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Abstract: Driver Monitoring Systems (DMSs) play a key role in preventing hazardous events
(e.g., road accidents) by providing prompt assistance when anomalies are detected while driv-
ing. Different factors, such as traffic and road conditions, might alter the psycho-physiological status
of a driver by increasing stress and workload levels. This motivates the development of advanced
monitoring architectures taking into account psycho-physiological aspects. In this work, we propose
a novel in-vehicle Internet of Things (IoT)-oriented monitoring system to assess the stress status
of the driver. In detail, the system leverages heterogeneous components and techniques to collect
driver (and, possibly, vehicle) data, aiming at estimating the driver’s arousal level, i.e., their psycho-
physiological response to driving tasks. In particular, a wearable sensorized bodice and a thermal
camera are employed to extract physiological parameters of interest (namely, the heart rate and skin
temperature of the subject), which are processed and analyzed with innovative algorithms. Finally,
experimental results are obtained both in simulated and real driving scenarios, demonstrating the
adaptability and efficacy of the proposed system.

Keywords: Driver Monitoring System; Internet of Things; IoT; arousal; wearable; thermal camera

1. Introduction
Over the last five decades, research activities focusing on the impact of driving tasks

on the psycho-physiological status of a driver have gained an increasing scientific interest.
Indeed, driving can be considered a major experience in many people’s life. Instances of
early works on this topic mainly focus on the relationship between traffic congestion and
stress [1–3], demonstrating that conditions of high congestion are associated with higher
levels of perceived stress. However, driver stress may also be influenced by other external
factors (e.g., roadway conditions, weather, visibility, etc.) and internal factors (e.g., gender,
age, personality, etc.) [4]. Moreover, it has been demonstrated that the driving context
(e.g, road objects, signs, vehicles, etc.) has a significant impact on the driver’s status [5].
Attempts to characterize the driving context from driver behavior have been carried out
in [6], where car trajectory segmentation is exploited to derive meaningful characteristics
of the driving context. Hence, both external and internal factors may negatively affect the
driving performance by altering the psycho-physiological status of the driver, possibly
causing road accidents and dangerous situations.

This further motivates the development of advanced monitoring systems able to
extract and process physiological parameters to evaluate the psycho-physiological acti-
vation of a subject as a response to the driving task. Indeed, the perception of stressful
stimuli causes a psycho-physiological reaction in the human body by altering its functions.
In particular, physiological processes are regulated by the Autonomic Nervous System
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(ANS), which is composed of the sympathetic and parasympathetic systems [7]. A psycho-
physiological activation corresponds to the activation of the sympathetic system, which
regulates body functions in stressful conditions, and a simultaneous deactivation of the
parasympathetic system, which regulates body functions at rest. In this work, we refer to
the psycho-physiological activation of the driver with the term arousal.

Among different indices that might be observed, an important informative physiolog-
ical index of the stress level of a subject is the heart rate variability (HRV), which can be
defined as the beat-to-beat temporal fluctuation in heart rate (HR) [8]. In particular, the
HRV reflects the activity of the ANS, which may be influenced by stressful stimuli and/or
mental efforts. Moreover, HRV can be inferred from an ElectroCardioGram (ECG) and has
been considered in various research works in the context of driver stress detection [9–13].
An extensive review of works where the HRV is considered as the main physiological pa-
rameter used to detect stress in different contexts can be found in [14]. This review provides
evidence to support the use of the HRV for the objective assessment of physiological stress.
Further examples of works, which highlight the reliability of the HRV as stress indicator,
are [15,16], where it is demonstrated that mental stress can be inferred from HRV analysis.

Given the importance of the HRV as a stress indicator, several attempts at developing
driver assistance systems (DASs) based on the monitoring of physiological parameters
of interest have been proposed in the literature. As an example, in [17] a DAS equipped
with a stress monitoring system was designed to provide assistance in electric vehicles
by intervening with the vehicle speed in case of anomalies, whereas in [18], a Machine
Learning (ML)-oriented stress detection system to be possibly integrated with a DAS is
presented. Both systems presented in [17,18] are based on the analysis of ECG signals and
other physiological data, including skin temperature (among others). Indeed, variations in
the skin temperature of a subject can be considered another important stress indicator. In
particular, the skin temperature on the nasal tip region is regulated by the ANS and has been
observed to decrease in the case of high levels of stress [19]. Therefore, thermal imaging-
based systems able to detect facial skin temperature variations have been developed in
simulated driving environments [20,21] and in real driving scenarios [22]. In general, the
extensive analysis carried out in the literature on the use of HRV and facial skin temperature
to estimate the stress status of a subject proves how these two physiological parameters are
considered significant indicators of stress by the research community.

On the basis of these remarks, in this work, the design and implementation of an
advanced in-vehicle Driver Monitoring System (DMS) able to collect and jointly process
physiological data, including HRV signals and facial skin temperature variations, to eval-
uate the arousal level of the driver, are presented. More in detail, the proposed DMS is
composed of interconnected heterogeneous sensors properly interacting according to dif-
ferent Internet of Things (IoT)-oriented technologies. In particular, wireless communication
protocols, such as Wi-Fi and Bluetooth Low Energy (BLE), and standard messaging proto-
cols, such as the Message Queuing Telemetry Transport (MQTT) protocol and Transmission
Control Protocol (TCP)-based sockets, are exploited to collect physiological data extracted
by a wearable sensor and a thermal camera integrated in the system. Recent progress
on wearable device technologies makes them effective for a wide range of applications,
including those in the healthcare sector [23]. In particular, flexibility and stretchability
are conferred to the most advanced wearable devices by innovative electronic materials,
which make them comfortable and adaptable. To this end, recent examples of the successful
development of innovative wearable sensors can be found in [24–26]. The effectiveness
of the DMS was evaluated in both simulated and real driving scenarios according to spe-
cific operational protocols. This work expands upon previous contributions preliminarily
presented in [27,28], where the first versions of the system architecture and of a thermal
imaging system were introduced, respectively.

More in detail, the main purpose of this work was to demonstrate the feasibility of the
developed DMS, in terms of data collection (through commercial IoT devices) considering a
realistic driving scenario. More thorough comparative analyses with other existing systems
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are left as a future research activity, as they are out of the scope of the present study.
Moreover, the proposed IoT-based architecture differentiates itself from other approaches
described in the literature (e.g., [29,30]), where ML models are considered to estimate the
driver’s mental workload and distractions only in simulated scenarios. It also differs from
other approaches mentioned in this paper (namely, the work in [9]), since the number
of employed sensors and extracted physiological signals is different. In particular, in [9],
five wearable sensors were employed and needed to be attached to different parts of the
subject’s body, making the system more invasive and uncomfortable than a DMS, which
requires only one wearable sensor and a contactless thermal camera.

Finally, we highlight that the experimental setup in the real vehicle scenario does
not actually consider the integration of Engine Control Unit (ECU) data, since access to
this information is generally forbidden by manufacturers on commercial vehicles. Despite
this, the proposed DMS can, in principle, be improved by including data fusion with
in-vehicle-related information (provided that access to it is granted). This paper is organized
as follows. In Section 2, the architecture of the proposed IoT monitoring system, together
with a brief description of each component, is provided. The operational procedure for
collecting data obtained through the involved sensors is detailed in Section 3, where
the interactions between the system components are described. In Section 4, we present
innovative algorithms to process and further analyze the collected data. The performance
results obtained in simulated and real environments are discussed in Section 5. Finally, in
Section 6, conclusions and possible future extensions are summarized.

2. In-Vehicle Monitoring Architecture
The proposed DMS is composed of heterogeneous sensing and processing devices

that should properly be positioned inside the vehicle cabin and connected with each other.
For the sake of clarity, the experimental system setup is shown in Figure 1, where the
various components and their interactions are shown. In particular, a wearable sensor and
a thermal camera are employed to gather physiological parameters of interest and record
facial skin temperature variations in the driver, respectively. Additional vehicular data
might be extracted by embedded inertial sensors, i.e., an ECU located on board the vehicle.
The processing component in the proposed DAS is an Intel Next Unit of Computing (NUC),
acting as a Wi-Fi Access Point (AP), providing a private Wi-Fi network, and also providing
networking, storage and processing functionalities for the entire system.

Figure 1. Experimental setup of the proposed DMS.
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2.1. Wearable Sensor
In order to collect physiological data from the driver, an Equivital EQ02 Life Moni-

tor [31] device (manufactured by Equivital, Cambridge, UK) is employed. In detail, the
Equivital EQ02 Life Monitor is a wireless wearable sensing device capable of recording mul-
tiple vital signs related to a subject wearing the sensor, and is composed of two elements:
(i) a textile bodice embedding electrode, i.e., the EQ02 Sensor Belt, and (ii) a EQ02 Sensor
Electronics Module (SEM). The SEM can capture biological signals in real time, including
ECG and respiratory signals and other indices such as HR, respiratory rate (RR) and skin
temperature. Additional information on the body position and motion can be collected
from a 3-axis accelerometer embedded in the SEM. Moreover, the SEM is equipped with
a Class-1 Bluetooth interface for real-time data transmission. Alternatively, the acquired
data may be logged on the sensor and a posteriori downloaded. Pictures of the EQ02 Sensor
Belt and SEM are shown in Figures 2a and 2b, respectively, whereas their correct on-body
positioning is illustrated in Figure 2c. As can be seen, the SEM needs to be inserted in a
specific pocket on the left side of the belt itself. Thus, this wearable device can be considered
non-invasive since it is made of a flexible fabric that can easily adapt to the body of the
driver. Owing to its wearing comfort, this device is also employed by athletes and workers
during their regular activities, as described in [32,33].

(a) (b)

(c)

Figure 2. Equivital EQ02 Life Monitor sensor: (a) belt, (b) SEM, and (c) positioning.

2.2. Thermal Camera
The second component integrated in the architecture of the proposed monitoring

system is a FLIR One Pro LT thermal camera [34] (manufactured by Teledyne FLIR LLC,
Wilsonville, OR, USA), which allows us to collect thermal information from specific re-
gions on the body of the driver (namely, the face and nose) and from the surrounding
environment. This device is composed of an RGB sensor and an infrared sensor, allowing
us to simultaneously capture visible and thermal images or videos, respectively. Data may
also be acquired according to a blended modality, providing a combination of visible and
thermal outputs.

On the practical side, the FLIR One Pro LT thermal camera has to be connected to a
smartphone as an external USB Type-C “dongle” and may be managed by either Android-
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or iOS-like mobile applications. The smartphone and connected thermal camera dongle
need to be accurately installed inside the vehicle cabin to guarantee optimal positioning for
data acquisition. To this end, a fair trade-off between recording quality and positioning
obtrusiveness should be considered, since further video processing and analysis tasks
require a frontal perspective. Then, similarly to the wearable sensor, this device can also
be considered non-invasive since it does not require direct contact with the subject and is
positioned unobtrusively, without limiting the road view. For the sake of illustration, the
connection of the FLIR dongle to the smartphone and their positioning inside the cabin are
shown in Figures 3a and 3b, respectively. An illustrative example of a captured infrared
video frame is shown in Figure 3c. Finally, we highlight that the thermal camera has
small dimensions (namely, 68⇥ 34⇥ 14 mm), making it easily positionable by means of
a standard phone car holder attached to the front windscreen of the vehicle, as shown in
Figure 3b. Hence, thanks to this simple positioning, the thermal camera can be considered
as not distracting and/or stressful for the driver.

(a) (b) (c)

Figure 3. FLIR One Pro LT thermal camera: (a) sensor connection, (b) positioning, and (c) recorded
infrared frame.

3. Data Acquisition
3.1. Data Acquisition Architecture

The different modules detailed in Section 2 and composing the proposed driver
monitoring architecture transmit their collected data to the central hub, namely, the Intel
NUC running Windows 10, located on board the vehicle and intended to work as a multi-
interface gateway for data storage, fusion and processing. A pictorial representation of
the data acquisition architecture of the proposed DMS is shown in Figure 4, where the
connections between the different components are highlighted and the central hub is
denoted as the Joint Driver–Vehicle Status (JDVS) module.

With regard to the interconnection of the sub-modules, standard communication
protocols are employed. In particular, the EQ02 SEM sends physiological data (i.e., the HR,
HRV and RR of the subject wearing the wearable bodice) through its Class-1 Bluetooth
interface to the JDVS module, where the Equivital eqView Pro [35] desktop application
is installed and collects the physiological data. These data are then forwarded to a TCP
socket toward an internal Python application (running on board the JDVS module), hosting
a TCP server and listening for incoming packets for further processing. On the other
hand, thermal data recorded by the FLIR One Pro LT thermal camera are transmitted (by
the smartphone hosting the FLIR dongle), exploiting the MQTT protocol, to the JDVS
module through the private Wi-Fi network hosted and advertised by the JDVS itself. To
this purpose, an Android-based mobile application, denoted as MoniDrive (as shown



Sensors 2024, 24, 5479 6 of 20

in Figure 4) and running on a Huawei P20 Lite smartphone, was developed to acquire
RGB, thermal images and additional frame and camera information (i.e., temperature scale,
framed hottest and coldest points, etc.) through the FLIR camera connected on its USB-C
interface. Finally, serial communication channels, such as the Controller Area Network
(CAN) bus, might also be exploited to transmit vehicular data from an ECU. In this study,
we did not investigate this aspect. Moreover, the proposed DMS was designed to support
this decision.

Figure 4. Data acquisition architecture of proposed DMS.

We remark that vehicle vibrations do not affect the data acquisition phase. In fact, the
employed wearable bodice is not sensitive to small vibrations. Moreover, the proposed
video processing techniques allow us to detect a framed face regardless of the camera
position and orientation, with the subject’s facial temperature not being affected by vehicle
vibrations in any way. As a consequence, in-vehicle vibrations occurring during the driving
activities do not represent a noise source in the experimental data collection phase. The
JDVS module asynchronously processes the data received from the various components
(every 1 s from the wearable sensor and every 5 s from the thermal camera, respectively) in
order to produce an arousal index (denoted as j) in the range [0, 1], where 0 and 1 indicate
null and maximum physiological activations.

To summarize, the operational tasks performed by the JDVS module are the following:
• Acting as a Wi-Fi AP (advertising a private Wi-Fi network) and as a MQTT broker;
• Processing the information received from the MoniDrive app, through innovative

image and video processing algorithms that will be detailed later;
• Processing the data received from the sensorized belt;
• Performing data fusion to estimate the arousal j and transmit it to external interested

entities (e.g., the vehicular ECU through a parallel Ethernet or Wi-Fi interface).
Finally, with regard to the communication protocols adopted in the proposed IoT-

based monitoring architecture, it should be highlighted that, even if the use of BLE, Blue-
tooth and, more in general, wireless technologies in a vehicle could lead to interference
problems [36,37], this issue has not been experienced in our experimental data collection
campaigns. However, this aspect would deserve full attention, should the proposed system
be integrated, as an on-board functionality, in a real vehicle.

3.2. Driving Protocol
With regard to a realistic deployment and the validation of the proposed data ac-

quisition architecture introduced in the previous section, specific experimental scenarios
were designed to evaluate the driver’s response to different external stimuli, associated
with different amounts of perceived stress. To this end, the driving sessions monitored
through the proposed system were run in both a controlled environment (namely, a driving
simulator), and in realistic scenarios (namely, urban and beltway driving with smooth and
heavy traffic), in order to analyze the variations in the driver’s psycho-physiological status
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in both smooth and fast driving conditions. As an example, in [38], an experimental route
including urban and beltway driving was defined to collect and analyze data on the stress
status of the driver in different driving contexts.

3.2.1. Real Driving
In this work, a first example of a driving protocol defined for acquiring data in real

driving situations is shown in Figure 5. In detail, the driving protocol consists of specific
epochs—with their duration shown in Figure 5—associated with different amounts of
perceived stress induced by various external factors, e.g., road type, traffic conditions and
co-driving. The face icons in Figure 5 delimit the time interval when additional stress
is induced on the driver by the co-driver. To this end, it is useful to highlight how, in
the specific context of real driving, the considered stress is a mental stress. Indeed, the
stress induced by road and traffic conditions and by the presence of a co-driver is aimed at
increasing the driver’s mental workload.

Before starting each driving test, the driver and vehicle are equipped with the proposed
IoT monitoring system during an initial arrangement phase. In particular, the driver is
asked to wear the Equivital EQ02 Life Monitor sensor, while the FLIR One Pro LT thermal
camera (attached to a smartphone) is properly positioned inside the vehicle cabin according
to the guidelines provided in Sections 2.1 and 2.2. Moreover, during this phase the stress
surveys are also administrated.

The various phases of the 45 min driving tests in realistic scenarios (as shown in
Figure 5) are the following.

Figure 5. Driving protocol adopted in realistic scenarios.

• BASELINE: During this phase, reference data from the driver are collected for 10 min.
In particular, during this phase the driver is required to sit still inside the vehicle with
the car engine turned off, with the resulting data recorded as “reference” and further
compared with the data collected during the whole driving test.

• BELTWAY: The driver is asked to drive on a beltway for 5 min.
• CO-DRIVER: The driver is asked to drive on urban roads for 15 min. During the

first and last 5 min intervals of this phase, road indications are given to the driver by
a co-driver sitting in the back of the vehicle, and during the central 5 min interval,
the co-driver provides stressful stimuli to the driver by simply talking to the driver
and providing some rude comments to raise a stress reaction. Moreover, it should be
highlighted that the co-driver is the same for all participants and is unrelated to all of
them—in terms of familiarity—and the traffic condition during this phase was slow to
heavy due to urban roads conditions.

• RECOVERY: During this phase, data are collected for 10 min more in order to check
the driver’s response after a recovery phase. The driver is required to sit still inside the
vehicle with the car engine turned off (as in the BASELINE phase). Finally, additional
surveys about the perceived stress are also administered to investigate the impact of
the driving test on the subject’s status.

The experimental route followed during the aforementioned driving tests lies in the
city of Parma, Italy, as shown in Figure 6. The maps in Figure 6a,c refer to beltway routes,
whereas the map in Figure 6b refers to an urban route. For all maps, the precise latitude
and longitude coordinates are shown.
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(a)

(b)

(c)

Figure 6. Beltway (a,c) and urban (b) roads crossed in the city of Parma, Italy, during driving tests.

3.2.2. Simulated Driving
The driving protocol defined for acquiring experimental data in a simulated environ-

ment (i.e., a driving simulator) is defined in [39], where the designed experimental scenario
is described. In particular, during the simulated driving sessions, the participants are
required to perform a series of distracting tasks in order to increase their level of perceived
stress. For the sake of completeness, the various phases of a 14 min simulated driving
test are shown in Figure 7, where, in detail, (i) reference data were acquired during the
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baseline phases and (ii) cognitive, visual and emotional distractions are emulated during
the corresponding phases (as highlighted in Figure 7) in order to acquire data in stressful
conditions. In particular, during the first cognitive distraction phase, the driver is asked
to perform a memory exercise, named n-back (with n = 2), where they have to listen to a
sequence of letters read by an external voice and declare a match if and only if the last heard
letter corresponds to the second-to-last heard letter. Then, the driver is asked to perform
a second task to emulate both cognitive and visual distraction, during which they have to
write on a cellphone a sequence of city names read by an external voice. During the last
emotional distraction phase, the driver listens to an audio track and is asked to write on a
cellphone the emotions that they are feeling. Finally, data at rest are collected during the
recovery phase. It is finally noteworthy to highlight that none of the participants took part
in both real and simulated driving scenarios, and that since cognitive, visual and emotional
distractions are induced in the simulated driving tests, the type of stress in this specific
scenario is considered both mental end emotional.

Figure 7. Driving protocol adopted in simulated scenarios.

4. Data Analysis
In order to extract useful information from the data collected according to the protocols

detailed in Section 3.2, different dedicated processing techniques are implemented. In
particular, physiological and thermal data are processed separately in order to compute
specific indices related to the stress status of the driver, as detailed and described in
the following.

4.1. Physiological Data Analysis
Physiological indices of interest, i.e., HR and ECG signals, are acquired every 40 ms

by the Equivital EQ02 Life Monitor sensor described in Section 2.1. Then, raw ECG
signals are properly processed with the LabChartPro 5.0 software [40] to correctly detect R
wave peaks—the R wave is an upward deflection in the ECG signal and represents early
ventricular depolarization [41]. These data are of interest to evaluate the time interval
between consecutive R peaks, also referred to as an R-R interval. This interval represents
the time interval between normal heart beats, and its variations are expedient to quantifying
the HRV, which is considered to evaluate the stress level. In particular, the Root Mean
Square of Successive Difference (RMSSD, dim: [ms]) between consecutive R-R intervals is
computed over a window of N samples, for each phase of the considered driving protocol,
as follows:

RMSSD =

vuuut
N
Â

n=2
(RRn � RRn�1)2

n� 1
(1)

where RRn represents the duration in ms of the n-th R-R interval, with n 2 {2, . . . , N},
and the number of samples N is given by D/40, where D is the duration in ms of the
considered phase and data are acquired every 40 ms. The RMSSD reflects the activity
of the parasympathetic system, which is part of the ANS and regulates body functions
at rest [42]. In particular, the vagus nerve is the main component of the parasympathetic
system and is responsible for the heart rate reduction under relaxed conditions. On the
other hand, the activity of the vagus nerve is reduced under stress conditions causing heart
rate accelerations. Thus, reduced values of RMSSD are associated with a reduced activity
of the vagus nerve as, for example, under higher levels of stress.
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4.2. Thermal Data Analysis
Thermal images and additional information of interest—namely, temperature ranges

detected by the thermal camera and the pixel coordinates of the framed hottest and coldest
points—were acquired by the FLIR One Pro Lt device described in Section 2.2 every 5 s
and processed according to a dedicated algorithm, for which its block diagram is shown in
Figure 8.

Figure 8. Dedicated algorithm for thermal data processing.

More in detail, the proposed algorithm retrieves the temperature information related
to the considered thermal images, which are coded according to the RGB standard. Hence, a
simple temperature mapping is performed in order to associate the RGB values of each pixel
in a considered thermal image with their corresponding actual temperature values (dim:
[�C]). For the sake of mapping, each thermal image, coded according to the RGB standard,
is first indexed according to a specific color map, i.e., the temperature bar provided by
the FLIR One Pro Lt device as additional information, in order to associate each RGB
value within the image (representing the pixel intensity) to a unique integer index. This
indexed image is then converted to grayscale to reduce the computational complexity of
the mapping operation. The derived mapping rule is the following:

It = t(`1, `2) +
⇥
t(h1, h2)� t(`1, `2)

⇤
Ii (2)

where It and Ii are two-dimensional matrices (dim: [pixel⇥ pixel]) representing the thermal
image with restored actual temperature values and the original RGB thermal image after
being converted to a grayscale indexed image, respectively; t(`1, `2) and t(h1, h2) are the
coldest and hottest temperature values (dim: [�C]) related to the pixels at position (`1, `2)
and (h1, h2) within the indexed image Ii, respectively.

The RGB frames collected along with the thermal frames are also processed in order
to extract two Regions Of Interest (ROIs) on the subject’s face. In particular, the MediaPipe
Face Detector framework [43] is exploited to detect the face and nose of the driver in each
RGB image. Then, two rectangular ROIs (centered at the nose and face) are extracted from
the corresponding thermal image, and the mean temperatures are computed within the
selected areas as follows:

t̄ =
1

WH

W�1

Â
w=0

H�1

Â
h=0

t(w, h) (3)

where W and H represent the width and height (in pixels) of the considered ROI, respec-
tively, and t(w, h) is the temperature value associated with the pixel at position (w, h).

Finally, a check procedure is introduced in order to discard incorrectly detected ROIs. In
detail, a nose ROI is ignored if the top-left corner y(n�roi)

0 2 {0, . . . , H�1} of the corresponding
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nasal area falls above 80% or below 25% of the height h(f�roi) 2 {0, . . . , H � 1} of the face
region, i.e., y(n�roi)

0 < 0.25h(f�roi) or y(n�roi)
0 > 0.8h(f�roi).

4.3. Arousal Extraction
Finally, in order to quantify the real-time psycho-physiological activation of the subject

as a response to the driving task, the arousal index j is obtained on the basis of the RMSSD
value computed on the time interval corresponding to the current phase C (denoted as
RMSSDC) with respect to the RMSSD value obtained on the time interval corresponding to
the baseline phase (denoted as RMSSDB). A pseudo-code representation of the algorithm
defined to compute the arousal j is shown in Algorithm 1. In detail, with reference to
Algorithm 1, E denotes the total number of driving phases in the considered protocol
(excluding the baseline phase) and is set to 4 and 6 for real and simulated driving, re-
spectively (as shown in Figures 5 and 7); s represents the granularity of the arousal and
is set to 0.1, in order to let the algorithm provide 10 different levels of arousal (namely:
j 2 {0.1, 0.2, 0.3, . . . , 1}); and D(min)

RMSSDrat
and D(max)

RMSSDrat
represent the minimum and maxi-

mum variation in the value DRMSSDrat that can be measured during the driving task, and
they are set to 10 and 120, respectively, on the basis of an experimental values tuning phase.

Algorithm 1 Pseudo-code of the arousal j extraction.

1: j 0, e 1
2: s granularity of the arousal
3: D(min)

RMSSDrat
 minimum threshold

4: D(max)
RMSSDrat

 maximum threshold

5: RMSSDB  

s
NB
Â

n=2
(RRn�RRn�1)2

n�1
6: while e < E do

7: RMSSDC  

s
NC
Â

n=2
(RRn�RRn�1)2

n�1
8: DRMSSD  RMSSDB � RMSSDC

9: DRMSSDrat  abs
⇣

DRMSSD·100
RMSSDB

⌘

10: if DRMSSD < 0 then
11: if DRMSSDrat < D(min)

RMSSDrat
then

12: j 0
13: else if DRMSSDrat < D(max)

RMSSDrat
then

14: j 1
10
⌃DRMSSDrat�D(min)

RMSSDrat
s

⌥

15: end if
16: else
17: j 0
18: end if
19: e e + 1
20: end while

5. Experimental Results
In order to demonstrate the feasibility of the proposed IoT-oriented DMS, several

driving sessions were performed both in simulated and realistic scenarios. To this end, the
psycho-physiological data of interest were collected according to the acquisition protocols
described in Section 3.2 and processed according to the algorithms detailed in Section 4.
More in detail, the driving tests were administered to 28 healthy subjects (13 women and
15 men) and 40 healthy subjects (20 women and 20 men), aged 20 to 50, in the case of
simulated and realistic scenarios, respectively. Each participant was required to sign an
informed consent, to hold a driving license from at least 3 years and to own a car (which
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was used as the mobile vehicle during their driving session and equipped as shown in
Figure 1).

5.1. Simulated Scenarios
The results of two simulated driving sessions, denoted as S1 and S2, are detailed

hereafter, with examples of RGB and thermal frames extracted from the corresponding
video sequences by the FLIR One Pro Lt sensor and properly processed by the algorithm
described in Section 4.2, as shown in Figures 9 and 10, respectively.

frame 4 frame 88 frame 122

(a)

(b)

Figure 9. Samples of (a) original RGB and (b) processed thermal frames extracted during driving
session S1.

The physiological data of interest collected during S1 and S2 are shown in Figure 11a
and Figure 11b, respectively. In particular, the mean HR and RMSSD are shown for each
phase of the driving protocol detailed in Section 3.2 (and depicted in Figure 7). To this
end, the RMSSD values are computed according to Equation (1) with N = D/40 = 3000,
considering that each phase has a duration of 2 min (namely, D = 1200 ms) and data have
been acquired every 40 ms. The various phases are labeled as Baseline, Baseline Driving
(BD), Cognitive Distraction (CD), Visual Distraction (VD), Emotion (E), Emotion and Visual
Distraction (E+VD), and Recovery.

Therefore, through carefully analyzing the results shown in Figure 11a,b, a psycho-
physiological activation of the drivers can be observed during both sessions. In detail,
the RMSSD values acquired during the epochs of the protocol corresponding to stressful
conditions (i.e., CD, VD, E, E + VD) are indeed lower than the baseline values acquired
during Baseline and BD epochs.

Considering Figure 11a, the most significant activation of the subject is observed
during the CD phase, where a very small value of RMSSD (namely, 41.49 ms) is computed,
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and a very high value of mean HR (namely, 87.27 bpm) is recorded, indicating a reduced
activity of the vagus nerve, as typically observed in stressful circumstances. A similar
condition is observed during the E+VD phase, where the value of the RMSSD index is
40.41 ms, and the mean HR is 76.34 bpm. Likewise, considering Figure 11b, the subject is
mainly activated during the CD and E+VD phases, where the values of the RMSSD are
17.99 ms and 17.41 ms, respectively, while the values of the mean HR are 76.89 bpm and
78.23 bpm, respectively.

frame 45 frame 93 frame 117

(a)

(b)

Figure 10. Samples of (a) original RGB and (b) processed thermal frames extracted during driving
session S2.

Moreover, it can be observed that during the final Recovery phase (in both Figure 11a,b),
RMSSD increases, and the mean HR decreases with respect to the values obtained during
the previous E+VD phase, indicating that both subjects are experiencing a relaxed condition
once the driving session is over.

As a further analysis, the mean temperatures extracted from the thermal frames
acquired during S1 and S2 are shown in Figure 12 and Figure 13, respectively. In particular,
the total number of analyzed frames was equal to 168 for both sessions, corresponding to a
14 min total duration of the simulated driving protocol, considering that thermal data are
acquired every 5 s.

For Figures 12a and 13a, the mean temperature values (dim: [�C]) were computed by
applying Equation (3) on the drivers’ face and nose ROIs reported for each acquired frame,
along with the mean temperature extracted from the whole frame (detected and extracted
through the processing performed by means of the MediaPipe Face Detector framework).
However, at some time instants, artifacts, possibly due to movements of the subjects, may
lead to incorrect detections, as visible in Figures 12 and 13, at those frame indices where
the temperature curves are not defined.



Sensors 2024, 24, 5479 14 of 20

(a)

(b)

Figure 11. Physiological data extracted during (a) S1 and (b) S2.
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Figure 12. (a) Mean temperatures and (b) normalized mean temperatures extracted during S1.
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Figure 13. (a) Mean temperatures and (b) normalized mean temperatures extracted during S2.

In order to neutralize the effects of environmental factors, e.g., air conditioning and/or
heating inside the vehicle’s cabin, the mean temperature values extracted from face and nose
ROIs are also normalized, for each acquired frame, with respect to the mean temperature
obtained over the whole frame. In fact, this normalization allows us to compensate the
effects of undesired temperature oscillations inside the vehicle’s cabin, which are unrelated
to the stress perceived by the drivers. To this end, the normalized temperature curves
associated with S1 and S2 are shown in Figures 12b and 13b, respectively.

In order to fairly compare physiological and thermal data, the normalized mean tem-
peratures shown in Figures 12b and 13b were temporally averaged over each phase of the
simulated driving protocol, lasting 2 min, obtaining the normalized temporally averaged
temperature shown in Figures 14a and 14b, associated with S1 and S2, respectively.

In observing these results, it can be noticed the decreasing trend in the temperature
curves in Figure 14a, which suggests a potential stress-related alteration in the psycho-
physiological status of the driver during S1. The same conclusion may be drawn by
observing the temperature curve related to the face ROI shown in Figure 14b. On the basis
of these observations, it can be claimed that the temperature data are in agreement with
the physiological data highlighted in Figure 11. Indeed, from CD to E+VD phases, the
temperature curves are descending, whereas the RMSSD curves are ascending: both trends
indicate a psycho-psychological activation of the subject during the phases associated with
stressful conditions. On the other hand, the temperature curve related to the nose ROI
shown in Figure 14b exhibits a slightly increasing trend from the CD to E phases that may
be due to partially incorrect ROI detection. However, a deeper analysis of the thermal data
is yet under consideration.
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(a)

(b)

Figure 14. Mean temperatures averaged over time windows corresponding to the epochs of the
driving protocol for (a) S1 and (b) S2.

Finally, in order to further strengthen the agreement between the experimental physio-
logical data and arousal j calculated on the basis of Algorithm 1, in Figure 15, the trends
related to session S2 are shown.

Figure 15. Experimental RMSSD (purple), experimental arousal (green, calculated each 5 s) and mean
arousal (orange, calculated over each epoch) for scenario S2.

In detail, with reference to Figure 15, there is a clear interest in evaluating the mean
arousal ĵ, computed as the arithmetic average of the arousal values j (obtained each 5 s on
the basis of Algorithm 1) over each phase of the driving protocol. It can be observed that ĵ
shows a clear “inverse” behavior with respect to the RMSSD processed over each phase,
thus confirming how the arousal estimation might be effective in these scenarios. Finally,
it should be mentioned that the current version of the arousal algorithm only considers
HRV data, whereas the integration of thermal data is yet under investigation. In this
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first experimental analysis, we limited the investigation to the IoT-based system behavior
evaluated in terms of thermal data acquisition from specific regions of interest (namely,
face and nose).

5.2. Real Scenarios
Finally, the results of a driving session run in a realistic scenario, in terms of collected

physiological data, are shown in Figure 16. In particular, the mean HR and RMSSD values
have been computed according to Equation (1) with N = 7500, considering phases with a
fixed duration of 5 min and data acquired every 40 ms. To this purpose, the last 5 min of the
Baseline and Recovery phase recordings are taken into account for the physiological data
analysis described in Section 4.1. The obtained mean HR and RMSSD values are plotted in
Figure 16 for each phase of the considered protocol. In detail, the different phases were
labeled as Baseline, Beltway 1 (B1), Co-Driver 1 (C1), Co-Driver 2 (C2), Co-Driver 3 (C3),
Beltway 2 (B2) and Recovery, where C1, C2 and C3 correspond to the CO-DRIVER phases
detailed in Section 3.2.1—in fact, during C1 and C3, only road indications are given to the
driver, whereas during C3 phase, stressful stimuli are also induced.

Figure 16. Physiological data extracted during a real driving session.

Hence, it can be observed that in stressful conditions, i.e., from phases C1 to C3 in
Figure 16, the driver is subject to a psycho-physiological activation, with the mean HR
exhibiting an increasing trend. At the opposite, RMSSD decreases, suggesting a reduction
in the vagus nerve activity and an increase in the perceived stress.

Since the feasibility of the proposed system in real scenarios is a much more difficult
to achieve compared to in controlled environments, i.e., the simulator, it was not possible
to exploit the thermal camera during this driving session. The installation of the thermal
camera is, indeed, highly sensitive to road and vehicle conditions, which may cause
vibrations, possibly interfering with its correct functioning. Moreover, the vehicle cabin is
more likely to be subject to temperature variations, which may be hardly detectable, unless
more sensors, such as thermometers, are installed. Hence, thermal data are not reported for
this illustrative example.

6. Conclusions and Future Activities
In this work, an IoT-based monitoring system that assesses the psycho-physiological

status of a driver was developed and presented. Heterogeneous sensors, i.e., a wearable
bodice and a thermal camera, are integrated in the proposed architecture and used to sense
various physiological indices of interest, including HR, ECG signals and skin temperature.
Data are collected according to well-defined protocols and properly processed by dedicated
algorithms, specifically implemented for this purpose. In particular, the HRV of the
driver is evaluated by computing the RMSSD index, which reflects the activity of the
parasympathetic system and is considered a physiological index of stress. Variations in
the skin temperature on the subject’s face and nose regions are also analyzed, since they
are associated with stress-related physiological activation. Finally, experimental results
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were obtained in both simulated and real driving scenarios, and analyzed in order to
demonstrate the relationship between the driving task and increased levels of perceived
stress. The feasibility of the system was also demonstrated.

As future activities, the extraction of vehicular data from embedded inertial sensors
and on-board units (OBUs) could be considered part of the proposed JDVS module. Also,
the correlation between vehicular data and physiological parameters could be further
investigated in order to evaluate the relationship between the driving behavior and the
detected level of stress. Moreover, an optimization of the whole system could be foreseen by
better integrating the thermal camera sensor in realistic driving scenarios. Finally, the use of
different devices could be investigated, such as a smartwatch used to extract physiological
measurements in a less-invasive way.
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ANS Autonomic Nervous System;
AP Access Point;
BLE Bluetooth Low Energy;
CAN Controller Area Network;
DAS Driver Assistance System;
DMS Driver Monitoring System;
ECG ElectroCardioGram;
ECU Engine Control Unit;
HR Heart Rate;
HRV Heart Rate Variability;
IoT Internet of Things;
JDVS Joint Driver–Vehicle Status;
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MQTT Message Queuing Telemetry Transport;
OBU On-Board Unit;
RMSSD Root Mean Square of Successive Difference;
ROI Region Of Interest;
RR Respiratory Rate;
SEM Sensor Electronics Module;
TCP Transmission Control Protocol.
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