Let $I$ be an open bounded interval of $\mathbb{R}$ and $W$ a non-negative continuous function vanishing only at $\alpha, \beta \in \mathbb{R}$. We investigate the asymptotic behaviour in terms of $\Gamma$-convergence of the following functional $$ \dys G_{\epsilon}(u):=\epsilon^{p-2}\!\!\int\!\!\!\int_{I\times I}\!\left|\frac{u(x)-u(y)}{x-y}\right|^{p}\!\!dxdy+\frac{1}{\epsilon}\!\!\int_{I}\!W(u)\,dx \ \ (p>2), $$ as $\epsilon\to0$.

A singular perturbation result with a fractional norm / Adriana, Garroni; Palatucci, Giampiero. - STAMPA. - 68:(2006), pp. 111-126.

A singular perturbation result with a fractional norm

PALATUCCI, Giampiero
2006-01-01

Abstract

Let $I$ be an open bounded interval of $\mathbb{R}$ and $W$ a non-negative continuous function vanishing only at $\alpha, \beta \in \mathbb{R}$. We investigate the asymptotic behaviour in terms of $\Gamma$-convergence of the following functional $$ \dys G_{\epsilon}(u):=\epsilon^{p-2}\!\!\int\!\!\!\int_{I\times I}\!\left|\frac{u(x)-u(y)}{x-y}\right|^{p}\!\!dxdy+\frac{1}{\epsilon}\!\!\int_{I}\!W(u)\,dx \ \ (p>2), $$ as $\epsilon\to0$.
3-7643-7564-7
A singular perturbation result with a fractional norm / Adriana, Garroni; Palatucci, Giampiero. - STAMPA. - 68:(2006), pp. 111-126.
File in questo prodotto:
File Dimensione Formato  
Garroni-Palatucci_Prog.NoDEA_2006.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 215.85 kB
Formato Adobe PDF
215.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2742104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact