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A B S T R A C T   

This study develops three different artificial intelligence (AI) models in order to investigate the effects of climate 
change on groundwater resources using historical records of precipitation, temperature and groundwater levels 
together with regional climate projections. In particular, the Non-linear Autoregressive Neural Network (NARX), 
the Long-Short Term Memory Neural Network (LSTM) and the Convolutional Neural Network (CNN) were 
compared. Considering an aquifer located in northern Italy as a case study, the neural networks were trained to 
replicate observed groundwater levels by taking as input precipitation and temperature records, and in the case 
of the NARX also antecedent groundwater levels, on a monthly scale. The trained networks were used to infer 
groundwater levels until the end of the century based on precipitation and temperature projections provided by 
an ensemble of 13 Regional Climate Models (RCMs) from the EURO-CORDEX initiative. Two emission pathways 
were considered: the RCP4.5 and RCP8.5. All the AI models show good performance metrics during the training 
phase, but NARXs perform poorly compared to the other models during validation and testing. For the future, the 
NARX and LSTM models predict a decline in groundwater levels, especially for the RCP8.5 scenario, while slight 
changes are expected using the CNN. As NARXs are not deep learning techniques and CNNs may not be able to 
extrapolate values outside the training range, LSTMs appear to be better suited for climate change impact 
evaluations.   

1. Introduction 

Climate change is affecting all regions of the world underlining the 
urgent need to assess its impacts on various aspects of the environment, 
society and economy, including the future availability of good quality 
freshwater. Surface water resources are already facing qualitative and 
quantitative issues, which means that groundwater is frequently the 
primary source of water supply. This can lead to unwise overexploitation 
of aquifers that, compounded by the direct impact of climate change on 
aquifer recharge, jeopardizes their quantity and quality. 

The aforementioned issues have prompted several studies aimed at 
quantifying the climate change effects on groundwater resources. This 
task is extremely challenging, especially relying on a conventional 
approach that requires the use of complex hydrological models driven 
by future climate model projections. Developing an accurate numerical 
model of the surface/subsurface system necessitates a multitude of data 
that may not always be available, including the geological structure, 
model parameters, boundary and initial conditions. In addition, the 

computational demand of this approach can be significant and may 
result in limiting the analysis to short periods and only few scenarios. In 
fact, to assess the impacts of climate change on groundwater, future 
projections of meteorological variables provided by several climate 
models under different scenarios are usually employed. Malcolm and 
Soulsby (2000) evaluated the possible influence of climate change on a 
shallow coastal aquifer in northern Scotland using a numerical MOD-
FLOW model. Different climate change scenarios were analyzed to 
determine future variations in climate variables (e.g., precipitation and 
temperature) and their effects on groundwater levels (GWLs). A similar 
approach was used by Croley and Luukkonen (2003) for the Lansing area 
in Michigan. Brouyère et al. (2004) made use of an integrated hydro-
logical model (MOHISE) driven by climate future projections of three 
General Circulation Models (GCMs) to assess the impacts of climate 
change on the groundwater availability in the Geer basin, Belgium. 
Citrini et al. (2020) assessed the impacts of climate change on the dis-
charges of a karst spring using the GR4J model and the data of three 
climate models under different scenarios (namely Representative 
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Concentration Pathways, RCPs: RCP2.6, RCP4.5 and RCP8.5). Azizi 
et al. (2021) developed a MODFLOW model for the Varamin plain in 
Iran to evaluate the change in GWLs until 2050 using as climate drivers 
the data of ten Atmosphere-Ocean GCMs, under the RCP2.6, RCP4.5 and 
RCP8.5 scenarios. 

Surrogate models, by replacing complex and time consuming nu-
merical models with computationally less expensive numerical tools, 
can provide simpler and faster responses (Razavi et al., 2012; Asher 
et al., 2015; Rajaee et al., 2019) and can help in various groundwater 
management problems. For example, surrogate models can be used to 
forecast groundwater levels based on a set of drivers or proxy variables, 
such as precipitation, temperature and withdrawals. To accomplish this 
task, they just require a preliminary training process that makes use of 
available historical data of the drivers (e.g., precipitation and temper-
ature) and corresponding responses (e.g., groundwater levels). Most 
surrogate models are categorized as either statistical approaches or 
machine learning algorithms, which have become increasingly popular 
in recent decades, thanks to the enhancement of computing capabilities. 

Several authors (e.g. Khan et al, 2008; Bloomfield and Marchant, 
2013; Kumar et al, 2016; Leelaruban et al, 2017; Soleimani Motlagh et 
al, 2017; Van Loon et al, 2017; Uddameri et al, 2019; Guo et al, 2021) 
used statistical approaches to investigate the relationships between 
groundwater levels and different proxy variables. In addition, space-
–time modeling and spatiotemporal geostatistics are also used to analyze 
these relationships (e.g. Bierkens et al., 2001; Varouchakis and Hristo-
pulos, 2013). In many applications, it is common to use standardized 
indices to represent the variables of interest, such as the standardized 
precipitation index (SPI), the standardized precipitation- 
evapotranspiration index (SPEI) and the standardized groundwater 
index (SGI). As an example, Secci et al. (2021) analyzed the correlation 
between SGIs and both SPIs and SPEIs for several wells in northern 
Tuscany (Italy), revealing that the groundwater index and the meteo-
rological indices were often correlated. Linear regression models were 
used to establish relationships between SGIs and SPIs or SGIs and SPEIs, 
which were then used to forecast future SGIs based on projections of the 
meteorological indices derived from precipitation and temperature data 
obtained from an ensemble of Regional Climate Models (RCMs) under 
the RCP4.5 and RCP8.5 scenarios. The authors pointed out that changes 
in SGIs are mainly driven by temperature, which is expected to undergo 
a significant increase in the future, rather than precipitation that shows 
limited variation for the investigated area. 

Also machine-learning algorithms can be used to capture the re-
lationships between groundwater levels and meteorological data, see 
Rajaee et al. (2019) and Tao et al. (2022) for extensive reviews. Several 
studies employed different machine learning techniques to evaluate 
piezometric levels over a historical period using a subset of the available 
observations. These techniques include artificial neural networks 
(Coppola et al., 2003; Lallahem et al., 2005; Mohanty et al., 2010; Tri-
chakis et al., 2011; Karthikeyan et al., 2013; Sahoo and Jha, 2013; Shiri 
et al., 2013; Taormina et al., 2012; Emamgholizadeh et al., 2014; Chang 
et al., 2015; Mohanty et al., 2015; Yan and Ma, 2016; Ghose et al., 2018; 
Lee et al., 2019), neuro-fuzzy systems (ANFIS, Fallah-Mehdipour et al., 
2013; Shiri et al., 2013; Emamgholizadeh et al., 2014) and support 
vector machines (Yoon et al., 2011; Shiri et al., 2013; Suryanarayana 
et al., 2014). In some cases, precipitation is the sole input feature, while 
other applications consider additional variables such as temperature, 
humidity, runoff and evapotranspiration. Tidal levels were used as input 
data for coastal aquifers, while antecedent groundwater levels, pumping 
rates and water demand were included in other studies. 

In recent years, some studies investigated the impact of climate 
change on groundwater levels making use of machine learning tech-
niques in combination with future climate projections (Chen et al., 2010; 
Shakiba and Cheshmi, 2013; Chang et al., 2015; Jeihouni et al., 2019; 
Idrizovic et al., 2020; Javadinejad et al., 2020; Ghazi et al., 2021; 
Gonzalez and Arsanjani, 2021). Afrifa et al. (2022) provide a review of 
mathematical and machine learning models implemented to examine 

the effects of climate change on groundwater level fluctuations. Shakiba 
and Cheshmi (2013) used the output of one GCM under the AR2 scenario 
to simulate variations in groundwater levels through a non-linear 
autoregressive network (NARX). However, the use of a single climate 
model is highly discouraged (IPCC, 2018) due to the significant uncer-
tainty of the results. Chen et al. (2010) investigated the effect of climate 
change and human activities on shallow groundwater levels in Wuqiao 
in North China Plain using projections from 20 GCMs. The authors 
trained a Back-Propagation Artificial Neural Network (BP-ANN) with 
observed meteorological and pumping rates data to replicate ground-
water levels. The ensemble mean of the climate models was considered 
to project future climate variables and to simulate deviations in 
groundwater levels with the trained network. Chang et al. (2015) 
developed two ANNs to simulate and predict suprapermafrost ground-
water levels. The models were trained using historical information of 
antecedent groundwater levels, temperature and precipitation as input 
or only precipitation and temperature. The authors then assessed the 
impact of climate change on groundwater levels by analyzing different 
scenarios of precipitation and temperature increases. Idrizovic et al. 
(2020) investigated the possible influence of climate change on the 
Toplica River catchment in Serbia. Historical precipitation, temperature 
and potential evapotranspiration data were used to simulate runoff via a 
calibrated hydrological model (HBV-light). Then, an ANN was trained to 
reproduce groundwater levels using runoff values as input. An ensemble 
of seven RCMs, from the EURO-CORDEX initiative (Jacob et al., 2014), 
was considered to compute precipitation and temperature projections 
and to simulate future values of runoff. The trained ANN was finally 
used to estimate future groundwater levels under the RCP4.5 and 
RCP8.5 scenarios. Ghazi et al. (2021) studied groundwater level fluc-
tuations for the Tasuj plain, Iran, under climate change scenarios 
comparing different machine learning techniques: ANN, SVM and 
NARX. Four GCMs were selected to compute future projections of pre-
cipitation and temperature for the period 2022–2050 under three RCP 
scenarios (RCP2.6, RCP4.5 and RCP8.5). According to the results, NARX 
exhibited the best accuracy in predicting observed groundwater levels. 

The above-mentioned machine learning techniques, despite their 
usefulness for estimating groundwater levels, are supervised and 
therefore are limited in their ability to extrapolate information beyond 
the range of the training data. As global warming and extreme weather 
events are expected to increase in the future (Jiménez Cisneros et al., 
2015), the input data for machine learning models (such as, precipita-
tion and temperature) can fall outside the range of the learning dataset, 
leading to inaccurate results. Innovative deep learning techniques were 
proposed to address the extrapolation problem. In particular, Long-Short 
Term Memory (LSTM) neural networks, a type of recurrent neural net-
works, were developed to handle sequential time series prediction 
problems, but very few papers report the use of deep learning models to 
predict groundwater levels. Nourani et al. (2022) compared the LSTM 
neural network with a classic feedforward neural network and an auto 
regressive integrated moving average model with exogenous data to 
estimate groundwater level time series in a historical period. The results 
highlighted that LSTMs outperforms the other two methodologies. 
Gharehbaghi et al. (2022) tested three different layer structures of 
meteorologically sensitive Gated Recurrent Unit (GRU) neural networks, 
which are a variant of the LSTMs, to estimate groundwater levels in a 
historical period based on observed meteorological and hydrological 
data. The results showed a great potential of these deep learning 
methodologies for the evaluation of future groundwater levels. Wunsch 
et al. (2022) investigated the impacts of climate change on groundwater 
resources implementing a deep learning method based on Convolutional 
Neural Networks for 118 well-distributed sites in Germany. The authors 
used historical meteorological input to train the networks for repro-
ducing piezometric levels. Then, they used the trained CNN models to 
investigate future groundwater levels, using precipitation and temper-
ature projections derived from different climate models under different 
RCP scenarios (RCP2.6, RCP4.5 and RCP8.5). 
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This paper attempts to fill the gap regarding applications of deep 
learning models in assessing the impacts of climate change on ground-
water levels. Three methods based on artificial intelligence (AI) tech-
niques are compared: a machine learning method (Non-Linear 
Autoregressive Neural Network, NARX) and two deep learning methods 
(Long Short-Term Memory neural network, LSTM, and Convolutional 
Neural Network, CNN). The MATLAB computing environment was uti-
lized for the development of the three machine learning models. 

The LSTM and the CNN networks take precipitation and temperature 
as inputs, while the NARXs consider also antecedent groundwater levels; 
in all cases the outputs are groundwater levels. The training and vali-
dation of the networks are done using historical meteorological and 
groundwater level time series. Once trained, the networks are driven by 
climate model projections to estimate future groundwater levels. The 
proposed AI techniques are applied to a regional area located in 
northern Italy. To account for inter-model variability, an ensemble 
approach is adopted (Teutschbein and Seibert, 2012; D’Oria et al., 2017; 
D’Oria et al., 2018; Todaro et al., 2022) by considering the output of 13 
RCMs of the EURO-CORDEX initiative (Jacob et al., 2014). Only the two 
most relevant RCP scenarios, the RCP4.5 and RCP8.5, of the phase 5 of 
the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) 
were used. A downscaling and bias correction process (Teutschbein and 
Seibert, 2012) of the RCM outputs was applied to preserve local 
heterogeneities. 

The novelties of this paper are: i) the comparison of different AI 
techniques for assessing the impact of climate change on groundwater 
resources and, in particular, the innovative implementation of a 
sequential deep learning method, namely the LSTM neural network, in 
this field; ii) the use of neural networks in a long-term forecasting pro-
cess where the network also operates beyond the ranges encountered 
during the training process; iii) the use of a large ensemble of regional 
climate projections under different scenarios, providing a comprehen-
sive characterization of the uncertainty of the results. 

This paper is organized as follows: Section 2 presents the study area, 
the available historical data, the climate models adopted and the 

methodologies implemented. The results of the AI techniques are shown 
in Section 3 and discussed in Section 4; conclusions are drawn in Section 
5. 

2. Material and methods 

2.1. Study area and available data 

The investigated area is the northern part of the Tuscany region in 
Italy (Fig. 1) and involves four river basins. The main characteristics of 
the study area have already been presented in previous studies (D’Oria 
et al., 2017; D’Oria et al., 2019; Secci et al., 2021) to which reference is 
made for further details. According to the different characteristics of the 
watersheds, the area was divided into four zones (Fig. 1): Magra, Coastal 
basins, Serchio, Arno portion. The precipitation, temperature and 
groundwater level data used in this study are the same analyzed by Secci 
et al. (2021). 

Daily climate data were available from 18 precipitation gauges and 
14 temperature stations (Fig. 1 and Table 1) in the period 1934–2020. 
The groundwater level data were available from 10 wells (Fig. 1 and 
Table 1) in the period 2005–2020 on a daily scale. The data are pub-
lished by the Environmental Agency of the Tuscany, Liguria and Emilia 
Romagna regions (SIR, 2021; ARPAE, 2021; OMIRL, 2021). To fill the 
gaps in the observed time series, the FAO method (Allen et al., 1998) was 
considered and interpolation techniques were used to have contempo-
rary records of temperature and precipitation at the same locations 
(Secci et al., 2021). 

The annual precipitation and annual mean temperature over the four 
basins in the historical period 1934–2020 are summarized in Table 2. 
The Magra, Coastal basins and Serchio basins present similar climate in 
the analyzed period; the average annual mean temperature is about 
13 ◦C with variability in the range of about 11 ÷ 15 ◦C and the annual 
precipitation is about 1500 mm with a natural variability in the range 
800 ÷ 2600 mm. The warmest and driest area is the Arno portion with 
an average annual mean temperature of about 15 ◦C and annual 

Fig. 1. Location of the study area with indication of the climate stations, monitoring wells and river basins. Elevation is expressed in meters above sea level (m a.s.l.).  
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precipitation of about 1200 mm. 
The future daily precipitation and daily mean temperature data were 

obtained from an ensemble of 13 climate models from the EURO- 
CORDEX initiative (Jacob et al., 2014); they are combinations of 
different GCMs and RCMs (Table 3). The climate model data consist of a 
simulated historical period (1976–2005) and a projection period from 
2006 to 2100, under two Representative Concentration Pathways 
(RCPs): the RCP4.5 and RCP8.5. The climate model data are provided on 
a regular grid (EUR-11 grid); therefore, a downscaling procedure was 
applied to obtain them at the gauging station locations. The data were 
bias corrected with reference to the historical period 1976–2005 using 
the Distribution Mapping method. For more details on the climate model 
data and the downscaling and bias correction methods adopted for the 
study area, see D’Oria et al. (2017). 

2.2. Description of the AI methods 

In the following paragraphs, the three neural networks developed in 
this study are presented. For all the networks, the exogenous input data 
are monthly precipitation and mean monthly temperature of the 18 
climate stations reported in Table 1 (for a total of 36 features). The 
output dataset corresponds to monthly groundwater levels of the 10 
wells reported in Table 1 (10 responses). The target data, used to build 
the models, span from March 2005 to December 2020 (190 months), 
when observed monthly groundwater levels are available. The precipi-
tation and temperature data span from July 2004 to December 2020 
(198 months), in order to consider potential delayed responses of 
groundwater level data to meteorological variables. 

Both the input and target datasets were standardized (Zi) in order to 
facilitate the process of updating parameters (weights and biases): 

Zi =
zi − z

σz
(11)  

where zi is a single data point of the input/target vector, z is the arith-
metic mean and σz is the standard deviation. The learning (training and 
validation) and test phases of the neural networks were based on a 
dataset that covers the period 2005–2018 (training 90 % and validation 
10 %) and 2019–2020, respectively. 

The network was trained in order to minimize the following Loss 
function L(Θ): 

L(Θ) =
1

N⋅s3

∑N

i=1

∑s3

j=1

(
hΘ

(
x(i) )

j − y(i)j

)2
(12)  

where N is the number of the training input-target pairs associated with 
each well and corresponds to the number of time steps considered, s3 is 
the number of wells, hΘ

(
x(i)

)

j is the output of the network related to the 

i-th input data x(i) depending on all network parameters Θ and y(i)j is the 
vector target. 

The AI models, once trained, were used to evaluate future ground-
water levels for the period 1976–2095 using precipitation and temper-
ature data provided by the 13 climate models as input. 

2.2.1. Non-linear Autoregressive neural network 
The Non-linear Autoregressive Neural Networks (NARXs) are an 

evolution of the feedforward neural networks in which the neurons 
transfer information not only in the forward direction but also in the 
backward direction through recurring cycles. In this way, the outputs of 

Table 1 
ID, name, type and elevation of the precipitation and temperature gauges and ID, name and ground elevation of the monitoring wells.  

Temperature and precipitation gauges Monitoring wells 

ID Name Type Elevation (m a.s.l.) ID Name Elevation (m a.s.l.) 

G1 Arlia Rain/Temp. 460 W1 Cugnia 4 
G2 Bagnone Rain/Temp. 195 W2 Diecimo 65 
G3 Bedonia Rain/Temp. 500 W3 Nozzano 16 
G4 Borgo a Mozzano Rain 100 W4 Paganico 13 
G5 Calice al Cornoviglio Rain/Temp. 402 W5 Percorso vita 2 
G6 Carrara Rain/Temp. 55 W6 Salicchi 27 
G7 Casania Rain 845 W7 S.Alessio 19 
G8 Cembrano Rain/Temp. 410 W8 Sat 1 2 
G9 Lucca Rain/Temp. 16 W9 Via Barsanti 20 
G10 Massa Rain/Temp. 150 W10 Via Romboni 38 
G11 Palagnana Rain 861    
G12 Pescia Rain/Temp. 78    
G13 Pontremoli Rain/Temp. 340    
G14 S. Marcello Pistoiese Rain/Temp. 618    
G15 Sarzana Rain/Temp. 26    
G16 Viareggio Rain/Temp. 0    
G17 Villacollemandina Rain 502    
G18 Villafranca Lunigiana Rain/Temp. 156     

Table 2 
Annual mean temperature and annual precipitation over the basins: average, 
maximum and minimum values in the period 1934–2020.  

Annual mean 
temperature (◦C) 

MAGRA COASTAL 
BASINS 

SERCHIO ARNO 
PORTION 

Average 13.2 13.2 12.9 14.8 
Max 14.8 14.8 14.3 16.0 
Min 11.3 11.8 11.4 13.3 

Annual precipitation 
(mm) 

MAGRA COASTAL 
BASINS 

SERCHIO ARNO 
PORTION 

Average 1539 1578 1536 1205 
Max 2608 2579 2650 2039 
Min 810 803 825 444  

Table 3 
Combinations of GCMs and RCMs from the EURO-CORDEX initiative used in this 
study.    

GCM   

CNRM- 
CM5 

EC- 
EARTH 

HadGEM2- 
ES 

MPI- 
ESM- 
LR 

IPSL- 
CM5A- 
MR 

RCM 

CCLM4- 
8–17 

x x x x  

HIRHAM5  x    
WRF331F     x 
RACMO22E  x x   
RCA4 x x x x x  
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the network become new inputs to the network itself, thus favoring the 
learning process and making these models suitable for working with 
time-series forecasting problems. 

The NARXs maintain the same conceptual structure as feedforward 
networks, i.e., they are divided into three main layers: the input layer, 
the hidden layer and the output layer. These layers are Euclidean spaces 
and have dimensions s1, s2, s3 (number of neurons of which they are 
composed), respectively. The dimension s1 depends on the number of 
features, s2 on the number of hidden units and s3 on the number of 
outputs to be estimated. Conceptually, the operation of the neural 
network provides a composition of vector-valued functions such as 
pointwise operation and linear and non-linear activation functions 
(sigmoid/tangent transfer function and linear transfer function) capable 
of transferring information from the dimensional space Rs1 to Rs3 . More 
specifically, the output predicted by NARX, which also uses exogenous 
variables as input, turns out to be: 

h(t + 1) = S(x(t + 1), x(t),⋯, x(t − n), h(t),h(t − 1),⋯, h(t − m)) (13)  

where h(t +1) represents the response (e.g., groundwater levels) pre-
dicted by the network at time t + 1, x(t+1), x(t),⋯, x(t − n) represent 
the exogenous inputs (e.g., precipitations and temperatures), 
h(t), h(t − 1),⋯, h(t − m) are the target/output data (e.g., groundwater 
levels) used as given inputs, n and m represent the input delay and the 
feedback delay, respectively, while S is the structure of the network. This 
architecture can be of two types: open-loop (Series-Parallel Architec-
ture) or closed-loop (Parallel Architecture). The open-loop network is 
implemented for the training phase as it directly uses the available ob-
servations, together with the exogenous inputs, as input information. 
The closed scheme is used in the prediction phase when observations are 
no longer available and therefore the output produced by the network 
also becomes an input. In detail, the initial information undergoes an 
affine transformation and then it is activated by a transfer function. The 
output a(2) produced by the input and hidden layers is: 

a(2) = f1(IW(1)x(1) + b(1) +LW(1)h(1)
) (14)  

where the superscript indicates the reference layer of the network, f1 

represents the tangent sigmoid transfer function, IW(1) ∈ ℝs2×(s1⋅n) rep-
resents the weight matrix related to exogenous inputs, x(1) ∈ ℝs1⋅n is the 
exogenous input vector, b(1) ∈ Rs2 is the bias term vector, LW(1) ∈

ℝs2×(s3⋅m) is the matrix of the input weights relative to the observations 
and h(1) ∈ ℝs3⋅m is the observation vector used as given input. The output 
is then transferred from the hidden layer to the output layer. This pro-
cess is described by: 

hw,b(x,h)(3) = f2(OW(2)a(2) + b(2)
) (15)  

where f2 represents the linear transfer function, OW(2) ∈ Rs3×s2 is the 
matrix of the weights of the outputs of the hidden layer a(2) ∈ Rs2 , b(2) ∈

Rs3 is the bias term vector. The results of the network hw,b(x,h)(3), i.e., 
the predicted value at time t, are sent back to the initial layer as a new 
input to the network at time t+1 for the closed loop structure. Fig. 2 
shows the structure of the closed-loop type NARX. The Levenberg- 
Marquardt numerical optimization technique (Hagan and Menhaj, 
1994) was selected as training algorithm to estimate the correction of 
the weights. It is based on the backpropagation technique, where de-
rivatives are processed from the last layer to the first, and it is widely 
used as it does not require the calculation of the Hessian matrix, leading 
to a reduction in terms of computational burden. 

In this work, the number of training epochs was set equal to 50, with 
a mini-batch size of 18 and a learning rate equal to 0.001. The network 
was trained in open-loop mode using historical precipitation and tem-
perature data and observed groundwater levels. Then, precipitation and 
temperature projections from the ensemble of climate models were used 
as input to the NARX to estimate future groundwater levels. In the 
prediction phase, the network was used according to the closed-loop 
scheme. The input delay n was set equal to 9, in agreement with the 
findings of Secci et al. (2021), where the maximum correlation between 
SGI and SPEI occurs for an accumulation period of 9 months. This means 
that, in order to predict the groundwater levels at time t + 1, precipi-
tation and temperature data spanning from time t − 8 to time t are 
considered exogenous inputs. The feedback delays (m) were set to 2 due 
to the rapid response time of the aquifer highlighted by Secci et al. 
(2021). Therefore, it was assumed that the predicted levels at time t+1 
are related to the groundwater levels at times t and t − 1. At each time 
step, the size of the input matrix is 36× 9, where 9 are the monthly 
values given by the input delay and 36 are the features represented by 
the monthly values of precipitation and temperature provided by the 18 
climate stations. The input matrix is processed by one hidden layer, 
made up of 10 neurons. The size of the output vector is 10, corre-
sponding to the number of wells. The total number of time steps is 190, 
which corresponds to the time series length of groundwater levels. 

2.2.2. Long-Short term Memory network 
Long-Short Term Memory networks, hereafter LSTMs, are an evo-

lution of recurrent neural networks (Hochreiter and Schmidhuber, 
1997). They are designed for handling long time series, as their structure 
is not vulnerable to the so-called vanishing gradient problem 
(Hochreiter, 1991), and are effective in learning long-term de-
pendencies. LSTMs are schematized within a deep-learning architecture 
composed of various layers. The first layer is the Sequence Input Layer, 
which enters sequence data into the network. The second layer is the 
LSTM layer, which is the main layer of the deep learning chain, 

Fig. 2. NARX architecture (closed loop).  
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represented by the cell unit (Fig. 3). This cell is the core of the mecha-
nism that allows LSTMs to be used for handling sequential prediction 
problems. The cornerstone of the cell unit is the Cell state C(t), which 
can be considered as the brain of the network where important infor-
mation is stored. A classic LSTM layer has three main gates: forget gate 
layer (ft), input gate layer (it), output gate layer (ot). The first two gates 
work to update the Cell state, while the third, together with the updated 
Cell state, is used to produce the output of the LSTM layer, which is the 
hidden state at the current time t. Considering the three Euclidian spaces 
of dimension s1, s2 and s3, the individual input vector of dimension s1 is 
given by the concatenation of the exogenous input x(t) at time t and the 
hidden state vector h(t − 1) at time t − 1. For each gate, the matrix of 
weights W ∈ Rs2×s1 and the bias term b ∈ Rs2 are defined. The forget 
gate, as a first step, defines which information must be eliminated from 
the previous chain produced at time t − 1. This layer gives as output: 

f t = sig(W(ft)[xt,ht− 1] + b(ft)) (16)  

The next step is to select the new information to be provided to the 
chain. This procedure is divided into two parts: first, the input gate layer 
(it) is activated via a sigmoid function to define which inputs will be 
considered for updating the Cell state. Then, another layer, defined as 
“new candidate gate layer” (nct), produces a new set of possible candi-
dates through a hyperbolic tangent function. From a mathematical point 
of view: 

it = sig(W(it)[xt,ht− 1] + b(it)) (17)  

nct = tanh(W(nct)[xt,ht− 1] + b(nct)) (18)  

Then, the results of the previous steps are combined to define the Cell 
state at the current time: 

Ct = f t⋅Ct− 1 + it⋅nct (19)  

The output gate layer (ot) defines which part of the Cell state will 
represent the output ht , activating the received signal through a sigmoid 
function: 

ot = sig(W(ot)[xt,ht− 1] + b(ot)) (20)  

Then, this output is multiplied by the Cell previously activated through 
the hyperbolic tangent function in such a way as to distribute the values 
between − 1 and 1. In summary, the final output of the unit cell will be: 

ht = ot⋅tanh(Ct) (21)  

The LSTM layer process is iterated for each time step of the considered 
time series. Then, the procedure follows considering the hidden state 

obtained at the last time step. To prevent overfitting, the vector is pro-
cessed by the Dropout Layer, which randomly sets input elements to zero 
with a given probability (0.5 in the considered application). The output 
produced by the Dropout Layer is managed by the Fully Connected 
Layer, which creates the synaptic connections necessary to connect the 
dropped out hidden state with the Regression Output Layer. The 
generated weight matrix will have dimension Rs3×s2 , which multiplied 
by the hidden state vector, produces the final output vector of dimension 
Rs3 . Finally, the Regression Output Layer computes the half-mean- 
squared-error loss between the reproduced output and the target one. 
The objective function obtained is minimized using a backpropagation 
algorithm known as “Adam”, widely used in the literature (Kingma and 
Ba, 2015). 

In this work, the number of epochs was set equal to 100, the mini- 
batch size equal to 18, the initial learning rate equal to 0.005, the 
learning drop period equal to 40 and the learning drop factor equal to 
0.1. The dimension of the sequence matrix is 190 × 1 of data type cell, 
where each row corresponds to an input block composed by a 36 × 9 
matrix, where rows represent the number of features (precipitation and 
temperature provided by the 18 climate stations) and columns indicate 
the input sequence length. The number of hidden units was set equal to 
100. At each time step, an output vector of dimension 10, corresponding 
to the number of wells, is obtained. 

2.2.3. Convolutional neural network 
A Convolutional Neural Network (CNN) is a deep learning model 

designed to automatically learn from raw input data, avoiding the pro-
cedure of manually extracting features typically required by traditional 
machine learning models. It is based on a grid architecture, typical of 
images, where the spatial hierarchies are recognized through specific 
convolutional layers, enabling the automatic identification of the most 
significant patterns within the initial grid (input image). Given their 
nature, CNNs were originally developed to work and solve image seg-
mentation and pattern recognition problems, now they are widely used 
to classify non-image data such as sound, signal and time series data. 
Convolutional networks are characterized by three main layers: con-
volutional, pooling and fully connected. Convolutional and pooling 
layers, collaborating with specific activation functions, take care of the 
extraction of the features, while the fully connected layer processes the 
data extracted from the previous layers according to a classic forward 
neural network scheme, producing the desired output. In addition to 
these layers, other layers contribute to the structure of the network. In 
the present case (Fig. 4), the first layer is the Image Input Layer, which 
enters the image input data into the network. Then, it is sent to a block 
composed of the Convolutional Layer, Batch Normalization Layer, ReLu 
Layer and Average Pooling 2D Layer. Three of these blocks are placed in 

Fig. 3. LSTM cell architecture.  
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series in the implemented model. The Convolutional Layer represents 
the main part of CNNs. It consists of sets of filters, known in literature as 
Kernel or feature detectors, which represent the parameters that the 
network must learn during the training process. Typically, multiple fil-
ters of smaller size than the input image are used. Each filter is scrolled 
along the input image for both directions (W-E and N-S) and the scalar 
product between the filter and the input is computed for each spatial 
position in order to produce different feature maps (or activation maps). 
Let’s consider an input image with dimensions h× w× c, where h and w 
are the height and width of the image, respectively, while c is the 
number of channels. This image will be processed by a Convolutional 
Layer composed by a number of filters (nf) of dimensions equal to n ×

m × nf where n and m are the height and width of the filter, respectively. 
The number of filters determines the number of channels in the output. 
Once the number and size of the filters is defined, two other parameters 
must be set up, known as stride (s) and padding (p). The stride defines 
the step size at which the convolutional filter moves across the input 
image vertically and horizontally, while the padding defines the number 
of additional border pixels around the input image. Usually, the stride is 
set equal to 1, while the padding is defined in such a way that the output 
reproduced by the convolutional layer does not modify the initial size of 
the input. The size of the output reproduced by the convolutional layer 
is: 

[row; column; channel] =
[
(h − n + 2p)

s
+ 1;

(w − m + 2p)
s

+ 1; nf
]

(22)  

The Batch Normalization Layer normalizes a mini-batch of the extracted 
features, for each channel, independently. The goal of this procedure is 
to accelerate the training of the convolutional neural network and 
reduce the sensitivity to initial values of the network. The ReLu Layer 
activates the signal with the Rectified Linear Unit Function. Convolu-
tional Layers are able to outline the presence of features in an input 

image; however, the output reproduced by these layers is very sensitive 
to the position of features in the input. By changing the feature location 
in the input image, the learned filters will reproduce a different output, 
making the model inefficient. The Pooling Layer deals with this problem 
by down sampling the spatial size of the feature maps, making the model 
translation-invariant and reducing the number of parameters, with a 
consequent reduction in terms of computational burden. The normalized 
and activated feature maps in the Average Pooling 2D Layer are divided 
into no-overlapping zones with a size equal to a defined filter (pooling 
filter). As for the LSTM, the Dropout Layer randomly sets the down 
sampled information to zero with a given probability (0.5). The dropped 
output is flattened into a single vector and then connected by means of 
the Fully Connected Layer to the Output Layer. The Regression Layer 
computes the half-mean-squared-error loss between the reproduced 
output and the target one. As for the LSTM approach, the objective 
function was minimized using the Adam algorithm. 

In this work, the number of epochs was set equal to 100, the mini- 
batch size equal to 10, the initial learning rate equal to 0.001, the 
learning drop period equal to 50 and the learning drop factor equal to 
0.1. The total number of input images is equal to 190, defined by the 
groundwater level time series length. Each input image has dimension 
36× 9× 1, where 36 are the representative features (monthly precipi-
tation and temperature data provided by the 18 climate stations), 9 is 
the time window considered to select the input data and 1 is the number 
of channels of the image. For instance, the first image, which is used to 
obtain the groundwater levels in March 2005, contains the precipitation 
and temperature data from June 2004 to February 2005; the second 
image, which is the input related to the groundwater levels in April 
2005, contains the climate variables from July 2004 to March 2005. The 
filter height and width are both equal to 5 for all three Convolutional 
Layers, while the number of filters is equal to 8, 16 and 32 for the first, 
second and third block, respectively. The pooling filter, with a height 

Fig. 4. Schematic view of the CNN (top) and sample of the standardized input data (bottom).  
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and width of 2 and a stride of 2, is used to extract the average value. At 
each time step, an output vector of dimension 10, corresponding to the 
number of wells, is obtained. A schematic representation of the CNN for 
a single image is depicted in Fig. 4. In addition, the figure shows the raw 
map, made up of the sample of the standardized input data, used to 
generate all the input images. It is evident that the precipitation values, 
ranging from 1 to 18 on the Y-axis, exhibit significant variability, 
reflecting the natural fluctuations in patterns. Conversely, the temper-
ature values, which are plotted from 19 to 36, show a pronounced 
seasonal pattern. The red rectangle denotes the image dimension; a 
sequential one-step scrolling is performed to generate a total of 190 
images. 

Again, once trained, the neural network was used to estimate 
groundwater levels as a function of precipitation and temperature data 
provided by the 13 climate models. 

3. Results 

3.1. Performance evaluation 

The Mean Squared Error (MSE) was used to evaluate the perfor-
mance of the developed machine learning models during the training, 
validation, and test phases: 

MSE =

∑Nd
i=1(Ŵ i − Wi)

2

Nd
(23)  

where Wi is the actual value and Ŵi is the corresponding value esti-
mated by the neural networks and Nd is the number of observations in 
either the training, validation, testing or the whole dataset. In addition, 
for each well, the Root Mean-Square Error (RMSE) between predicted 
and observed groundwater levels in the test period was evaluated. 

For each neural network implemented in this work, hyperparameters 
and activation functions were manually adjusted in order to identify the 
architecture with the minimum value of the Loss function and, at the 
same time, to limit the computational cost during the training 
procedure. 

Table 4 reports the MSEs computed on the whole dataset and for the 
training, validation and testing subsets for all the AI methods proposed. 
For the NARX, the overall performance of the network is good, the MSE 
computed on the whole dataset is equal to 0.17 m2. The learning phase 
highlights a training MSE equal to 0.04 m2 and a validation MSE equal to 
0.54 m2, while the test phase is characterized by a MSE equal to 0.82 m2. 
Therefore, the validation and, in particular, the test performances are 
poor, while the training performance is very good. This suggests that the 
neural network is probably affected by overfitting problems; it can map 
input to output during the training phase, but it is not accurate in esti-
mating groundwater levels outside the training range. 

Regarding the LSTM, the overall performance, expressed in terms of 
MSE, is 0.14 m2. The training value of the performance index is 0.12 m2, 
a MSE of 0.23 m2 characterizes the validation phase and the test phase 
provides a MSE of 0.30 m2. The metrics highlight good performance for 
the LSTM in all phases. Unlike the NARX, the Dropout Layer allows the 
LSTM to learn slightly less during the training phase, so as not to lose the 
ability to generalize. In fact, although the performance value in the 
training phase is higher than the NARX, the test value is lower denoting 

a good behavior of the LSTM network to forecast groundwater levels. 
The overall performance of the CNN is 0.1 m2, while the MSE for the 

training subset is equal to 0.05 m2. The validation procedure provides a 
MSE of 0.2 m2 and the test phase is characterized by a performance 
index equal to 0.31 m2. Overall, the CNN performance is comparable to 
that of the LSTM. 

Table 5 shows the comparison between observed and predicted 
groundwater levels, in terms of RMSE values, for the 10 wells investi-
gated and related to the learning and testing phases, obtained with the 
three AI models implemented. Overall, the models exhibit satisfactory 
performance metrics (RMSE less than 0.4 m) for both the learning and 
testing phases, except for the well Via Romboni, which presents the 
higher errors (greater than 0.8 m) across the three networks during the 
testing procedure. Always referring to the test phase, the well Nozzano 
shows a good performance only for the LSTM network, while the wells S. 
Alessio and Diecimo present unsatisfactory metrics for the NARX. In 
general, the LSTM seems more suitable and capable of predicting 
groundwater levels. As an example, Fig. 5 compares the predicted and 
observed groundwater levels in the test period 2019–2020 for the well 
Paganico. It can be noticed that the LSTM neural network better de-
scribes the actual groundwater levels in the test period. 

3.2. Future projections 

The trained networks were used in combination with the climate 
model projections to compute groundwater levels under two different 
scenarios (RCP4.5 and RCP8.5), from 1976 until the end of this century. 

To highlight the evolving trends in piezometric levels over time, the 
results for the Paganico well in April are reported. April was selected 
because it typically experiences minimum anthropogenic impacts as it 
precedes the irrigation withdrawals period. The predicted groundwater 
levels for the entire simulated period (1976–2095) are shown in terms of 
10-year moving average, which highlights the effects of climate change 
over the natural variability. The results are reported in terms of median 
value and interquartile range of the ensemble of climate models. 

Fig. 6 shows the results obtained with the NARX. For both RCP 
scenarios, according to the median values, a decrease in groundwater 
levels over time is evident. The reduction is expected to be more pro-
nounced for the RCP8.5 in the long-term; this can be attributed to the 
highest greenhouse gas concentrations associated with this scenario, 
which lead to a more severe increase in temperature and subsequent 
high evapotranspiration rates that impact recharge processes. In 
contrast, for the RCP4.5 scenario, mitigation measures are anticipated to 
be implemented to reduce the emission of greenhouse gases. The 
interquartile range of the ensemble of climate models highlights the 
uncertainties of future predictions given by the different RCMs. 

To highlight changes over time, the results were also analyzed 
considering four periods of the climate models: historical (1976–2005) 
and short- (2006–2035), medium- (2036–2065) and long-term 

Table 4 
MSE (m2) between the output of the neural networks (NARX, LSTM, CNN) and 
the observed groundwater levels.   

NARX LSTM CNN 

Training  0.04  0.12  0.05 
Validation  0.54  0.23  0.20 
Test  0.82  0.30  0.31 
Whole dataset  0.17  0.14  0.10  

Table 5 
RMSE (m) between the output of the neural networks (NARX, LSTM, CNN) and 
the observed groundwater levels in the periods 2005–2018 (learning) and 
2019–2020 (testing).   

NARX LSTM CNN 

Well Learning Testing Learning Testing Learning Testing 

Paganico  0.10  0.37  0.11 0. 17  0.15 0. 30 
Cugnia  0.07  0.35  0.08 0.10  0.16 0.25 
Sat 1  0.11  0.36  0.09 0.11  0.14 0.26 
Via Barsanti  0.10  0.27  0.11 0.14  0.10 0.29 
Via Romboni  0.30  1.46  0.42 0.83  0.48 0.98 
Percorso Vita  0.05  0.17  0.07 0.12  0.06 0.23 
Nozzano  0.18  0.93  0.23 0.36  0.23 0.66 
S. Alessio  0.06  0.59  0.11 0.18  0.17 0.27 
Salicchi  0.07  0.43  0.10 0.17  0.11 0.38 
Diecimo  0.13  0.57  0.21 0.28  0.16 0.39  
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(2066–2095). 
Fig. 7 shows the empirical cumulative distribution functions (CDFs) 

of the standardized groundwater levels predicted over the four projec-
tion periods for the Paganico well and for the RCP4.5 and RCP8.5 sce-
narios. The envelope curves were obtained considering the individual 
climate models, in order to highlight the uncertainty of the prediction. In 
addition, the data of the 13 climate models were considered as statistical 
realizations of the same stochastic process, hence they were assembled 
in order to create a single dataset, hereinafter referred to as “whole RCM 
ensemble”. For both scenarios, a clear reduction in the standardized 
groundwater levels is detectable for the future compared to the 

historical period, especially in the medium- and long-term. In fact, the 
leftward shift of the CDFs from the historical one highlights the increase 
in the probability or frequency of the lower values of the distribution. 
The RCP4.5 shows similar results in the medium- and long-term, while 
the RCP8.5 indicates a more pronounced increase in negative stan-
dardized groundwater levels over the long-term. 

Fig. 8 and Fig. 9 show the results obtained with the LSTM. Looking at 
the 10-year moving average of the predicted groundwater levels in April 
(Fig. 8), for both RCP scenarios, the median values highlight a moderate 
decrease in the piezometric levels over time, more accentuated for the 
RCP8.5 at the end of the simulated period. The variability between the 

Fig. 5. Observed and predicted groundwater levels for the testing phase (period 2019–2020) for the well Paganico.  

Fig. 6. Predicted groundwater levels with the NARX in April for the Paganico well in terms of 10-year moving average under the RCP4.5 and RCP8.5 scenarios.  
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climate models (interquartile range) is similar to that obtained with the 
NARX. 

The CDFs of the predicted standardized GWLs for the Paganico well 
(Fig. 9) indicate that an increment in negative standardized GWLs is 
expected for the future compared to the historical period. For the 
RCP4.5 similar results are obtained in the medium- and long-term; very 
few differences are expected in the short-term compared to the historical 

period. The RCP8.5 shows a progressive reduction of standardized GWLs 
over time, higher in the long-term than that expected with the RCP4.5. 
Furthermore, the envelope curves show a lower uncertainty on the 
estimated future GWLs using the LSTM with respect to the NARX. 
Overall, the LSTM estimates a future reduction in terms of standardized 
groundwater levels lower than the NARX. 

Fig. 10 and Fig. 11 show the results obtained with the CNN. From 

Fig. 7. Cumulative distribution probability functions of the standardized GWLs according to the whole RCM ensemble obtained with the NARX for the Paganico well 
for the historical period and at short- (ST), medium- (MT) and long-term (LT) under the RCP4.5 (left) and RCP8.5 (right) scenarios together with the envelope curves 
provided by the 13 RCMs. 

Fig. 8. Predicted groundwater levels with the LSTM in April for the Paganico well in terms of 10-year moving average under the RCP4.5 and RCP8.5 scenarios.  
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Fig. 10, no systematic trends can be detected for both RCP scenarios. The 
variability between RCMs is lower than that obtained with NARX and 
LSTM. 

According to Fig. 11, the CDFs of the future GWLs obtained for the 
Paganico well do not show appreciable changes compared to that of the 
historical period, for both RCP scenarios. Only a slight decrease in 
standardized GWLs at long-term for the RCP8.5 scenario is detectable. 

This highlights a very different behavior of the CNN compared to the 
other two AI models. 

Finally, to quantify the results for all wells and to have a comparison 
with the finding of Secci et al. (2021), Table 6 and Table 7 show the 
differences in terms of standardized GWLs between the future periods at 
short-, medium- and long-term for the RCP4.5 and RCP8.5 and the 
historical period. The 25th, 50th and 75th percentiles of the whole RCM 

Fig. 9. Cumulative distribution probability functions of the standardized GWLs according to the whole RCM ensemble obtained with the LSTM for the Paganico well 
for the historical period and at short- (ST), medium- (MT) and long-term (LT) under the RCP4.5 (left) and RCP8.5 (right) scenarios together with the envelope curves 
provided by the 13 RCMs. 

Fig. 10. Predicted groundwater levels with the CNN in April for the Paganico well in terms of 10-year moving average under the RCP4.5 and RCP8.5 scenarios.  
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ensemble were selected to compute the differences. The color intensity 
highlights the magnitude of the differences between future and histor-
ical standardized GWLs. All models detect a reduction in groundwater 
levels for the future, however, on the whole, the CNN is characterized by 
the smaller differences if compared with the other two AI models 
implemented in the present study. For example, for the Paganico well 
and the RCP8.5 the difference between the standardized GWL median 
value at long-term and that of the historical period is − 0.93 for the 
NARX, − 0.34 for the LSTM and only − 0,07 for the CNN (Table 7). Ac-
cording to the CNN, the largest differences are observed for the wells Via 
Romboni and Nozzano; however, they present high values of RMSE 
between predicted and observed groundwater levels in the test period 
(Table 5). In general, the regression model implemented by Secci et al. 
(2021) highlights slightly higher reductions of the groundwater levels 
with respect to those predicted by the CNN. On the contrary, the LSTM, 
with very few exceptions, shows more pronounced decreases in future 
levels with respect to the regression model. The NARX provides the most 
severe declines in future groundwater levels; however, it presents the 
highest MSEs in the test phase (Table 4). 

4. Discussion 

The approach proposed in this study aims to evaluate the effects of 
future climate on groundwater while assuming that other driving forces 
of the hydrological processes will remain unchanged. This assumption 
may introduce uncertainties in the predictions, as other factors, such as 
precipitation intensity, soil moisture and vegetation type, play a role in 
aquifer recharge. Furthermore, also anthropogenic activities can influ-
ence the groundwater condition. However, some of these factors are 
inherently taken into account during the training phase of the models 
when establishing the relationship between the exogenous input (pre-
cipitation and temperature) and the desired output (groundwater level). 
For instance, the models can indirectly capture the influence of changes 
in pumping rates on the groundwater levels, as these rates are closely 
correlated with changes in precipitation and temperature. An increase in 
temperature often results in an increased demand for irrigation to 
compensate for higher evapotranspiration rates; this leads to higher 
groundwater extraction rates as agricultural sectors may rely on 

groundwater resources. A decrease in precipitation and prolonged 
period of droughts can lead to a reduced recharge and at the same time 
to an increase in groundwater extraction rates as surface water supplies 
become limited. Hence, despite the models used do not explicitly include 
factors beyond precipitation and temperature, some of these factors can 
be indirectly considered as they depend on climate variables used as 
input. Moreover, precipitation and temperature are among the most 
straightforward variables to measure and collect and they are readily 
accessible from climate models. This justifies their use as input features 
for the machine learning models to forecast future groundwater levels. 

Another aspect worthy of discussion is the comparison between a 
straightforward statistical approach (Secci et al., 2021) and artificial 
intelligence methods to infer future projections of groundwater levels in 
the context of climate change. One of the advantages of the proposed 
methods compared to that of Secci et al. (2021) is that the climate 
variables (precipitation and temperature) are used directly instead of 
computing meteorological indices. In particular, to evaluate the SPEI 
both precipitation and evapotranspiration are needed and, within the 
scientific literature, different equations are proposed to evaluate 
evapotranspiration based on temperature and other variables. This leads 
to different values of SPEI and can represent a further source of uncer-
tainty, which is avoided by directly using temperature as input variable 
to the models. Furthermore, in this work a single network is able to 
simultaneously map all climate data with groundwater levels at all 
wells, while the method proposed by Secci et al. (2021) requires the 
development of a regression model for each well. Another main 
advantage of the AI models is their ability to capture non-linear re-
lationships. The process of water infiltration and aquifer recharge is non- 
linear; therefore, machine-learning algorithms better represent the 
mutual dependences among groundwater levels and climate variables 
than simple linear functions. 

Another aspect to discuss is the influence of the characteristics of the 
training dataset on the model performance and the design of the 
network architecture. The amount of data used to train a neural network 
is a crucial factor that can significantly impact the model performance. 
Generally, a larger dataset provides the model with more information 
and can lead to better performance and generalization. However, the 
variability of the data within the dataset is also important: a diverse 

Fig. 11. Cumulative distribution probability functions of the standardized GWLs according to the whole RCM ensemble obtained with the CNN for the Paganico well 
for the historical period and at short- (ST), medium- (MT) and long-term (LT) under the RCP4.5 (left) and RCP8.5 (right) scenarios together with the envelope curves 
provided by the 13 RCMs. 
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Table 6 
Differences between the 25th, 50th and 75th percentiles of the future standardized GWLs at short- (ST), medium- (MT) and long-term (LT) and the historical ones under 
the RCP4.5 scenario. Results obtained with the AI models proposed in this study and the regression model presented by Secci et al. (2021).  
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Table 7 
Differences between the 25th, 50th and 75th percentiles of the future standardized GWLs at short- (ST), medium- (MT) and long-term (LT) and the historical ones under 
the RCP8.5 scenario. Results obtained with the AI models proposed in this study and the regression model presented by Secci et al. (2021).  
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dataset that encompasses a wide range of variations in the input data can 
help the neural network learning to recognize different patterns and 
making more accurate predictions. On the other hand, if the dataset 
contains only a limited range of examples, the model may overfit to the 
training data and perform poorly on unseen data. In cases where data-
sets have limited amounts of data, the challenge is to train a model 
effectively with limited information. Thus, the objective is to find stra-
tegies to optimize the use of the available data. Techniques based on 
physics constrains, regularization and the use of auxiliary variables can 
help in enhancing the model performance when facing data scarcity (e.g. 
Bierkens et al., 2001; Varouchakis and Hristopulos, 2013). In the context 
of machine learning, there is a prevalent preference for simpler models 
over complex ones. This is attributed to several advantages associated 
with simpler models, including ease of interpretation, a lower number of 
parameters, and potentially improved generalization performance. 
Simple models are more likely to capture the essential patterns, are less 
sensitive to individual data points and generalize well to unseen data; 
this is particularly advantageous when dealing with small datasets. 
Additionally, simpler models are often computationally more efficient, 
requiring less time and computational resources for training and infer-
ence. However, it is not always the case that a simpler model is inher-
ently more suitable when working with limited data. It is important to 
note that the choice between simple and complex models depends on the 
specific problem and available data. In some cases, complex models may 
be necessary to capture intricate patterns. The trade-off between model 
simplicity and performance should be carefully considered based on the 
requirements of the task at hand. 

The results of this study pointed out that different neural networks 
provide different outputs. The selection of the best model for estimating 
future groundwater levels is a topic worthy of discussion. Although there 
is no strict way to define which AI model is best suited to solve the 
problem at hand, the comparison of different methods can help the 
interpretation of the results. The training and testing performance 
metrics of the neural networks allow to evaluate the reliability of the 
developed models. However, metrics alone are not sufficient to deter-
mine which model will perform best in predicting future values. As an 
example, in the present work, the CNN presents good metrics for the 
training and test phases, but they are not completely able to extrapolate 
future groundwater levels. It is well known that CNNs are able to effi-
ciently extract features from the training dataset, thereby reducing the 
dimensionality of the initial information and relating it to the desired 
output. However, they may fail when extrapolating values beyond the 
range of variation observed in the training set. This may explain why the 
CNN model does not show remarkable changes in the predicted future 
groundwater levels, although the future temperature shows a significant 
upward trend in the investigated area (Secci et al., 2021). CNNs are 
typically better suited for tasks that involve spatial relationships as 
image processes; when applied for processing time series data, by 
treating them as a 1D signal and using 1D convolutions, they may not be 
as effective in capturing temporal dependencies and patterns. Addi-
tionally, CNNs require a fixed input size, which can be challenging when 
dealing with time series data with variable length or missing values. On 
the contrary, NARXs and LSTMs are designed to capture temporal de-
pendencies and patterns in time series data. The LSTM network out-
performs the other approaches, showing the best performance during 
both the training and testing phases. The main advantage of the LSTM is 
its ability to selectively retain, through its memory cell, and use relevant 
information from the input sequence, while filtering out the irrelevant or 
redundant one. Furthermore, unlike recurrent neural networks, LSTMs 
are not affected by the vanishing gradient problem. This empowers the 
model to capture complex temporal patterns and relationships within 
the data, which can present challenges for other type of networks. 
Finally, NARXs use a simple feedforward neural network architecture 
that incorporates a looping structure by using the output as subsequent 
input. This design allows the model to identify potential trends in the 
reference output but may not be as effective at capturing long-term 

dependencies in the data. They are not classified as deep learning 
methods and do not have the capability to automatically extract fea-
tures. This is why antecedent groundwater levels serve as essential 
auxiliary information for the NARX. 

To summarize, the LSTM is specifically tailored to model sequences 
and capture long-term temporal dependencies, which make them well 
suited for time series prediction. Based on these considerations, as 
described by Yang and Zhang (2022), an interesting approach could be a 
combined CNN-LSTM system for forecasting problems. CNNs could be 
used as feature extractors to reduce the dimensionality of the dataset 
and select only the most relevant characteristics, which represents a 
more sophisticated alternative to clustering algorithms. Then, LSTMs 
would act as a time-sequence detector on a more representative sample. 

5. Conclusions 

In this study, three different artificial intelligence models (NARX, 
LSTM and CNN) were developed in order to assess the effects of climate 
change on groundwater resources. The applicability of the models was 
demonstrated for an Italian area in northern Tuscany, but other 
groundwater systems can be analyzed following the same procedure, 
assuming that enough data are available. The models were trained using 
historical precipitation and temperature data of 18 climate stations as 
input in order to obtain groundwater levels for 10 monitoring wells as 
output. Once trained, the AI models were used to predict future 
groundwater levels using, as input, precipitation and temperature pro-
jections provided by an ensemble of 13 RCMs under two emission 
pathways (RCP4.5 and RCP8.5). The NARX and the LSTM show a 
remarkable decrease in future groundwater levels, in particular for the 
RCP8.5 at long-term, denoting that the impact of climate change on 
groundwater resources could be significant; on the contrary, the CNN 
does not show significant changes. 

Data-driven surrogate models, such as neural networks, can be a 
valid alternative to complete numerical models with an advantage in 
terms of computational burden. Although there are no well-defined 
methods capable of evaluating which surrogate model may perform 
better in the future, non-linear artificial intelligence models seem more 
suitable for future prediction of groundwater levels than statistical ap-
proaches. LSTMs are the best structured networks to manage de-
pendencies in long time series, also confirmed by the evaluation metrics. 
However, a comparison between various methodologies and a general 
analysis of the historical and future climate is essential in order to 
rigorously analyze the results. 

New climate scenarios, the Shared Socioeconomic Pathways (SSPs), 
have been proposed to describe different plausible future pathways of 
human societies and their interactions with the natural environment, 
based on assumptions about socio-economic development, demographic 
trends, technological change, energy consumption, land use, and other 
factors that affect greenhouse gas emissions. The SSPs are designed to 
work in combination with an updated version of the RCPs and are used 
in phase 6 of the Coupled Model Intercomparison Project (CMIP6). In 
the sixth Assessment Report of the Intergovernmental Panel on Climate 
Change (AR6, IPCC, 2021), GCMs were used to simulate long-term 
climate projections covering the period 2015–2100 under different 
SSP scenarios (from SSP1-1.9 to SSP5-8.5). RCM experiments, useful for 
vulnerability, impact and adaptation studies at regional and local scale, 
are still under development. Future works will focus on the new SSP 
scenarios. 
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Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., 
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., 
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.F., Teichmann, C., 
Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EURO-CORDEX: New high- 
resolution climate change projections for European impact research. Regional 
Environmental Change 14, 563–578. https://doi.org/10.1007/s10113-013-0499-2. 

Javadinejad, S., Dara, R., Jafary, F., 2020. How groundwater level can predict under the 
effect of climate change by using artificial neural networks of NARX. Resour. 
Environ. Inf. Eng. 2, 90–99. https://doi.org/10.25082/reie.2020.01.005. 

Jeihouni, E., Mohammadi, M., Eslamian, S., Zareian, M.J., 2019. Potential impacts of 
climate change on groundwater level through hybrid soft-computing methods: a case 
study—Shabestar Plain. Iran. Environ. Monit. Assess. 191 https://doi.org/10.1007/ 
s10661-019-7784-6. 
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