Nowadays, a growing interest in the recording and reproduction of spatial audio has been observed. With virtual and augmented reality technologies spreading fast thanks to entertainment and video game industries, also the professional opportunities in the field of engineering are evolving. However, despite many microphone arrays are reaching the market, most of them is not optimized for engineering or diagnostic use and remains mainly confined to voice and music recordings. In this thesis, the design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. The faithful reproduction of the spatial sound field arouses equally interest. Hence, a method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization. The work in its entirety presents a complete methodology for recording, analysing and reproducing the spatial information of soundscapes.

Recording, Analysis and Playback of Spatial Sound Field using Novel Design Methods of Transducer Arrays / Daniel; Farina, Angelo; Pulkki, Ville Pinardi - : . , 2020.

Recording, Analysis and Playback of Spatial Sound Field using Novel Design Methods of Transducer Arrays

Daniel Pinardi
;
Angelo Farina
Supervision
;
2020-01-01

Abstract

Nowadays, a growing interest in the recording and reproduction of spatial audio has been observed. With virtual and augmented reality technologies spreading fast thanks to entertainment and video game industries, also the professional opportunities in the field of engineering are evolving. However, despite many microphone arrays are reaching the market, most of them is not optimized for engineering or diagnostic use and remains mainly confined to voice and music recordings. In this thesis, the design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. The faithful reproduction of the spatial sound field arouses equally interest. Hence, a method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization. The work in its entirety presents a complete methodology for recording, analysing and reproducing the spatial information of soundscapes.
Recording, Analysis and Playback of Spatial Sound Field using Novel Design Methods of Transducer Arrays / Daniel; Farina, Angelo; Pulkki, Ville Pinardi - : . , 2020.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2932886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact