Let $I$ be an open bounded interval of $\mathbb{R}$ and $W$ a non-negative continuous function vanishing only at $\alpha, \beta \in \mathbb{R}$. We investigate the asymptotic behaviour in terms of $\Gamma$-convergence of the following functional $$ \dys G_{\epsilon}(u):=\epsilon^{p-2}\!\!\int\!\!\!\int_{I\times I}\!\left|\frac{u(x)-u(y)}{x-y}\right|^{p}\!\!dxdy+\frac{1}{\epsilon}\!\!\int_{I}\!W(u)\,dx \ \ (p>2), $$ as $\epsilon\to0$.
A singular perturbation result with a fractional norm / Adriana, Garroni; Palatucci, Giampiero. - STAMPA. - 68:(2006), pp. 111-126.
A singular perturbation result with a fractional norm
PALATUCCI, Giampiero
2006-01-01
Abstract
Let $I$ be an open bounded interval of $\mathbb{R}$ and $W$ a non-negative continuous function vanishing only at $\alpha, \beta \in \mathbb{R}$. We investigate the asymptotic behaviour in terms of $\Gamma$-convergence of the following functional $$ \dys G_{\epsilon}(u):=\epsilon^{p-2}\!\!\int\!\!\!\int_{I\times I}\!\left|\frac{u(x)-u(y)}{x-y}\right|^{p}\!\!dxdy+\frac{1}{\epsilon}\!\!\int_{I}\!W(u)\,dx \ \ (p>2), $$ as $\epsilon\to0$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Garroni-Palatucci_Prog.NoDEA_2006.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
215.85 kB
Formato
Adobe PDF
|
215.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.