contribute equally to discriminator training to obtain balanced302

results. Weights choices for the generator loss are more properly discussed303

in Section 4.304

3.3. Algorithm305

Our approach relies on a meta-learning algorithm based on Reptile (Nichol306

et al., 2018) and adapted to the image generation problem.307

The problem setting is as follows. A large dataset of images, called D,308

is used to extract random input images. Let τj be a single task, where j309

ranges over the number of chosen training domains, here called Nτ . Each310

task dataset consists of a restriction of D on the images of a single domain,311

called D|τj . Hyper-parameters of the algorithm are the inner learning rates of312

G and D networks, respectively λG and λD; the loss weights wadv, wdom, wrec,313
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and wfeat; two thresholds t and T for keeping discriminator accuracy into a314

certain range (in order to neither over- nor under-train D); and a learning315

rate for the outer networks, i.e. a meta-learning rate λML. Parameters of316

the networks, i.e. network weights and biases, are indicated as θG and θD317

for G and D, respectively. The algorithm is divided into two phases, as318

illustrated in Figure 2. The first one is the training phase, and the second319

one is the inference phase. In the training phase, the G-D network is trained320

repeatedly on a single task, randomly extracted at each epoch from the set321

of available tasks. During inference phase, instead, a new task τI is used for322

a last-time few-shot training to adapt the network to the new domain. A323

detailed explanation of training phase is given in the next paragraph and in324

Figure 3, and it is followed by another paragraph devoted to the description325

of the inference phase.326

Figure 2: A full overview of the system: during the training phase, the network is trained
for N epochs on a set of tasks, and then, during the inference phase, a new unknown task,
i.e. not present in the training phase, is selected and added to the network.
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Figure 3: Scheme of a single training epoch. A task τi is sampled and Nmeta iter inner
iterations are performed on cloned networks. Then θ and θ̃ are used to update the networks
parameters using the Reptile equation.

Algorithm 1 MetalGAN algorithm

Require: Nepochs : number of epochs

Require: Nτ : number of selected domains

Require: λML : meta-learning rate

1: load entire dataset : D
2: load datasets restricted to each single task τj : D|τj for j ∈ {0, . . . , Nτ}
3: for epoch ∈ {0, . . . , Nepochs} do
4: extract randomly τj

5: clone D into D̃ of parameters θ
D̃

6: clone G into G̃ of parameters θ
G̃

7: Inner training loop on τj

8: θG ← θG + λML

(
θ
G̃
− θG

)
. updates generator parameters

9: θD ← θD + λML

(
θ
D̃
− θD

)
. updates discriminator parameters

10: end for

Training. The algorithm for training consists of an outer and an inner loop,327

similar to Reptile. The outer loop is responsible of training the actual G-D328
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networks, updating their parameters, epoch-by-epoch as a traditional learn-329

ing algorithm. At each epoch, a task τ is randomly sampled from a distri-330

bution of tasks. It is recalled that, in our case, a task is a domain and the331

associated dataset is the few-shot subset of the set of images in the domain.332

Then, G and D networks are cloned into G̃ and D̃ networks of parameters333

θG̃ and θD̃, respectively.334

The cloned networks are trained in the inner training loop, where the335

traditional DCGAN training is performed by using task images, here indi-336

cated as y. This is needed in order to learn the current domain. Also a small337

portion of generic images from D is used, to teach the generator to perform338

domain switch. These images are called x. It is required to the generator339

to learn the transformation from the random image x of the dataset into an340

output image “similar” to y, i.e., the generated image should belong to the341

extracted task.342

Finally, the obtained parameters are used to update G and D weights,343

with the Reptile rule (a sort of SGD step where the gradient is approxi-344

mated by the difference between inner and outer weights). This baseline is345

illustrated in Figure 3.346

In detail, the outer training loop is shown in Algorithm 1. Lines 8–9 of347

Algorithm 1 are responsible of the parameter adaptation for networks G and348

D and such an operation is performed layer by layer.349

The inner training loop is illustrated in Algorithm 2. It is nothing more350

than a classic DCGAN training, but performed on the cloned networks. For351

each iteration, a small part of two datasets, that is the task dataset and352

the full training dataset, is used. The whole D is sampled randomly only353

for Nmeta iter iterations, using only few batches of images. The chosen task354

dataset D|τ is used for extracting domain specific images. The first part is355

the discriminator training. Domain loss and adversarial loss are computed356

as in Section 3.2, and D̃ parameters are updated if the accuracy of the357

discriminator is under a certain threshold T . On the contrary, the second358

part, that is the generator training, is executed only if the accuracy of the359

discriminator is above a certain threshold t. During this step, adversarial,360

task reconstruction, domain, and feature losses are all employed to update361

G̃ parameters.362

Inference. The inference part is also a crucial one. In our work, we experi-363

ment the use of few images for adapting the trained model to new, unseen,364

domains, directly during the inference phase. The idea is to feed the trained365
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Algorithm 2 Inner training loop

Require: τ : extracted task in the outer loop

Require: Nmeta iter : number of inner epochs

Require: λD, λG : learning rates of D and G

Require: wadv, wdom, wrec, wfeat : adversarial, domain, reconstruction, and feature

weights

Require: t, T : minimum and maximum thresholds for discriminator accuracy

1: for i ∈ {0, . . . , Nmeta iter} do
2: sample y from D|τ
3: sample x from D
4: . Discriminator training:

5: εD ← ∇θ
D̃
Ladv(D̃, G̃) . x is considered fake, y real

6: εdom ← ∇θ
D̃
L′dom(D̃) . x is considered false, y true

7: calculate accuracy a
D̃

of discriminator D̃

8: if a
D̃
< T then

9: θ
D̃
← θ

D̃
− λD(εD + εdom)

10: end if

11: if a
D̃
> t or i = 0 then

12: . Generator training:

13: εG ← ∇θ
G̃
E
G̃(x)∼pτ [log D̃(G̃(x))] . G̃(x) is considered real

14: εtask rec ← ∇θ
G̃
Lrec(G̃) . the reconstruction is made with y

15: εdom ← ∇θ
G̃
L′′dom(D̃, G̃) . both y and G̃(x) are considered true

16: εfeat ← ∇θ
G̃
Lfeat(D̃feat, G̃)

17: θ
G̃
← θ

G̃
− λG(wadvεG + wrecεrec + wdomεdom + wfeatεfeat)

18: end if

19: end for
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G-D networks with images from new domains, moving the obtained param-366

eters θG and θD in a new optimal direction to include the new tasks. A sort367

of fine-tuning is performed, by showing to the model few images from a new368

domain, and then few images from another new domain, and so on.

Algorithm 3 Inference

Require: λML : meta-learning rate for inference
Require: T : set of new tasks/domains
Require: Ninf epochs, Ninf train, Ninf test : number of inference iterations
1: load few-shot test dataset: D(test)

2: load few-shot restricted test dataset on each τ ∈ T : D|τ
3: . Fine-tuning on unseen domains:
4: for epoch ∈ {0, . . . , Ninf epochs} do
5: for τ ∈ T do
6: clone G-D networks
7: Inner training loop on τ , for Ninf train iterations
8: update θG and θD with Reptile rule
9: end for

10: end for
11: . Inference on unseen domains:
12: for τ ∈ T do
13: clone G-D networks
14: Inner training loop on τ , for Ninf test iterations
15: for x ∈ D(test) do
16: generate output image G̃(x)
17: end for
18: . G-D parameters are not updated anymore
19: end for

369

The settings of the inference algorithm are the following. A set of un-370

seen tasks (or domains) T is adopted. A test dataset D(test) containing all371

domains, where D(test) ∩ D = ∅, is used. As for the training dataset, for372

each new domain to infer τ ∈ T , the adequate restriction of dataset is used,373

D|τ ⊂ D, in order to avoid overlaps between test and training datasets.374

Algorithm 3 shows the inference method. It is divided in two main parts:375

a few-shot fine-tuning, and a test phase where unseen images are transformed376

into target domain images. In the first part, new domains are used to learn a377

new parameter adaptation, using few images per class. Moreover, the meta-378

learning rate for inference is greater than the one used in training, in order379
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Figure 4: Inference algorithm in the case of one of the training domains, ‘Black Hair’ (b)
and in the case of an unseen domain, ‘Heavy Makeup’ (d). The violet dots represent the
domains used during training while the green dots are the unseen domains. The model
M can move towards a known model, i.e. from state (a) to state (b); the other option is
fine-tuning towards a set of unseen domains (c), then converge to a specific one (d).

to ensure a faster adaptation. The second part is used only for generating380

the results, and it resembles a more classic inference. The inner training381

loop of the meta-learning algorithm is used, but obtained parameters are not382

updated for the next domain.383

An explanation of inference algorithm is visually provided in Figure 4384

where two exemplar cases are shown: the top row of the figure (Figure 4(a)385

and 4(b)) shows the case of the seen domain ‘Black Hair’, whereas the bottom386

row (Figure 4(c) and 4(d)) shows the case of unseen domain ‘Heavy Makeup’.387

In the image, the model, called M , consists of the G-D networks trained as388

in Algorithm 1 on five different example domains. In Figure 4(a), a näıve389

illustration of the domain space is provided. Given the dots as domains,390

and the violet dots as the seen domains, the model M has learned, during391

training, a sub-optimal representation for the seen domains. Intuitively, such392
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a representation permits the model to easily move towards the optimal one393

in few steps of the inner training loop. In Figure 4(b), an example inference394

on ‘Black Hair’ domain is shown. Since ‘Black Hair’ belongs to the trained395

domains set, the model is cloned and with some steps of inner training loop,396

the cloned model learns an optimal representation for the domain. Finally,397

parameters of the cloned model are not saved nor used for updating the main398

model, so the situation returns to the one depicted in Figure 4(a), ready to399

make another inference. When a domain, or a set of domains, are completely400

new to the generator and discriminator, a preliminary fine-tuning is needed.401

In Figure 4(c), green dots represents these unseen domains. The inference402

pre-training moves the (already trained) model in a sub-optimal position for403

both the trained domains and the new domains. In Figure 4(d), the inference404

on the updated model is shown. As Figure 4(d) shows, the fine-tuning for405

the unseen domains moves the model M in a new “position” in the space,406

closer to the unseen domains. In this way, during the inference (Figure 4(d))407

the ‘Heavy Makeup’ domain is better learnt and more correct images are408

generated, even if the domain has not been seen during the training.409

Please note that the figure is completely exemplifying, since it depicts410

domains in random positions, and does not take in account the intersec-411

tion between them, nor their ‘real’ positioning in an actual domain space412

(which is unknown). The idea of the model moving towards a sub-optimal413

yet effective representation during training epochs—minimizing the expected414

distance from all tasks—, and an informal proof of the idea using Euclidean415

distances in the manifold of optimal solutions of a task, is provided in Reptile416

paper (Nichol et al., 2018).417

4. Experimental Results418

This section presents visual and quantitative results of performed exper-419

iments of MetalGAN, compared with StarGAN ones. All our experiments420

were conducted using the CelebA dataset (Liu et al., 2015) which is a large-421

scale face attributes dataset with more than 200k celebrity images, each with422

40 attribute annotations. We decided to test our algorithm on this dataset423

for three main reasons: first of all, since it contains images of faces with all424

kind of attributes, it is suitable for multi-domain image-to-image task; sec-425

ondly, it was used by StarGAN so it allows a clear comparison between the426

results of the two different algorithms; and finally, even though our approach427
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is completely label-less, it is very easy to automatically divide a-priori the428

dataset in its different domains.429

Experiments are divided into two categories: test results on seen do-430

mains (i.e., tasks the G-D networks were trained on), and results on unseen431

domains. In case of experiments on StarGAN, since their algorithm requires432

labels, we trained their network on some domains with a few number of im-433

ages (1000), and we call these “unseen” domains. This workaround permits434

us to compare StarGAN with our inference on unseen domains. It is worth435

to note that this approach is unfair for us, since StarGAN is fully trained436

for each of these “unseen” domains, while we only perform a small inference437

step. This is due to the fact that we can choose to add new domains to our438

network at every time, while StarGAN needs to define all the domains at the439

training stage.440

4.1. Results on Trained Domains441

Table 1: Hyper-parameters of MetalGAN training phase.

Nepochs 100000
λML 0.01
λG, λD (Adam) 0.0001
Nmeta iter 20
batch size 16
wadv 1
wdom 1
wrec 10
wfeat 1

We trained G-D networks model on 5 domains, namely ‘Eyeglasses’,442

‘Male’, ‘Blond Hair’, ‘Black Hair’, and ‘Pale Skin’ for Nepochs = 100000 using443

the MetalGAN algorithm, and on the same domains for 200000 epochs using444

StarGAN.445

Table 1 presents the main settings for our experiments. We set the Reptile446

learning rate λML to 0.01 and optimized the generator and discriminator447

networks using Adam with a learning rate equals to 0.0001. Furthermore,448

we set the number of meta-iterations Nmeta iter during training equals to449
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(a) MetalGAN outputs. (b) StarGAN outputs.

Figure 5: Results on training classes. In the first column, the input images. From second
to fifth column there are the outputs of the model moved towards the respective domain,
in case of MetalGAN, or labeled with the indication of the domain, in case of StarGAN.
The last column of MetalGAN results is the output of the model without moving it from
the sub-optimum.

20 since we empirically found that this value represents the best trade-off450

between speed and accuracy of the algorithm. For coherence with StarGAN,451

batch size is set to 16 during training. Weights for MetalGAN objective452

during training are left to 1 except for reconstruction weight, that is set to453

10, in order to obtain an accurate reconstruction of the image and gain more454

quality in results.455

Figure 5 shows some visual results on a batch of eight input images.456

Figure 5(a) contains the outputs of MetalGAN algorithm, while Figure 5(b)457

shows the StarGAN outputs. In addition, a greater number of results on some458

of the training classes are shown in Figure 6 and 7. Figure 6 shows generated459

images on ‘Eyeglasses’ domain, where input images are put side-by-side to460

MetalGAN outputs and StarGAN outputs. In the same fashion, results on461

‘Black Hair’ domain are reported in Figure 7. We decided to choose these462

two domains since they are very different in terms of features and since our463

20



Figure 6: Results on training domain Eyglasses. The image triplets are composed by input
image, MetalGAN output and StarGAN output.

method performs very well on ‘Eyeglasses’ and, on the contrary, it is not so464

good on ‘Black Hair’. It is also worth noting that MetalGAN on ‘Eyeglasses’465

produces a great variability of examples, compared to StarGAN, generating466

both simple glasses and sunglasses.467

However, the image generation should be considered successful and visu-468

ally close to StarGAN one. As a matter of fact, we can see how our label-less469

approach produces results that are visually very similar to the ones produced470

by StarGAN. In particular, our algorithm is able to understand the different471

target domains just by seeing few examples of them each epoch, and can472

correctly produce these domains from the input images even without labels473

or supervision.474

In addition, we performed quantitative analysis of the produced results.475

As far as we know, no pure theoretical framework is available for a precise476

quantification of our model contributions and advantages, in order to com-477

pare it to others, but there exists some relevant metrics that are suitable for478

a numerical placement of our proposal. Metrics considered in this work are479
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Figure 7: Results on training domain Black Hair. The image triplets are composed by
input image, MetalGAN output and StarGAN output.
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FID (Frechet Inception Distance) (Heusel et al., 2017) and PRD (Precision480

and Recall for Distributions) (Sajjadi et al., 2018), described below. We use481

FID to calculate the distribution matching between the original CelebA im-482

ages for each training domains and our results, and we compare our score483

with the one obtained on StarGAN images. This comparison is presented484

in Figure 8 with lower values indicating the better scores. Our method per-485

forms slightly better than StarGAN for ‘Eyeglasses’, ‘Male’ and ‘Blond Hair’486

domains and slightly worse than StarGAN for ‘Black Hair’ and ‘Pale Skin’,487

confirming the visual evaluation of the images.488

Figure 8: FID score on training domains (the lower the better).

Another quantitative analysis is based on PRD for both StarGAN and489

MetalGAN methods, using classes of images of CelebA as target datasets.490

Precision is a measure of raw quality of generated images, and does not take491

in account the internal variability of the distribution, while recall measures492

how well the generated images resembles the “class distribution” of the tar-493

get dataset. We choose to measure a single domain at once. Results are494

shown in five different graphics, in Figure 9. As shown, MetalGAN PRD on495

‘Eyeglasses’, ‘Blond Hair’, and ‘Black Hair’ are very similar to each other496

and close to StarGAN results. The main difference between StarGAN and497

MetalGAN in case of hair domains is that StarGAN is usually more precise498

(it produces images with a better quality w.r.t. the target distribution), but499

it has a lower recall, meaning that the distribution of StarGAN generated500

images is less varied than MetalGAN one. Regarding ‘Male’ and ‘Pale Skin’,501
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(a) Eyeglasses (b) Male (c) Blond Hair (d) Black Hair (e) Pale Skin

Figure 9: PRD on each training domains.

the precision of MetalGAN suffers from the fact that such domains require a502

significant change in all the faces in the input image, highlighting a weakness503

in MetalGAN global reconstruction. On the other hand, the domain change504

is successful, as confirmed for ‘Male’ FID score. In Figure 10, global PRD,

Figure 10: Global PRD on training domains.

505

computed on all training domains at once, resembles the previous consider-506

ation, showing a worse precision of MetalGAN generated distribution, but a507

similar high recall for StarGAN and MetalGAN distributions.508

It is worth emphasizing once more that MetalGAN achieves these results509

without labels, showing in any case comparable quantitative results and often510

better qualitative results.511

4.2. Results on Unseen Domains512

During the inference step, we modify the hyper-parameters of MetalGAN513

as shown in Table 2. In particular, in order to allow the network to quickly514

adapt to the new domains, we increment the λML to 0.1 and we set wadv and515

wdom to 100. Furthermore, since the network already learned to reconstruct516

the content of the input images we lower wrec to 1.517
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Table 2: Hyper-parameters of MetalGAN inference phase.

Nepochs 10
λML 0.1
λG, λD (Adam) 0.0001
Ninf train (train) 20
Ninf test (test) 100
batch size 16
wadv 100
wdom 100
wrec 1
wfeat 1

Finally, we tested the MetalGAN trained model on 6 unseen domains,518

namely ‘Big Lips’, ‘Bushy Eyebrows’, ‘Heavy Makeup’, ‘Smiling’, ‘Gray Hair’,519

and ‘Mustache’ using the MetalGAN inference. MetalGAN, trained on the520

5 seen domains of Section 4.1, performs 10 further outer iterations (on each521

new domain), each of them consisting of 20 inner iteration, where 320 task522

images are seen for the first time. In this way, a fine-tuned model is obtained,523

as in Figure 4(c). Then, images are generated by specializing the fine-tuned524

model on the chosen domain, as in Figure 4(d). Such a specialization is done525

performing 100 inner iterations per domain.526

On the other side, we trained 6 new StarGAN models with the same527

domains used during training, plus one unseen domain for each model, i.e. we528

obtained a StarGAN model specialized also in ‘Big Lips’, another StarGAN529

model specialized also on ‘Bushy Eyebrows’, and so on. This is necessary,530

since StarGAN uses image labels, so adding a new domain is possible only531

by retraining the model. All six new StarGAN models were fully trained532

for Nepochs = 200000. For StarGAN, “unseen” means that only 1000 input533

images are selected for that domain, as already described in the beginning of534

Section 4.535

Visual qualitative results for unseen domains for both MetalGAN and536

StarGAN are presented in Figure 11, 12 and 13. In particular, for MetalGAN,537

the results produced without performing the fine-tuning iterations are also538

shown. Our algorithm is able to produce compelling images even in this case539

and further improves the visual appearance of the images after the fine-tuning540
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Figure 11: Results on unseen domains Big Lips and Bushy Eyebrows. The image triplets
are composed by input image, MetalGAN output without fine-tuning, MetalGAN output
with fine-tuning and StarGAN output.
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step. In addition, MetalGAN applyes the unseen domains to the input images541

in a more soft and natural way than StarGAN. This is particularly evident542

in ‘Big Lips’ and ‘Smiling’, where StarGAN produced results that could be543

described as “creepy”. A further consideration is the fact that sometimes,544

during the unseen domain transfer, MetalGAN tends to apply unwanted545

features to the images. For example in ‘Bushy Eyebrows’ the network often546

changes the hair color to black or applyes mustaches. This is due to the fact547

that people with bushy eyebrows generally have darker hair and facial hair.548

The same reasoning can be applyed to ‘Gray Hair’, where the network tends549

to produce older people, because people with gray hair are usually old. The550

reason for this behavior is that, because of the lack of labels, the network has551

to infer which is the domain to be transferred without any help. This is also552

a big advantage, because produces a much greater flexibility to the network553

and allows to add new domains to the network very easily.554

We calculated both FID and PRD also for inference domains, as in the555

previous section. In Figure 14, FID scores are reported. As for training,556

FID scores depend heavily on the selected domain, but in general, StarGAN557

and MetalGAN scores are close to each other. In particular, MetalGAN558

performs better on ‘Big Lips’, ‘Smiling’, and ‘Bushy Eyebrows’, confirming559

visual evaluation of results.560

In Figure 15, PRD graphs for each unseen domain are reported. All561

results show how both StarGAN and MetalGAN decrease their precision562

in this phase, as reasonable. As we can see in Figure 11, 12, and 13, the563

overall quality of the reconstruction is slightly worse than the one of trained564

domains. However, despite the unfair comparison, PRD for MetalGAN and565

StarGAN are pretty similar. Looking at the global PRD, calculated on all six566

unseen domains at once (Figure 16), MetalGAN shows better performances567

especially on distribution recall.568

4.3. Additional Experiments569

4.3.1. Results on Radboud Faces Database570

In order to further prove the effectiveness of our method, we also trained571

the G-D network on another multi-domain dataset, with MetalGAN algo-572

rithm. Such a dataset is Radboud Faces Database (RAFD) (Langner et al.,573

2010). RAFD is a set of pictures of 67 models displaying 8 emotional ex-574

pressions. We trained the model for 20k iterations with MetalGAN on 5575

different emotions (disgusted, fearful, happy, sad and surprised), maintain-576

ing the same configuration used with the CelebA dataset. A batch of visual577
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Figure 12: Results on unseen domains Heavy Makeup and Smiling. The image triplets
are composed by input image, MetalGAN output without fine-tuning, metalGAN output
with fine-tuning and starGAN output.
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Figure 13: Results on unseen domains Gray Hair and Mustache. The image triplets are
composed by input image, MetalGAN output without fine-tuning, metalGAN output with
fine-tuning and starGAN output.
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Figure 14: FID score on inference domains (the lower the better).

results is shown in Figure 17 (a), where only the trained domains are tested.578

Then, additional unseen domains were added to further test our method on579

this new dataset, as for CelebA. Such new domains are angry, contemptuous580

and neutral. Inference configurations are the same of Table 2. In Figure581

17 (b), the visual results of MetalGAN inference on RAFD are reported.582

Results are comparable to trained ones, even if they were obtained by few583

iterations on the trained model, and with few input images. The näıve reason584

could be that changing the facial expression involves few attributes of the585

image, thus switching from the input facial expression domain to an unseen586

one shares a lot of knowledge with the switching between the input and the587

trained domains. In other words, the main task is the same: changing the588

facial expression, and little differences between domains are handled easily589

by the inference steps.590

In addition to the qualitative comparison, we also trained a classification591

network in order to obtain a quantitative evaluation of our method. We592

choose ResNet-18 as classification network (following the StarGAN paper)593

and we produced classification results on the different emotions both for our594

architecture as well as for StarGAN trained on the same domains. Results595

can be seen in Table 3. Following the considerations that were made for596

the CelebA results, our results for the RAFD dataset are in line with the597

StarGAN ones, but without the use of label or supervision. The only excep-598

tion is the sad domain where our network tends to only change the mouth599
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(a) Big Lips (b) Bushy Eyebrows (c) Heavy Makeup

(d) Smiling (e) Gray Hair (f) Mustache

Figure 15: PRD graphs on inference domains.

Figure 16: Global PRD on inference domains.

leaving the rest of the face almost unchanged. Therefore, if the input image600

has another emotion strongly characterized by the eyes or by the eyebrows601

(such as surprised), such features are not changed during the domain switch602

leading to misclassification.603
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Table 3: Classification results on RAFD dataset.

disgusted fearful happy sad surprised
StarGAN 98.6% 97.2% 98.6% 97.7% 97.1%
MetalGAN (ours) 98.4% 93.1% 97.3% 69.7% 95.2%

(a) Training domains. (b) Unseen domains.

Figure 17: MetalGAN results on RAFD on trained and unseen domains. Columns in first
image represent disgusted, fearful, happy, sad, and surprised domains. Columns in second
image represent angry, contemptuous, and neutral domains.
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Figure 18: Results on CelebA without the contribution of Domain Loss.

4.3.2. Contribution of Loss Functions in the Experiments604

The effectiveness of each loss function of the architecture (see Section605

3.2) is discussed below. The basic GAN structure, as theoretically proposed606
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in (Goodfellow et al., 2014), relies on the Adversarial Loss function (being607

a minimax two-players game between G and D networks). Hence, every608

GAN model takes advantage of such a loss function. We did not choose to609

empirically test its effectiveness since the only way is to get rid of the loss610

and see what changes happen to the results. But performing an experiment611

without the Adversarial Loss function is unfeasible for GAN architectures,612

unless the goal is to change the fundamentals of GAN, which is clearly out613

of the scope of this paper.614

The necessity of the Domain Loss in the MetalGAN algorithm is not615

self-evident: for this reason, we performed an experiment with the same con-616

figurations of MetalGAN standard training (see Table 1), but nullifying the617

domain weight, i.e. wdom = 0. It is worth noting that this setting still relies618

on meta-learning, that is the major boost for domain adaptation without619

labels. Nevertheless, visual results on CelebA, for MetalGAN without Do-620

main Loss, show that the domain change loses quality, as it should be seen621

in Figure 18.622

The Reconstruction Loss is used to keep unchanged the facial feature of623

the subject of the input image. Figure 5 last column of MetalGAN results624

shows, in fact, the only contribution of Reconstruction Loss, before moving625

the model to the optimum position for a certain domain (inference). Re-626

construction Loss also makes sure that input images that already belong to627

the chosen output domain are left completely unchanged by our architecture.628

Performed experiments show this behavior, e.g. in Figure 5 fifth row, second629

column: the input subject wear eyeglasses, so there is no need to change its630

domain, and MetalGAN simply transfer the eyeglasses of the input image631

into the output one, without changing facial attributes.632

Finally, the Feature Loss is a base building block of cGAN for regular-633

ization. As detailed in (Wang et al., 2018), and briefly remarked in Section634

3.2, Feature Loss stabilizes the training and it is a common state-of-the-art635

method for cGAN.636

5. Conclusions637

We proposed a new architecture for multi-domain label-less image-to-638

image translation. Our system has many features that distinguish it from639

the state-of-the-art.640

First of all, instead of relying on labels for switching the domains, like641

other state-of-the-art architectures, we had chosen to use meta-learning and642
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in particular Reptile. Furthermore, getting rid of labels allowed the archi-643

tecture to be more flexible, since there is no need of providing hard-coded644

vectors of labels. It is possible to arbitrarily change the number of domains,645

and to add a new one during inference. Such an approach was completely646

unfeasible in previous algorithms like StarGAN, that needs hard-coded la-647

bels at training time, and this was a very serious limitation. Finally, beside648

the lack of labels, an immediate advantage of the meta-learning approach is649

that such a method has been used for few-shot learning. Not only, as high-650

lighted above, a new, unseen, task can be added, but in order to do so, just651

few examples are needed, and neither tedious and long-lasting annotations652

of labels, nor a full retraining of the model are required.653

We proved the effectiveness of our approach with face attributes transfer654

using the CelebA dataset, and we evaluated it using both FID and PRD655

quantitative metrics. Moreover, we performed additional experiments on656

RAFD dataset, and tested our approach by nullifying the contribution of657

Domain Loss, showing its necessity.658

Regarding future work, our first objective would be to explore more deeply659

the possibilities and limitations of meta-learning in order to further improve660

our algorithm and to prove its effectiveness on others tasks like image gen-661

eration and semantic segmentation.662
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