We discuss how quantitative cohomological informations could provide qualitative properties on complex and symplectic manifolds. In particular we focus on the Bott-Chern and the Aeppli cohomology groups in both cases, since they represent useful tools in studying non Kähler geometry. We give an overview on the comparisons among the dimensions of the cohomology groups that can be defined and we show how we reach the ∂∂¯ -lemma in complex geometry and the Hard-Lefschetz condition in symplectic geometry. For more details we refer to Angella and Tardini (Proc Am Math Soc 145(1):273–285, 2017) and Tardini and Tomassini (Int J Math 27(12), 1650103 (20 pp.), 2016).
Cohomological aspects on complex and symplectic manifolds / Tardini, N.. - 21:(2017), pp. 231-247. [10.1007/978-3-319-62914-8_17]
Cohomological aspects on complex and symplectic manifolds
Tardini N.
2017-01-01
Abstract
We discuss how quantitative cohomological informations could provide qualitative properties on complex and symplectic manifolds. In particular we focus on the Bott-Chern and the Aeppli cohomology groups in both cases, since they represent useful tools in studying non Kähler geometry. We give an overview on the comparisons among the dimensions of the cohomology groups that can be defined and we show how we reach the ∂∂¯ -lemma in complex geometry and the Hard-Lefschetz condition in symplectic geometry. For more details we refer to Angella and Tardini (Proc Am Math Soc 145(1):273–285, 2017) and Tardini and Tomassini (Int J Math 27(12), 1650103 (20 pp.), 2016).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.