

University of Parma Research Repository

Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: a comprehensive systematic review with meta-analysis

This is the peer reviewd version of the followng article:

Original

Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: a comprehensive systematic review with meta-analysis / Micek, A.; Godos, J.; Brzostek, T.; Gniadek, A.; Favari, C.; Mena, P.; Libra, M.; Del Rio, D.; Galvano, F.; Grosso, G. - In: NUTRITION REVIEWS. - ISSN 1753-4887. - 79:1(2021), pp. 42-65. [10.1093/nutrit/nuaa043]

Availability: This version is available at: 11381/2886584 since: 2021-01-18T11:09:59Z

Publisher: Oxford University Press

Published DOI:10.1093/nutrit/nuaa043

Terms of use:

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

note finali coverpage

1	Lead article
2	
3	Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival
4	and recurrence: a comprehensive systematic review with meta-analysis.
5	
6	Agnieszka Micek, Justyna Godos, Tomasz Brzostek, Agnieszka Gniadek, Claudia Favari,
7	Pedro Mena, Massimo Libra, Daniele Del Rio, Fabio Galvano, Giuseppe Grosso
8	
9	Agnieszka Micek, Agnieszka Gniadek
10	Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences,
11	Jagiellonian University Medical College, Krakow, Poland.
12	
13	Justyna Godos
14	Oasi Research Institute – IRCCS, Troina, Italy.
15	
16	Tomasz Brzostek
17	Department of Internal Medicine and Community Nursing, Faculty of Health Sciences,
18	Jagiellonian University Medical College, Krakow, Poland.
19	
20	Claudia Favari, Pedro Mena
21	Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
22	
23	Daniele Del Rio
24	School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy.
25	Department of Veterinary Science, University of Parma, Parma, Italy.

26

- 27 Massimo Libra, Fabio Galvano, Giuseppe Grosso
- 28 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania,

29 Italy.

- 31 Corresponding Author: Justyna Godos, Oasi Research Institute IRCCS, Via Conte
- 32 Ruggero 73, 94018 Troina, Italy. Email: justyna.godos@gmail.com

33 Abstract

Context: Recent studies outlined the potential role of dietary factors in cancer survival 34 patients. **Objective:** The aim of this study was to summarize the evidence of the relation 35 36 between dietary intake of phytoestrogens and their blood biomarkers, and overall, cancer-37 specific mortality and recurrence in cancer patients. Data Sources: A systematic search on PubMed, EMBASE, and Web of Science databases of studies published up to September 38 39 2019 was performed. Databases were searched for prospective and retrospective cohort studies reporting on dietary phytoestrogen intake and/or blood biomarkers and the outcomes 40 41 investigated. Data extraction: Data were extracted from each identified study using a 42 standardized form. Data analysis: Twenty-eight articles on breast, lung, prostate, colorectal 43 cancer and glioma were included for systematic review. Given the availability of studies, a 44 quantitative meta-analysis was performed solely for breast cancer outcomes. A significant 45 inverse association between higher dietary isoflavone intake, higher serum/plasma enterolactone concentrations and overall mortality and cancer recurrence was found. Among 46 47 other cancer types, two studies reported that higher serum enterolactone and higher intake of lignans were associated with cancer-specific survival for colorectal cancer and glioma, 48 49 respectively. **Conclusions:** Dietary phytoestrogens may play a role in breast cancer patients survival, while evidence regarding other cancers is too limited to draw any conclusions. 50 51 Keywords: isoflavones; lignans; polyphenols; enterolactone; cancer; meta-analysis

52 Introduction

Cancer, together with other inflammation-related non-communicable diseases, has been 53 recognized as a global health threat. The report of the Global Burden of Disease Study 54 reaffirmed this observation recognizing 24.5 million incident cancer cases and 9.6 million 55 cancer deaths in 2017, worldwide.¹ Several risk factors may account for the burden of non-56 communicable diseases, including economic and social, lifestyle, and dietary factors. Among 57 58 them, dietary factors attract a great attention undoubtedly due to their modifiable nature. In fact, the association between diet and cancer has been extensively investigated.² Recent 59 60 outlines of epidemiological evidence have shown a potential causal relationship between specific dietary factors and non-communicable diseases, including cancer. The most recent 61 comprehensive summary conducted by Global Burden of Disease Study reported that in 2017 62 63 dietary factors contributed to 11 million deaths globally.³ Importantly, cardiovascular diseases and cancer were the leading causes of diet-related deaths.³ Thus, targeting 64 modifiable risk factors, such as dietary factors, could contribute to a decrease in cancer 65 66 mortality and morbidity.

67

Previous studies on dietary intake and cancer focused on dietary patterns and foods, but also 68 individual nutrients. For instance, a higher adherence to healthy dietary patterns, rich in 69 70 plant-based foods, has been associated with a lower risk of several cancers, including colon and breast cancer.^{4,5} Notably, higher intake of certain foods has also been inversely 71 associated with cancer risk and mortality, such as fruits and vegetables,⁶ coffee and tea,⁷⁻⁹ 72 nuts, ¹⁰ and whole grains. ¹¹ Remarkably, latest scientific evidence has pointed out dietary 73 74 polyphenols as promising compounds that may exert beneficial effects toward human health. In fact, numerous meta-analysis have demonstrated that a higher dietary polyphenol intake 75 may be associated with decreased risk of hypertension,¹² diabetes,¹³ mortality,¹⁴ and 76

Nutrition Reviews

77 depression.¹⁵ Recently, a comprehensive meta-analysis quantitatively analyzing the 78 association between dietary polyphenol and phytoestrogen intakes and different cancer types 79 was published. ¹⁶ Interestingly, the results revealed that higher dietary intake of isoflavones 80 may be inversely associated with risk of lung, stomach, colorectal and breast cancer. 81 Mechanistic studies underline the protective effect of these bioactive molecules towards 82 cancer, revealing that phytoestrogens exert antioxidant and anti-inflammatory properties as 83 well as an action through the estrogen receptor (ER), interacting with cancer cell growth and proliferation.¹⁷ Among phytoestrogens and their dietary sources, a summary of the evidence 84 85 on isoflavones and dietary soy consumption showed that such compounds may contribute to cancer prevention.¹⁸ Nonetheless, up to now, a comprehensive summary of the evidence 86 regarding main classes of dietary phytoestrogens (i.e., isoflavones and lignans), their 87 biomarkers/metabolites (i.e. equol and enterolactone),¹⁹ and cancer survival and recurrence 88 considering all cancer types has not been conducted. Thus, the aim of the present review was 89 90 to systematically describe and quantitatively analyze existing studies investigating the 91 association between dietary intake of phytoestrogen as well as their blood biomarkers and 92 overall mortality, cancer-specific survival and cancer recurrence.

93

94 Methods

95 The design, analysis, and reporting of this study followed the meta-analysis of Observational

96 Studies in Epidemiology (MOOSE) guidelines (Table S1 in the Supporting Information

97 online).²⁰ Moreover, eligibility criteria for the search and meta-analyses were specified using

98 the PICOS approach: determination of the Population (P), Intervention/Exposure (I),

99 Comparison (C), Outcomes (O), Study design (S) (Table 1).

100

101 *Study selection*

102 A systematic search on PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), EMBASE (http://www.embase.com/), and Web of Science (www.webofknowledge.com) databases of 103 studies published up to September 2019 was performed using the following search strategy: 104 105 "((((polyphenols OR polyphenol OR isoflavone OR isoflavones OR daidzein OR genistein 106 OR biochanin A OR formononetin OR glycitein OR lignan OR lignans OR matairesinol OR 107 lariciresinol OR secoisolariciresinol OR pinoresinol OR enterolactone OR enterodiol OR 108 equol OR phytoestrogen OR phytoestrogens)) AND (cancer OR neoplasm OR carcinoma)) 109 AND (survival OR mortality OR recurrence OR prognosis OR death)) AND (cohort OR 110 prospective OR observational OR population OR case-control OR nested OR follow-up OR 111 followed)". Studies were eligible if they met the following inclusion criteria: (i) were observational studies (either prospective or retrospective cohort studies); (ii) were conducted 112 113 on cancer patients; (iii) evaluated associations between dietary phytoestrogens and/or their 114 biomarkers and cancer outcomes, including overall mortality, cancer-specific mortality, and recurrence; (iv) assessed and reported hazard ratios (HRs) and their corresponding 95% CI. 115 116 As exposure, dietary intake of the following: i) total isoflavones and their individual 117 components including daidzein, genistein, glycitein, formononetin, and biochanin A; ii) biomarkers/metabolites of isoflavones intake including equol; iii) total lignans and their 118 119 individual components including matairesinol, lariciresinol, secoisolariciresinol, and 120 pinoresinol; iv) biomarkers/metabolites of lignans intake including enterolactone and enterodiol was considered. Reference lists of eligible studies were also examined for any 121 122 additional study not previously identified. If more than one study reported results on the same 123 cohort, only the study including the larger cohort size, the longest follow-up or the most 124 comprehensive data was included in the meta-analysis. The systematic search and study selection was performed by two independent authors. 125

126

127 Date	a extraction	and	quality	r assessment
----------	--------------	-----	---------	--------------

Data were extracted using a standardized extraction form. The following information was 128 collected: (i) first author name and year of publication; (ii) study cohort name and country; 129 130 (iii) study design an median follow-up period; (iv) population characteristics; (v) sex and age of participants; (vi) cohort size and number of deaths, cancer-related deaths and cancer 131 recurrence; (vii) type of exposure and its main characteristics; (viii) distributions of cases and 132 133 person-years, HRs and 95% CIs for all categories of exposure; and (ix) adjustment covariates. 134 The quality of each eligible study was using the Newcastle-Ottawa Quality Assessment Scale,²¹ consisting of 3 domains of quality as follows: selection (4 points), comparability (2 135 points), and outcome (3 points) for a total score of 9 points (9 representing the highest 136 quality). Studies scoring 7-9 points, 4-6 points, and 0-3 points were identified as high, 137 138 moderate, and low quality, respectively.

139

140 Statistical analysis

141 Outcomes evaluated in the analyses included overall mortality, cancer-specific mortality and recurrence. The analyses were performed for dietary phytoestrogen intake as well as for their 142 blood biomarkers. HRs with 95% CI for all categories of exposure were extracted for the 143 analysis. Random-effects models were used in order to estimate pooled results for the highest 144 145 versus the lowest category of exposure. Only the risk estimates from the most adjusted 146 models were used in the analysis. Heterogeneity was calculated using the Q test and I^2 statistic. The level of significance for the Q test was expressed as p < 0.10. The I^2 statistic 147 represented the amount of total variation that could be attributed to heterogeneity. I^2 values 148 149 \leq 25%, 25–50%, 50–75%, and \geq 75% indicated no, small, moderate, and significant heterogeneity, respectively. A sensitivity analysis by exclusion of one study at the time was 150 151 performed in order to assess the stability of results and potential sources of heterogeneity.

152 Additional sensitivity analyses were performed to test for potential source of heterogeneity

153 by grouping studies according to menopausal status and ER receptor status. Publication bias

154 was evaluated through a visual investigation of funnel plots for potential asymmetry.

- 155
- 156 Results

157 Study identification and selection process

The systematic search yielded a total of 631 studies, out of which 402 were excluded on the 158 basis of title and 170 after abstract revision, leaving 59 articles for full-text evaluation (Figure 159 160 1). After revision of full-text articles, 31 studies were excluded. Finally, 28 articles exploring the association between dietary phytoestrogen intake and/or their blood biomarkers and 161 overall, cancer-specific survival and cancer recurrence were included in the systematic 162 review.²²⁻⁴⁹ In detail, 19 studies examined the association between dietary intake of 163 phytoestrogens and cancer,²²⁻⁴⁰ out of which 15 focused on breast cancer,²²⁻³⁶ one on 164 colorectal cancer,³⁷ one on prostate cancer,³⁸ one on lung cancer,³⁹ and one on malignant 165 glioma.⁴⁰ Nine articles focused on blood biomarkers of dietary phytoestrogen intake and 166 cancer,⁴¹⁻⁴⁹ out of which 6 were on breast cancer,⁴¹⁻⁴⁶ two on colorectal cancer,^{48,49} and one 167 on prostate cancer.⁴⁷ Data quality was overall high (data not shown). Considering the limited 168 number of studies reporting on the investigated associations, the meta-analysis was 169 performed solely for breast cancer outcomes. 170

171

172 Breast cancer

173 Fifteen studies explored the association between dietary phytoestrogen intake (isoflavones

and lignans) and overall mortality, cancer-specific mortality and recurrence in breast cancer

patients (Table 2),²²⁻³⁶ while six examined the association with blood biomarkers of their

176 consumption (Table 3).⁴¹⁻⁴⁶ All the studies exploring this association for dietary

Nutrition Reviews

177	phytoestrogens estimated their intake using a Food Frequency Questionnaire (FFQ), which
178	however differed in the number of food items considered (Table 2). Main findings of these
179	studies were quantitatively analyzed using a meta-analytical approach.
180	
181	Nine cohorts reported on the association between dietary isoflavone intake and overall
182	mortality, ^{22,25,26,29,32,35,36} five on cancer-specific mortality ^{25,26,32} as well as five on cancer
183	recurrence in breast cancer patients. ^{29,32,34} A significant inverse association was found for
184	overall mortality (HR: 0.84, 95% CI: 0.74, 0.97; Figure 2, Table 4) and breast cancer
185	recurrence (HR: 0.73, 95% CI: 0.64, 0.84; Figure 2, Table 4), with no evidence of publication
186	bias (Figure S1 in the Supporting Information online). However, there was a moderate
187	heterogeneity among the studies investigating the association with overall mortality.
188	Interestingly, after stratification for menopausal status, both associations remained significant
189	for postmenopausal patients (HR: 0.83, 95% CI: 0.68, 1.00 with I ² :39% and HR: 0.66, 95%
190	CI: 0.55, 0.78 with I ² :0%; respectively).
191	
192	Only two studies were eligible for the analysis on the association between dietary lignan

intake and overall and breast cancer-specific survival.^{26,31} Nonetheless, analysis did not 193 194 reveal any significant association (HR: 0.96, 95% CI: 0.49, 1.89, HR: 0.80, 95% CI: 0.33, 195 1.93; respectively), possibly due to the limited number of included studies (Figure 3, Table 4 and Figure S2 in the Supporting Information online). Moreover, high heterogeneity among 196 197 the included studies was observed.

198

199 Three studies were eligible for the meta-analysis exploring the association between

200 serum/plasma enterolactone concentration, a biomarker of lignans consumption

(enterolactone is a metabolite of lignans which undergo metabolism and modification by 201

human gut microbiota),¹⁹ and overall mortality,^{42,44,46} as well as cancer-specific 202 mortality.^{42,44,46} while two studies for cancer recurrence in breast cancer patients.^{44,46} The 203 analysis showed a significant inverse association for overall mortality (HR: 0.70, 95% CI: 204 205 0.49, 0.99; Figure 4, Table 4); however, after stratifying for menopausal status, the association remained significant only for postmenopausal women (HR: 0.66, 95% CI: 0.47, 206 207 0.92; Table 4), with evidence of moderate heterogeneity. Neither breast cancer-specific mortality (HR: 0.72, 95% CI: 0.51, 1.03; Figure 4, Table 4) nor cancer recurrence (HR: 0.91, 208 209 95% CI: 0.67, 1.23; Figure 4, Table 4) were associated with serum/plasma enterolatone 210 concentration, except for breast cancer-specific mortality among postmenopausal patients (HR: 0.68, 95% CI: 0.49, 0.96; Table 4). Visual investigation of funnel plots revealed 211 212 absence of publication bias (Figure S3 in the Supporting Information online). 213 Colorectal cancer 214 215 Three studies exploring the relation between phytoestrogen and colorectal cancer survival or recurrence met the eligibility criteria and were included in the systematic review.^{37,48,49} A 216 hospital-based study conducted in Spain with a mean follow-up of 8.6 years, recorded 133 217 deaths and 77 cases of colorectal cancer recurrence among 409 patients (Table 2). No 218 significant association between dietary intake of isoflavones as well as lignans and colorectal 219 cancer survival and recurrence was annotated.³⁷ Accordingly, another population-based study 220 221 on a sample of 2,051 colorectal cancer patients followed for more than 5 years reported no 222 association between serum genistein (an isoflavone) and overall mortality, cancer-specific mortality and recurrence (Table 3).⁴⁸ On the contrary, high plasma pre-diagnostic 223 224 enterolactone levels were inversely associated with cancer-specific mortality, but solely in females (HR: 0.63, 95% CI: 0.41, 0.99; Table 3).49 225

226

227 Prostate cancer

The association between both dietary and serum biomarkers of phytoestrogens and prostate 228 cancer survival was explored in two studies.^{38,47} A hospital-based retrospective cohort study 229 230 conducted on 777 prostate cancer patients followed for 12.7 years recorded 263 deaths, 231 among which 81 were due to prostate cancer. Despite the long follow-up period, the study did not find any significant association for either overall or prostate-cancer specific mortality 232 when comparing the highest versus the lowest category of dietary isoflavone intake (Table 233 2).³⁸ Similarly, no significant results were reported for the association between plasma 234 235 enterolactone and overall and prostate cancer-specific mortality in a sample of 1,391 prostate 236 cancer patients followed for 6 years (Table 3).47 237 238 Lung cancer Up to date, one study investigated the possible relationship between pre-diagnostic dietary 239 isoflavones intake and lung cancer survival.³⁹ The study enrolled 444 lung cancer patients 240

and followed them for 36 months, during which 318 deaths occurred (301 were due to lung
cancer). However, after adjusting for potential confounding factors, no significant association
between higher isoflavones intake and overall cancer survival was found (HR: 0.97, 95% CI:
0.78, 1.20; Table 2).³⁹

245

246 *Malignant glioma*

One sole prospective cohort study reporting on the association between pre-diagnostic dietary
phytoestrogen intake and cancer survival in glioma patients was retrieved in the systematic
search.⁴⁰ The study, conducted on 748 male and female glioma patients (median age 55.7
years), reported 648 deaths over the follow-up period. The exposure of interest included
dietary intake of individual isoflavones (formononetin, genistein, daidzein, and biochanin A)

and lignans (coumestrol, matairesinol, and secoisolariciresinol). Authors found that higher
dietary intake of secoisolaricinesinol among Grade III glioma patients was associated with a
better cancer survival (HR: 0.48, 95% CI: 0.25, 0.92; Table 2).

255

256 Discussion

The present study provided a comprehensive review of existing prospective and retrospective 257 258 studies on the dietary intake of isoflavones and lignans, as well as their blood biomarkers, in 259 the context of cancer survival and recurrence. The systematic review comprised 28 articles 260 reporting on breast, colorectal, prostate, lung and glioma cancer, although most of the 261 investigations focused on breast cancer. Performed meta-analyses found that higher dietary 262 isoflavone intake was inversely associated with overall mortality and cancer recurrence 263 among breast cancer patients. No significant relation between dietary lignan intake and 264 cancer outcomes was found when lignan intake was assessed with conventional self-reported methods, but higher levels of serum/plasma enterolactone were inversely associated with 265 266 overall cancer survival. Interestingly, when analyses were stratified for menopausal status, the associations remained significant only among postmenopausal patients. Finally, none of 267 268 the analysis stratified for ER receptor status resulted significant, possible due to the limited number of analyzed studies. Among the other cancers investigated, only an association of 269 270 better survival in colorectal cancer and glioma patients with higher dietary intake of lignans 271 (specifically, serum enterolactone and dietary secoisolaricinesinol, respectively) has been observed. 272

273 Most of the analyses revealed moderate heterogeneity among the included studies, and
274 several factors could have contributed to these findings, including assessment of
275 phytoestrogen intake, phytoestrogen variability directly related to food quality, inter-

Nutrition Reviews

individual variation in response to consumption of plant polyphenols and variations in
isoflavone and lignan-based foods consumption between Asian and non-Asian individuals.

279 Numerous observational studies have investigated the association between polyphenols, including isoflavones and lignans, and human health.¹⁴ While evidence on potential positive 280 effects on health is available, our previous comprehensive overview of the association 281 between total and individual classes of flavonoids and lignans and cancer risk resulted in 282 283 relatively scarce results, with most of findings related to phytoestrogens (especially isoflavones) and breast and lung cancer risk.¹⁶ A number of mechanisms have been 284 hypothesized to explain the potential benefits of phytoestrogens for preventing cancer, 285 including direct inhibition of oxidative stress and oxidative damage as well as inflammatory-286 287 related gene expression, resulting in interfering with the initiation, promotion, and progression of cancer.^{50,51} However, up to now, no comprehensive evidence has been 288 289 produced to explore whether such potential benefits would have an impact also in decreasing 290 mortality rate and improve overall survival in cancer patients. Laboratory studies suggest that phytoestrogens and their blood metabolites may prevent cancer progression through various 291 292 pathways, including inhibition of cancer cell proliferation, survival, angiogenesis,

293 inflammation and metastasis.⁵²

294

Several properties of phytoestrogens have been suggested to potentially reduce recurrence and mortality in breast cancer patients, such as (i) antiproliferative, growth inhibiting and proapoptotic effects mediated by ER β , caspase-3 activation, direct inhibition of tyrosine kinase and nuclear factor κ B (NF- κ B) activities⁵³; (ii) antiangiogenic activity by inhibiting vascular endothelial growth factor (VEGF) expression through inhibition of transcription factors, such as signal transducer and activator of transcription 3 (STAT3) and hypoxia-

301 inducible factor (HIF-1), and its receptors Ras/Raf-1/MEK/ERK, PI3K/Akt, and ERK-NF-KB-cMyc-p21^{54,55}; (iii) reduction of cancer invasion and the metastatic spread of primary 302 breast tumor through downregulation of matrix metalloproteases expression, which initiate 303 304 the process of epithelial-mesenchymal transition-related pathways, such as Notch-1 and TGF-beta signaling^{56,57}; (iv) reduction of epigenetic modulation and DNA methylation, 305 306 which is one of the key mechanisms underlying the maintenance of genome stability and gene expression.⁵⁸ It is interesting that some studies observed a biphasic action of genistein (a 307 308 soy isoflavone) in certain cell lines, showing a growth stimulation at low concentrations and 309 inhibition at high concentrations, with the potentiality of their use as anti-cancer therapeutic agents.^{59,60} Mechanistic studies have also been published regarding the potential role of 310 311 phytoestrogens in the prevention of colorectal cancer, for instance by activating or 312 upregulating ERβ in the colon and promoting apoptosis in preclinical models and in clinical 313 experience: this activity has been associated with a reduction in colon adenocarcinoma, which may reduce the risk of recurrence in patients at risk.⁶¹ A number of studies also 314 315 showed therapeutic effects against glioma tumors by inducing critical pro-apoptotic proteins expression and cell apoptosis as well as inhibition of glioma cell migration by 316 modulating mesenchymal properties.⁶² 317 318

A number of subgroup analyses to test whether some variables should be taken into account as potential effect modifiers was performed. Since the structure of the main isoflavones found in the diet is similar to that of estradiol and that these molecules have been shown to have weak estrogenic activities, it has been hypothesized that some isoflavones may have possible effects on estrogen-target tissues modulated via estrogen receptor-dependent mechanisms.^{63,64} However, the analysis failed in finding significant results in strata analysis when examining survival and cancer recurrence by receptor status. In contrast, different associations when

Nutrition Reviews

326 considering pre- and post-menopausal breast cancers were found, underlying a significant 327 decreased risk of the latter. There is evidence that diet may play a crucial role mostly among post- rather than pre-menopausal cancers⁴: these results are not surprising, as several other 328 329 studies observed a potential preventive role of diet toward post-menopausal breast cancers.⁶⁵ The reasons for such findings may rely on the potentially different nature of cancer occurring 330 331 in younger age, which might be more strongly influenced by genetics, compared to those 332 occurring in older age, which may depend on lifelong chronic influence of detrimental factors led by unhealthy diets, such as low-grade inflammation and obesity.^{66,67} Interestingly, it has 333 334 been demonstrated that obese postmenopausal women are at higher risk of breast cancer compared to normal weight women, possibly due to the association between BMI and 335 336 endogenous estrogen concentrations, as in postmenopausal women circulating estrogen 337 concentrations are dependent on the extraglandular production of estrogen in the adipose 338 tissue. On the other hand, an association between BMI and breast cancer risk has not been 339 found among premenopausal women, as most of the estrogen is produced by the ovaries and 340 its levels are homeostatically regulated by a negative feedback system involving gonadotrophins, therefore estrogen concentration is not directly affected by the levels of 341 adipose tissue.⁶⁸ 342

The results of the present review and meta-analysis should be considered in light of some 343 limitations. Firstly, a limited number of studies was eligible for the present meta-analysis, so 344 345 subgroup analysis exploring the possible effect of confounding factors such as other dietary factors (i.e., collinearity with other foods or phytochemicals), family history of cancer, and 346 many others could not be conducted. In addition, the limited number of studies could 347 348 possibly be the reason why several associations, even though supported by clinical and mechanistic studies, did not result significant. Secondly, most of the observational studies 349 investigating the relation between phytoestrogen intake and cancer rely on the estimation of 350

351 intake from dietary recalls, which may be affected by bias, including recall bias, 352 phytoestrogen variability directly related to food quality (plant variety, season and environmental factors, food storage and processing) and the reference database used to 353 estimate the polyphenol content. Finally, inter-individual variation in response to 354 355 consumption of plant phytoestrogens cannot be ruled out. In this context, the use of biomarkers of phytoestrogen intake may help in better assessing real dietary intake,⁶⁹ to 356 potentially find stronger associations with cancer and other non-communicable diseases. It 357 358 would be better if the biomarkers used are validated as specific and reflective of the intake of their dietary precursors,⁷⁰ even though much work still have to be carried out in this regard by 359 360 the scientific community.71

361

362 Conclusions

363 These results suggest an association between dietary phytoestrogens and breast cancer 364 survival and recurrence, while evidence regarding other cancers is too limited to draw strong 365 conclusions. Today's evidence is not sufficient to provide dietary guidelines regarding these compounds and, therefore, further studies are needed in order to better elucidate the 366 367 association between phytoestrogens and cancer survival and recurrence. Moreover, the findings of the present systematic review and meta-analysis revealed the gap in the literature 368 369 regarding several cancer types and the need for more advanced studies with significant 370 sample sizes and long follow-ups, exploring the differences among diverse populations and 371 possible collinearity effect of confounding factors. Future studies should also focus on the 372 inter-individual variation in response to consumption of phytoestrogens, and therefore 373 investigate the association not only for their dietary intake but also for the true internal exposure to their metabolites. Last, further focus on the gut microbiota composition should be 374 paid as differences in microbial species may condition phytoestrogen metabolite formation 375

376	and bioactivity. If confirmed, these findings may be of critical importance to improve health
377	of cancer patients and their chances of recovery over the course of disease.

378

379 Acknowledgments

- 380 Author contributions: Conceptualization and methodology, A.M., J.G., G.G.; formal analysis
- and data curation, A.M., J.G., G.G.; writing, review and editing, A.M. J.G., T.B., A.G., C.F.,
- 382 P.M., M.L., D.D.R., F.G., G.G. This study was partially supported by a fund from the Italian
- 383 Ministry of Health "Ricerca Corrente" (RC n. 2751594). The funding source had no role in
- design and execution of this study.
- 385 Declaration of interests: The authors have no relevant interests to declare.

387 References

388 1. Global Burden of Disease Cancer C, Fitzmaurice C, Abate D, et al. Global, Regional, 389 and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With 390 Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A 391 Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019. 392 2. Donaldson MS. Nutrition and cancer: a review of the evidence for an anti-cancer 393 diet. Nutr J. 2004;3:19. 394 3. Collaborators GBDD. Health effects of dietary risks in 195 countries, 1990-2017: a 395 systematic analysis for the Global Burden of Disease Study 2017. Lancet. 396 2019;393(10184):1958-1972. 397 4. Grosso G, Bella F, Godos J, et al. Possible role of diet in cancer: systematic review 398 and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. 399 Nutr Rev. 2017;75(6):405-419. Godos J, Bella F, Sciacca S, Galvano F, Grosso G. Vegetarianism and breast, colorectal 400 5. 401 and prostate cancer risk: an overview and meta-analysis of cohort studies. J Hum 402 Nutr Diet. 2017;30(3):349-359. 403 6. Angelino D, Godos J, Ghelfi F, et al. Fruit and vegetable consumption and health 404 outcomes: an umbrella review of observational studies. Int J Food Sci Nutr. 405 2019;70(6):652-667. 406 7. Grosso G, Micek A, Godos J, et al. Coffee consumption and risk of all-cause, 407 cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response 408 meta-analysis. Eur J Epidemiol. 2016;31(12):1191-1205. 409 8. Tang J, Zheng JS, Fang L, Jin Y, Cai W, Li D. Tea consumption and mortality of all 410 cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. 411 Br J Nutr. 2015;114(5):673-683. 412 9. Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, Caffeine, and Health 413 Outcomes: An Umbrella Review. Annu Rev Nutr. 2017;37:131-156. 414 Grosso G, Yang J, Marventano S, Micek A, Galvano F, Kales SN. Nut consumption on 10. 415 all-cause, cardiovascular, and cancer mortality risk: a systematic review and meta-416 analysis of epidemiologic studies. Am J Clin Nutr. 2015;101(4):783-793. 417 Zhang B, Zhao Q, Guo W, Bao W, Wang X. Association of whole grain intake with all-11. 418 cause, cardiovascular, and cancer mortality: a systematic review and dose-response 419 meta-analysis from prospective cohort studies. Eur J Clin Nutr. 2018;72(1):57-65. 420 12. Godos J, Vitale M, Micek A, et al. Dietary Polyphenol Intake, Blood Pressure, and 421 Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. 422 Antioxidants (Basel). 2019;8(6). 423 Rienks J, Barbaresko J, Oluwagbemigun K, Schmid M, Nothlings U. Polyphenol 13. 424 exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic 425 review of prospective cohort studies. Am J Clin Nutr. 2018;108(1):49-61. 426 14. Grosso G, Micek A, Godos J, et al. Dietary Flavonoid and Lignan Intake and Mortality 427 in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. 428 Am J Epidemiol. 2017;185(12):1304-1316. 429 15. Godos J, Castellano S, Ray S, Grosso G, Galvano F. Dietary Polyphenol Intake and 430 Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging 431 (MEAL) Study. *Molecules*. 2018;23(5).

432	16.	Grosso G, Godos J, Lamuela-Raventos R, et al. A comprehensive meta-analysis on
433		dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations.
434		Mol Nutr Food Res. 2017;61(4).
435	17.	Mense SM, Hei TK, Ganju RK, Bhat HK. Phytoestrogens and breast cancer prevention:
436		possible mechanisms of action. Environ Health Perspect. 2008;116(4):426-433.
437	18.	Li N, Wu X, Zhuang W, et al. Soy and Isoflavone Consumption and Multiple Health
438		Outcomes: Umbrella Review of Systematic Reviews and Meta-Analyses of
439		Observational Studies and Randomized Trials in Humans. Mol Nutr Food Res.
440		2019:e1900751.
441	19.	Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary
442		(poly)phenolics in human health: structures, bioavailability, and evidence of
443		protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818-
444		1892.
445	20.	Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in
446		epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in
447		Epidemiology (MOOSE) group. <i>JAMA</i> . 2000;283(15):2008-2012.
448	21.	Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the
449		quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603-
450		605.
451	22.	Boyapati SM, Shu XO, Ruan ZX, et al. Soyfood intake and breast cancer survival: a
452		followup of the Shanghai Breast Cancer Study. Breast Cancer Res Treat.
453		2005;92(1):11-17.
454	23.	Buck K, Zaineddin AK, Vrieling A, et al. Estimated enterolignans, lignan-rich foods,
455		and fibre in relation to survival after postmenopausal breast cancer. Br J Cancer.
456		2011;105(8):1151-1157.
457	24.	Caan BJ, Natarajan L, Parker B, et al. Soy food consumption and breast cancer
458		prognosis. Cancer Epidemiol Biomarkers Prev. 2011;20(5):854-858.
459	25.	Conroy SM, Maskarinec G, Park SY, Wilkens LR, Henderson BE, Kolonel LN. The
460		effects of soy consumption before diagnosis on breast cancer survival: the
461		Multiethnic Cohort Study. Nutr Cancer. 2013;65(4):527-537.
462	26.	Fink BN, Steck SE, Wolff MS, et al. Dietary flavonoid intake and breast cancer survival
463		among women on Long Island. Cancer Epidemiol Biomarkers Prev. 2007;16(11):2285-
464		2292.
465	27.	Guha N, Kwan ML, Quesenberry CP, Jr., Weltzien EK, Castillo AL, Caan BJ. Soy
466		isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the
467		Life After Cancer Epidemiology study. <i>Breast Cancer Res Treat.</i> 2009;118(2):395-405.
468	28.	Kang HB, Zhang YF, Yang JD, Lu KL. Study on soy isoflavone consumption and risk of
469		breast cancer and survival. Asian Pac J Cancer Prev. 2012;13(3):995-998.
470	29.	Kang X, Zhang Q, Wang S, Huang X, Jin S. Effect of soy isoflavones on breast cancer
471		recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ.
472		2010;182(17):1857-1862.
473	30.	Kyro C, Zamora-Ros R, Scalbert A, et al. Pre-diagnostic polyphenol intake and breast
474		cancer survival: the European Prospective Investigation into Cancer and Nutrition
475		(EPIC) cohort. Breast Cancer Res Treat. 2015;154(2):389-401.
476	31.	McCann SE, Thompson LU, Nie J, et al. Dietary lignan intakes in relation to survival
477		among women with breast cancer: the Western New York Exposures and Breast
478		Cancer (WEB) Study. Breast Cancer Res Treat. 2010;122(1):229-235.

479	32.	Nechuta SJ, Caan BJ, Chen WY, et al. Soy food intake after diagnosis of breast cancer
480		and survival: an in-depth analysis of combined evidence from cohort studies of US
481		and Chinese women. Am J Clin Nutr. 2012;96(1):123-132.
482	33.	Shu XO, Zheng Y, Cai H, et al. Soy food intake and breast cancer survival. JAMA.
483		2009;302(22):2437-2443.
484	34.	Woo HD, Park KS, Ro J, Kim J. Differential influence of dietary soy intake on the risk
485		of breast cancer recurrence related to HER2 status. Nutr Cancer. 2012;64(2):198-
486		205.
487	35.	Zhang FF, Haslam DE, Terry MB, et al. Dietary isoflavone intake and all-cause
488		mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer.
489		2017;123(11):2070-2079.
490	36.	Zhang YF, Kang HB, Li BL, Zhang RM. Positive effects of soy isoflavone food on
491		survival of breast cancer patients in China. Asian Pac J Cancer Prev. 2012;13(2):479-
492		482.
493	37.	Zamora-Ros R, Guino E, Alonso MH, et al. Dietary flavonoids, lignans and colorectal
494		cancer prognosis. Sci Rep. 2015;5:14148.
495	38.	Taborelli M, Polesel J, Parpinel M, et al. Fruit and vegetables consumption is directly
496		associated to survival after prostate cancer. Mol Nutr Food Res. 2017;61(4).
497	39.	Yang G, Shu XO, Li HL, et al. Prediagnosis soy food consumption and lung cancer
498		survival in women. <i>J Clin Oncol.</i> 2013;31(12):1548-1553.
499	40.	DeLorenze GN, McCoy L, Tsai AL, et al. Daily intake of antioxidants in relation to
500		survival among adult patients diagnosed with malignant glioma. BMC Cancer.
501		2010:10:215.
001		
502	41.	Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of
502 503	41.	Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738.
502 503 504	41. 42.	Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality
502 503 504 505	41. 42.	Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast</i>
502 503 504 505 506	41. 42.	Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668.
502 503 504 505 506 507	41. 42. 43.	Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast</i> <i>Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and
502 503 504 505 506 507 508	41. 42. 43.	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by
502 503 504 505 506 507 508 509	41. 42. 43.	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708.
502 503 504 505 506 507 508 509 510	41.42.43.44.	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone
502 503 504 505 506 507 508 509 510 511	 41. 42. 43. 44. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The
502 503 504 505 506 507 508 509 510 511 512	41. 42. 43. 44.	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225.
502 503 504 505 506 507 508 509 510 511 512 513	 41. 42. 43. 44. 45. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A.
502 503 504 505 506 507 508 509 510 511 512 513 514	 41. 42. 43. 44. 45. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast
502 503 504 505 506 507 508 509 510 511 512 513 514 515	 41. 42. 43. 44. 45. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889.
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	 41. 42. 43. 44. 45. 46. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517	 41. 42. 43. 44. 45. 46. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and meta-
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518	 41. 42. 43. 44. 45. 46. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and meta-analysis. <i>Int J Cancer.</i> 2014;135(4):923-933.
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519	 41. 42. 43. 44. 45. 46. 47. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol</i>. 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat</i>. 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer</i>. 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr</i>. 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat</i>. 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and metaanalysis. <i>Int J Cancer</i>. 2014;135(4):923-933. Eriksen AK, Kyro C, Norskov N, et al. Prediagnostic enterolactone concentrations and
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520	 41. 42. 43. 44. 45. 46. 47. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and metaanalysis. <i>Int J Cancer.</i> 2014;135(4):923-933. Eriksen AK, Kyro C, Norskov N, et al. Prediagnostic enterolactone concentrations and mortality among Danish men diagnosed with prostate cancer. <i>Eur J Clin Nutr.</i>
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521	 41. 42. 43. 44. 45. 46. 47. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and metaanalysis. <i>Int J Cancer.</i> 2014;135(4):923-933. Eriksen AK, Kyro C, Norskov N, et al. Prediagnostic enterolactone concentrations and mortality among Danish men diagnosed with prostate cancer. <i>Eur J Clin Nutr.</i> 2017;71(10):1235-1240.
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522	 41. 42. 43. 44. 45. 46. 47. 48. 	 Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. <i>J Clin Oncol.</i> 2011;29(28):3730-3738. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. <i>Breast Cancer Res Treat.</i> 2012;132(2):661-668. Jaskulski S, Jung AY, Behrens S, et al. Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers. <i>Int J Cancer.</i> 2018;143(11):2698-2708. Kyro C, Hansen L, Frederiksen K, et al. Pre-diagnostic plasma enterolactone concentrations and breast cancer prognosis among postmenopausal women - The Danish Diet, Cancer and Health cohort. <i>Clin Nutr.</i> 2018;37(6 Pt A):2217-2225. Olsen A, Christensen J, Knudsen KE, Johnsen NF, Overvad K, Tjonneland A. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. <i>Breast Cancer Res Treat.</i> 2011;128(3):883-889. Seibold P, Vrieling A, Johnson TS, et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and metaanalysis. <i>Int J Cancer.</i> 2014;135(4):923-933. Eriksen AK, Kyro C, Norskov N, et al. Prediagnostic enterolactone concentrations and mortality among Danish men diagnosed with prostate cancer. <i>Eur J Clin Nutr.</i> 2017;71(10):1235-1240. Jiang R, Poschet G, Owen R, et al. Serum Concentration of Genistein, Luteolin and

524	49.	Kyro C, Frederiksen K, Holm M, et al. Prediagnosis plasma concentrations of
525		enterolactone and survival after colorectal cancer: the Danish Diet, Cancer and
526		Health cohort. Br J Nutr. 2019;122(5):552-563.
527	50.	Pons DG, Vilanova-Llompart J, Gaya-Bover A, et al. The phytoestrogen genistein
528		affects inflammatory-related genes expression depending on the ERalpha/ERbeta
529		ratio in breast cancer cells. Int J Food Sci Nutr. 2019;70(8):941-949.
530	51.	Danciu C, Avram S, Pavel IZ, et al. Main Isoflavones Found in Dietary Sources as
531		Natural Anti-inflammatory Agents. Curr Drug Targets. 2018;19(7):841-853.
532	52.	Mali AV, Padhye SB, Anant S, Hegde MV, Kadam SS. Anticancer and antimetastatic
533		potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur J
534		Pharmacol. 2019;852:107-124.
535	53.	Lecomte S, Demay F, Ferriere F, Pakdel F. Phytochemicals Targeting Estrogen
536		Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci. 2017;18(7).
537	54.	Basu P, Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of
538		isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. <i>Biomed</i>
539		Pharmacother. 2018;107:1648-1666.
540	55.	Liu HX, Wang Y, Lu Q, et al. Bidirectional regulation of angiogenesis by
541		phytoestrogens through estrogen receptor-mediated signaling networks. <i>Chin J Nat</i>
542		Med. 2016;14(4):241-254.
543	56.	Uifalean A, Schneider S, Ionescu C, Lalk M, Iuga CA. Soy Isoflavones and Breast
544		Cancer Cell Lines: Molecular Mechanisms and Future Perspectives. Molecules.
545		2015;21(1):E13.
546	57.	Lee GA, Hwang KA, Choi KC. Roles of Dietary Phytoestrogens on the Regulation of
547		Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis. Toxins (Basel).
548		2016;8(6).
549	58.	Hsieh CJ, Hsu YL, Huang YF, Tsai EM. Molecular Mechanisms of Anticancer Effects of
550		Phytoestrogens in Breast Cancer. Curr Protein Pept Sci. 2018;19(3):323-332.
551	59.	Ziaei S, Halaby R. Dietary Isoflavones and Breast Cancer Risk. Medicines (Basel).
552		2017;4(2).
553	60.	Douglas CC, Johnson SA, Arjmandi BH. Soy and its isoflavones: the truth behind the
554		science in breast cancer. Anticancer Agents Med Chem. 2013;13(8):1178-1187.
555	61.	Williams C, DiLeo A, Niv Y, Gustafsson JA. Estrogen receptor beta as target for
556		colorectal cancer prevention. Cancer Lett. 2016;372(1):48-56.
557	62.	Jiang D, Rasul A, Batool R, et al. Potential Anticancer Properties and Mechanisms of
558		Action of Formononetin. Biomed Res Int. 2019;2019:5854315.
559	63.	Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol.
560		2014;741:230-236.
561	64.	Krizova L, Dadakova K, Kasparovska J, Kasparovsky T. Isoflavones. Molecules.
562		2019;24(6).
563	65.	Chatoo M, Li Y, Ma Z, Coote J, Du J, Chen X. Involvement of Corticotropin-Releasing
564		Factor and Receptors in Immune Cells in Irritable Bowel Syndrome. Front Endocrinol
565		(Lausanne). 2018;9:21.
566	66.	Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and
567		cancer: an update and emerging new evidence. <i>Lancet Oncol.</i> 2017;18(8):e457-e471.
568	67.	Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity
569		and adverse breast cancer risk and outcome: Mechanistic insights and strategies for
570		intervention. CA Cancer J Clin. 2017;67(5):378-397.

- 571 68. Travis RC, Key TJ. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 572 2003;5(5):239-247. 573 69. Garcia-Aloy M, Rabassa M, Casa-Agustench P, Hidalgo-Liberona N, Llorach R, 574 Andreas-Lacueva C. Novel strategies for improving dietary exposure assessment: 575 Multiple-data fusion is a more accurate measure than the traditional singlebiomarker approach. Trends Food Sci Technol. 2017;69:220-229. 576 577 70. Brennan L. Moving toward Objective Biomarkers of Dietary Intake. J Nutr. 578 2018;148(6):821-822. 579 Dragsted LO, Gao Q, Scalbert A, et al. Validation of biomarkers of food intake-critical 71. 580 assessment of candidate biomarkers. Genes Nutr. 2018;13:14.
- 581

582	Table legend
583	Table 1. PICOS criteria.
584	
585	Table 2. Characteristics of the studies investigating the association between dietary intake of
586	phytoestrogens and overall and cancer-specific mortality and recurrence in cancer patients.
587	
588	Table 3. Characteristics of the studies investigating the association between serum/plasma
589	markers of dietary phytoestrogen intake and overall and cancer-specific mortality and
590	recurrence in cancer patients.
591	
592	Table 4. Summary hazard ratios (HRs) of overall and overall and cancer-specific mortality
593	and recurrence in breast cancer patients for the highest versus lowest category of dietary
594	intake of isoflavones and lignans and serum/plasma enterolactone concentration.
595	
596	Figure legend
597	Figure 1. Flow chart of study identification and selection process.
598	
599	Figure 2. Forest plot of summary hazard risks (HRs) of overall and cancer-specific mortality
600	and recurrence in breast cancer patients for the highest versus lowest category of dietary
601	isoflavone intake. "a" indicates dataset associated with postmenopausal women, while "b"
602	indicates dataset associated with premenopausal women.
603	
604	Figure 3. Forest plot of summary hazard risks (HRs) of overall and cancer-specific mortality
605	in breast cancer patients for the highest versus lowest category of dietary lignan intake. "a"

606	indicates dataset associated with postmenopausal women, while "b" indicates dataset
607	associated with premenopausal women.
608	
609	Figure 4. Forest plot of summary hazard risks (HRs) of overall and cancer-specific mortality
610	and recurrence in breast cancer patients for the highest versus lowest category of
611	serum/plasma enterolactone concentration. "a" indicates dataset associated with
612	postmenopausal women, while "b" indicates dataset associated with premenopausal women.
613	
614	Supporting information legend
615	Table S1. The Meta-analysis of Observational Studies in Epidemiology (MOOSE)
616	guidelines.
617	
618	Figure S1. Funnel plot of summary hazard risks (HRs) of overall and cancer-specific
619	mortality and recurrence in breast cancer patients for the highest versus lowest category of
620	dietary isoflavone intake.
621	
622	Figure S2. Funnel plot of summary hazard risks (HRs) of overall and cancer-specific
623	mortality in breast cancer patients for the highest versus lowest category of dietary lignan
624	intake.
625	
626	Figure S3. Funnel plot of summary hazard risks (HRs) of overall and cancer-specific
627	mortality and recurrence in breast cancer patients for the highest versus lowest category of
628	serum/plasma enterolactone concentration.
629	

630	Table 1. PICOS criteria.					
	PICO	Description				
	P (Population)	Men and women, cancer patients.				
	I (Intervention/Exposure)	Dietary phytoestrogens intake, including isoflavones and				
		lignans, as well as individual phytoestrogens. Blood				
		biomarkers of dietary phytoestrogen exposure.				
	C (Comparison)	Similar groups characterized by different amount of dietary				
		phytoestrogens intake or different level of blood biomarkers of				
		their intake.				
	O (Outcomes)	Reduction in overall mortality, cancer-specific mortality and				
		cancer recurrence among cancer patients.				
	S (Study design)	Systematic review with meta-analysis.				

Table 2. Characteristics of the studies investigating the association between dietary intake of phytoestrogens and overall and cancer-specific mortality and recurrence in cancer patients.

Author, year	Cohort name, country	Study design, median follow-up	Populat ion	Menopausal status	Sex, age (at cancer diagnosis)	population (overall deaths/ cancer- specific deaths/recur rence)	Exposure and method of assessment	Dietary phytoestrogen categories	Overall mortality HR (95% CI)	Cancer-specific mortality HR (95% CI)	Cancer recurrence HR (95% Cl)	Adjustment covariates
Boyapat i, et al. (2005) ²²	Shanghai Breast Cancer Study, China	Population- based prospective cohort, 5.2y	Breast cancer patients	Premenopausal, postmenopausal	F, 25-64y	1,459 (240/NR/NR)	Dietary isoflavones, postdiagnostic, 76-item FFQ	Overall: T3 vs. T1	0.95 (0.62, 1.45)#	-	-	Age at diagnosis, stage of disease, radiotherapy, ER/PR status, total energy intake.
Fink et al. (2007) ²⁶	LIBCSP, USA	Population- based retrospective cohort_NR	Breast cancer patients	Premenopausal, postmenopausal	F, 25-98y	1,210 (173/113 BC/NR)	Dietary isoflavones, prediagnostic, 100-item FFO	Overall: Q5 (>7.48 mg/d) vs. Q1 (<0.29 mg/d)	0.52 (0.33, 0.82)	0.87 (0.54, 1.41)	-	Age at diagnosis, dietary energy intake.
								Premenopausal: Q5 (>7.48 mg/d) vs. Q1 (<0.29 mg/d)	0.71 (0.34, 1.48)	1.03 (0.46, 2.28)	-	
								Postmenopausal: Q5 (>7.48 mg/d) vs. Q1 (<0.29 mg/d)	0.44 (0.24, 0.81)	0.79 (0.43, 1.44)	-	
							Dietary lignan, prediagnostic, 100-item FFO	Overall: Q5 (>9.0 mg/d) vs. Q1 (<2.2 mg/d)	1.03 (0.71, 1.49)	0.95 (0.60, 1.51)	-	
								Premenopausal: Q5 (>9.0 mg/d) vs. Q1 (<2 2 mg/d)	1.27 (0.63, 2.54)	1.16 (0.52, 2.58)	-	
								Postmenopausal: Q5 (>9.0 mg/d) vs. Q1 (<2.2 mg/d)	0.98 (0.63, 1.54)	0.87 (0.49, 1.55)	-	
Guha et al. (2009) ²⁷	LACE, USA	Population- based prospective cohort, 6.3y (average)	Breast cancer patients	Premenopausal, postmenopausal	F, 18-79y	1,954 (NR/NR/282)	Dietary daidzein, postdiagnostic, over 100-item FFQ	Overall: Q5 (≥9596.55 ug/d) vs. Q1 (<0.10 ug/d)	-	-	0.96 (0.52, 1.76)	Soy supplement use, BMI 1 year before diagnosis, menopausal status, tobacco pack-years, tumor stage, ER status, age, race and kilocalories
								Premenopausal: Q5 (\geq 9596.55	-	-	1.74 (0.63, 4.76)	
								Postmenopausal: Q5 (\geq 9596.55 ug/d) vs. Q1 (<0.10 ug/d)	-	-	0.70 (0.27, 1.77)	
								$ER-/PR-: Q5 (\geq 9596.55 ug/d)$	-	-	1.45 (0.43, 4.95)	
								ER+/PR+: Q5 (\geq 9596.55 ug/d) vs. Q1 (<0.10 ug/d)	-	-	0.82 (0.40, 1.68)	
							Dietary genistein, postdiagnostic, over 100-item FFQ	Overall: Q5 (≥13025.88 ug/d) vs. Q1 (<0.10 ug/d)	-	-	0.95 (0.52, 1.75)	
								(≥13025.88 ug/d) vs. Q1 (<0.10 ug/d)	-	-	1.75 (0.65, 4.76)	

							Dietary glycetin, postdiagnostic, over 100-item FFQ	Postmenopausal: Q5 (≥13025.88 ug/d) vs. Q1 (<0.10 ug/d) ER-/PR-: Q5 (≥13025.88 ug/d) vs. Q1 (<0.10 ug/d) ER+/PR+: Q5 (≥13025.88 ug/d) vs. Q1 (<0.10 ug/d) Overall: Q5 (≥795.40 ug/d) vs. Q1 (<3.62 ug/d) Premenopausal: Q5 (≥795.40	- - -	-	0.69 (0.27, 1.75) 1.34 (0.39, 4.57) 0.83 (0.40, 1.69) 0.80 (0.42, 1.50) 1.60 (0.54, 4.72)	
								Postmenopausal: Q5 (\geq 795.40	-	-	0.51 (0.18, 1.38)	
								ug/d) vs. Q1 (<3.62 ug/d) ER-/PR-: Q5 (≥795.40 ug/d) vs. Q1 (<3.62 ug/d)	-	-	0.38 (0.08, 1.79)	
								ER+/PR+: Q5 (≥795.40 ug/d) vs. Q1 (<3.62 ug/d)	-	-	0.94 (0.47, 1.89)	
Shu et al. (2009) ³³	SBCSS, China	Population- based prospective cohort, 3.9y	Breast cancer patients	Premenopausal, postmenopausal	F, 20-75y	5,033 (444/ 534 BC ^s)	Dietary isoflavones, postdiagnostic, 77-item FFQ	Overall: Q4 (>62.68 mg/d) vs. Q1 (≤20.00 mg/d)	0.79 (0.61, 1.03)	0.77 (0.60, 0.98)§	0.77 (0.60, 0.98) [§]	Age at diagnosis, TNM stage, chemotherapy, radiotherapy, type of surgery received, BMI, menopausal status, ER and progesterone receptor status, tamoxifen use, education level, income, cruciferous vegetable intake, total meat intake, vitamin supplement use, tea consumption, and physical activity.
								ER-: Q4 (>62.68 mg/d) vs. Q1 $(\leq 20.00 \text{ mg/d})$	0.85 (0.58, 1.24)	0.88 (0.62, 1.25)§	0.88 (0.62, 1.25)§	
								ER+: Q4 (>62.68 mg/d) vs. Q1 (≤20.00 mg/d)	0.78 (0.53, 1.16)	0.77 (0.54, 1.09)§	0.77 (0.54, 1.09)§	
De Lorenze et al. (2010) ⁴⁰	NR, USA	Population- based prospective cohort, NR	Maligna nt glioma patients	NA	MF, 55.7y (median)	748 (648/NR/NR)	Coumestrol, prediagnostic, 79-item FFQ	II grade cancer: T3 (>145.5 ug/d) vs. T1 (83.4 ug/d)	0.77 (0.33, 1.75)	-	-	Reporting status, age at diagnosis, treatment, education, marital status, total calories, smoking, age at first alcoholic drink.
								III grade cancer: 13 (>145.5 ug/d) vs. T1 (83.4 ug/d)	1.06 (0.60, 1.87)	-	-	
								1v grade cancer: 13 (>145.5 ug/d) vs. T1 (83.4 ug/d)	1.16 (0.88, 1.54)	-	-	

						Matairesinol, prediagnostic, 79-item FFO	II grade cancer: T3 (>34.6 ug/d) vs. T1 (<17.6 ug/d)	0.78 (0.36, 1.69)	-	-	
						,,	III grade cancer: T3 (>34.6 ug/d) vs. T1 (<17.6 ug/d)	0.86 (0.48, 1.54)	-	-	
							IV grade cancer: T3 (>34.6 ug/d) vs. T1 (<17.6 ug/d)	1.20 (0.92, 1.57)	-	-	
						Secoisolaricires inol, prediagnostic, 79-item FFO	II grade cancer: T3 (>146.1 ug/d) vs. T1 (<87.3 ug/d)	1.95 (0.93, 4.10)	-	-	
							III grade cancer: T3 (>146.1 ug/d) vs. T1 (<87.3 ug/d)	0.48 (0.25, 0.92)	-	-	
							IV grade cancer: T3 (>146.1 ug/d) vs. T1 (<87.3 ug/d)	1.32 (1.02, 1.72)	-	-	
						Formononetin, prediagnostic, 79-item FFQ	II grade cancer: T3 (>23.1 ug/d) vs. T1 (<9.3 ug/d)	1.08 (0.46, 2.52)	-	-	
							III grade cancer: T3 (>23.1 ug/d) vs. T1 (<9.3 ug/d)	0.79 (0.43, 1.43)	-	-	
							IV grade cancer: T3 (>23.1 ug/d) vs. T1 (<9.3 ug/d)	1.04 (0.79, 1.37)	-	-	
						Genistein, prediagnostic, 79-item FFQ	II grade cancer: T3 (>291.6 ug/d) vs. T1 (<141.3 ug/d)	1.05 (0.40, 2.74)	-	-	
							III grade cancer: T3 (>291.6 ug/d) vs. T1 (<141.3 ug/d)	1.25 (0.69, 2.27)	-	-	
							IV grade cancer: T3 (>291.6 ug/d) vs. T1 (<141.3 ug/d)	1.35 (1.00, 1.81)	-	-	
						Daidzein, prediagnostic, 79-item FFQ	II grade cancer: T3 (>440.6 ug/d) vs. T1 (269.0 ug/d)	1.70 (0.70, 4.14)	-	-	
							III grade cancer: T3 (>440.6 ug/d) vs. T1 (269.0 ug/d)	1.01 (0.55, 1.85)	-	-	
						D : 1 : 4	IV grade cancer: T3 (>440.6 ug/d) vs. T1 (269.0 ug/d)	1.13 (0.86, 1.49)	-	-	
						prediagnostic, 79-item FFQ	II grade cancer: T3 (>37.8 ug/d) vs. T1 (15.4 ug/d)	0.60 (0.28, 1.30)	-	-	
							III grade cancer: T3 (>37.8 ug/d) vs. T1 (15.4 ug/d)	0.91 (0.45, 1.88)	-	-	
							IV grade cancer: T3 (>37.8 ug/d) vs. T1 (15.4 ug/d)	1.26 (0.97, 1.64)	-	-	
NR, China	Hospital- based prospective cohort, 5.1y	Breast cancer patients	Premenopausal (47.3%), postmenopausal (52.7%)	F, 29-72y	524 (154/132 BC/185)	Dietary isoflavones, postdiagnostic, FFQ	Premenopausal: Q4 (>42.3 mg/d) vs. Q1 (<15.2 mg/d)	1.05 (0.78, 1.71)	-	0.88 (0.61, 1.23)	Age at diagnosis, TNM stage, estrogen and progesterone receptor status, chemotherapy and radiotherapy.
							Postmenopausal: Q4 (>42.3 mg/d) vs. Q1 (<15.2 mg/d) ER+/PR+ among	0.88 (0.56, 1.24)	-	0.67 (0.54, 0.85)	
							postmenopausal: Q4 (>42.3 mg/d) vs. Q1 (<15.2 mg/d)	-	-	0.66 (0.49, 0.86)	

Kang et al. (2010)²⁹

								ER+/PR- among postmenopausal: Q4 (>42.3 mg/d) vs. Q1 (<15.2 mg/d) ER-/PR+ among postmenopausal: Q4 (>42.3 mg/d) vs. Q1 (<15.2 mg/d)	-	- -	1.12 (0.81, 1.66) 1.05 (0.74, 1.61)	
McCan et al. (2010) ³	n WEB, USA	Population- based prospective cohort, 9-125 months	Breast cancer patients	Premenopausal (28.1%), postmenopausal (71.9%)	F, 35-79y	1,122 (160/94 BC/NR)	Dietary lignan, prediagnostic, 121-item FFQ	Premenopausal: Q4 (>257 ug/d) vs. Q1 (<128 ug/d)	2.14 (0.82, 5.56)	1.84 (0.65, 5.27)	-	Age, race, total energy, stage at diagnosis, BMI, and education.
								Postmenopausal: Q4 (>318 ug/d) vs. Q1 (<155 ug/d)	0.49 (0.26, 0.91)	0.29 (0.11, 0.76)	-	
Buck e al. (2011) ²	[:] MARIE, ₃ Germany	Population- based prospective cohort, 6.4y	Breast cancer patients	Postmenopausal	F, 50-74y	2,653 (321/235 BC/NR)	Dietary enterolactone, prediagnostic, 176-item FFQ	Overall: Q5 (502.0 ug/d, median) vs. Q1 (146.0 ug/d, median)	0.60 (0.40, 0.89)	0.69 (0.43, 1.10)	-	Tumor size, nodal status, metastasis, grade, ER/PR status, breast cancer detection type, diabetes, menopausal hormone therapy use at diagnosis, study center, and energy intake
							Dietary enterodiol, prediagnostic, 176-item FFQ	Overall: Q5 (857.5 ug/d, median) vs. Q1 (186.9 ug/d, median)	0.63 (0.42, 0.95)	0.81 (0.51, 1.29)	-	
Caan et al. (2011) ²	WHEL, USA	Population- based prospective cohort, 7.3y	Breast cancer patients	Premenopausal, postmenopausal	F, 18-70y	3,088 (271/NR/448)	Dietary isoflavones, postdiagnostic, 153-item FFQ	Overall: Q4 (>16.33 mg/d) vs. Q1 (<0.7 mg/d)	0.46 (0.20, 1.05)	-	0.78 (0.46, 1.31)	Stage, grade, ER/PR status, menopausal status, chemotherapy treatment, radiation, age, education, race, soy supplements intervention group, presence of hot flash symptoms, and their interaction, tamoxifen.
								ER+/PR+: Q4 (>16.33 mg/d) vs. Q1 (<0.7 mg/d)	0.31 (0.10, 0.98)	-	0.84 (0.47, 1.51)	
								ER-/PR-: Q4 (>16.33 mg/d) vs. Q1 (<0.7 mg/d)	0.86 (0.25, 2.90)	-	0.62 (0.19, 2.03)	
Kang e al. (2012) ²	t NR, China 8	Hospital- based prospective cohort, NR	Breast cancer patients	Premenopausal (37.3%), postmenopausal (62.7%)	F, 46.7y	288 (125/NR/NR)	Dietary isoflavones, prediagnostic, 95-item FFQ	Overall: >35.30 mg/d vs. <8.45 mg/d	0.25 (0.09, 0.54)	-	-	Age, education level, alcohol use, smoking status, menopausal status, ER/PR status, tamoxifen use, oral contraceptive use and TNM stage.

Nutrition Reviews

Nechuta et al. (2012) ³²	ABCPP (pooled analysis of SBCSS, LACE, WHEL)	Population- based prospective cohorts, 7.4y (mean)	Breast cancer patients	Premenopausal, postmenopausal	F, ~54y (mean)	9,514 (1,171/881 BC/1348)	Dietary isoflavones, postdiagnostic, FFQ (SBCSS, LACE, WHEL)	Overall: ≥10.0 mg/d vs. <4.0 mg/d	0.87 (0.70, 1.10)	0.83 (0.64, 1.07)	0.75 (0.61, 0.92)	Age at diagnosis, estrogen receptor/progestero ne receptor status, TNM stage, chemotherapy, radiotherapy, hormonal therapy, smoking, BMI, exercise, cruciferous vegetable intake, parity, menopausal status, study, race- ethnicity, and education.
								Premenopausal: ≥10.0 mg/d vs. <4.0 mg/d	1.11 (0.77, 1.60)	0.97 (0.66, 1.43)	0.93 (0.69, 1.26)	
								Postmenopausal: ≥10.0 mg/d vs. <4.0 mg/d	0.84 (0.61, 1.14)	0.78 (0.54, 1.14)	0.64 (0.48, 0.87)	
								ER+: ≥1.00 mg/d vs. <4.0 mg/d	0.91 (0.69, 1.20)	0.93 (0.67, 1.28)	0.81 (0.63, 1.04)	
								ER-: \geq 1.00 mg/d vs. <4.0 mg/d	0.81 (0.54, 1.23)	0.67 (0.43, 1.05)	0.64 (0.44, 0.94)	
Woo et al. (2012) ³⁴	NR, Korea	Hospital- based prospective cohort, 32.6 months	Breast cancer patients	Premenopausal (38.9%), postmenopausal (61.1%)	F, 25-77y	339 (NR/NR/25)	Dietary isoflavones, prediagnostic, FFQ	Overall: T3 (≥15.2 mg/d) vs. T1 (<7.4 mg/d)	-	-	0.56 (0.20, 1.53)	Total energy intake, cancer stage, age at baseline, menopausal status, alcohol intake, herceptin use, and tamoxifen use. Age, education
Zhang et al. (2012) ³⁶	NR, China	Hospital- based prospective cohort, 52.1 months	Breast cancer patients	Premenopausal (52.9%), postmenopausal (47.1%)	F, 45.7y (mean)	616 (79/NR/NR)	Dietary isoflavones, NR, FFQ	Overall: Q4 (>28.83 mg/d) vs. Q1 (<7.56 mg/d)	0.62 (0.42, 0.90)	-	-	level, smoking, drinking, family history of cancer, menopause status, Tamoxifen use, TNM stage, ER status, chemotherapy and redistbarrow
								ER-: Q4 (>28.83 mg/d) vs. Q1	0.78 (0.47, 0.98)	-	-	radioticrapy.
								ER+: Q4 (>28.83 mg/d) vs. Q1 (<7.56 mg/d)	0.59 (0.40, 0.93)	-	-	
Conroy et al. (2013) ²⁵	MEC, USA	Population- based prospective cohort, 6.2y (mean)	Breast cancer patients	Postmenopausal	F, ≥50y	3,842 (804/376 BC/NR)	Dietary isoflavones, prediagnostic, over 180-item FFQ	Overall: T3 (≥10.4 mg/d) vs. T1 (<4.3 mg/d)	0.98 (0.79, 1.21)	1.01 (0.74, 1.39)	-	BMI, age at diagnosis, ethnicity, energy intake, stage, hormone receptor status, treatment, cardiovascular comorbidity, history of diabetes, smoking status, years between

												cohort entry and diagnosis.
								ER+/PR+: T3 (≥5.5 mg/1000 kcal) vs. T1 (<2.5 mg/1000 kcal)	1.03 (0.75, 1.42)	1.01 (0.59, 1.73)	-	-
								ER-/PR-: T3 (≥5.5 mg/1000 kcal) vs. T1 (<2.5 mg/1000 kcal)	1.08 (0.69, 1.70)	0.96 (0.54, 1.72)	-	
Yang e al. (2013)	^{et} SWHS, ₃₈ China	Population- based prospective cohort, 36 months	Lung cancer patients	NA	F, 66.3y (mean)	444 (318/301 LC/NR)	Dietary isoflavones, prediagnostic, 77-item FFQ	Overall: 90th percentile (53.5 mg/d) vs. 10th percentile (10.2 mg/d)	0.97 (0.78, 1.20)		-	Age at diagnosis, education, cigarette smoking, BMI, menopausal status, history of lung cancer in first- degree relatives; intakes of total calories, fruits and non-soy vegetables, time interval between the first food frequency questionnaire survey and lung cancer diagnosis, and use of nonsteroidal anti- inflammatory drugs and vitamin supplements.
Kyro e al. (2015)	t EPIC, 30 multicenter	Population- based prospective cohort, 6.3y	Breast cancer patients	Premenopausal (24%), postmenopausal (76%)	F, 59y (median)	11,782 (1,482/753 BC/NR)	Dietary isoflavones, prediagnostic, up to 260-item FFQ	Premenopausal: doubling in intake	1.00 (0.98, 1.03)	1.00 (0.97, 1.02)	-	including alcohol, BMI, HRT use, schooling, smoking status, physical activity index, intake of other polyphenol classes, ER receptor status, cancer stage and grading of tumor, stratification for age
							Dietary lignan	Postmenopausal: doubling in intake	1.00 (0.99, 1.01)	1.00 (0.98, 1.01)	-	and country.
							prediagnostic, up to 260-item	Premenopausal: doubling in intake	1.26 (1.05, 1.51)	1.24 (0.98, 1.58)	-	
		H 741					110	Postmenopausal: doubling in intake	0.94 (0.86, 1.04)	0.83 (0.72, 0.96)	-	
Zamor Ros et al. (2015)	a- NR, Spain	Hospital- based prospective cohort, 8.6y (mean)	Colorect al cancer patients	NA	MF, ~67y (median)	409 (133/NR/77)	Dietary isoflavones, NR, over 600- item DHQ	Overall: T3 (>0.3 mg/d) vs. T1 (<0.2 mg/d)	0.97 (0.62, 1.53)	-	0.60 (0.33, 1.09)	Sex, age, total energy and colorectal cancer stage.

Nutrition Reviews

	Dietary lignan, NR, over 600-	Overall: T3 (>0.9 mg/d) vs. T1	0.83 (0.50, 1.37)	-	0.68 (0.36, 1.26)	
	item DHQ	(<0.6 mg/d)				
TaborellHospital- basedProstate cancerNAM, 46-74y777 (263/8 PC/NR)(2017)38cohort, 12.7ypatients	Dietary isoflavones, prediagnostic, 78-item FFQ	Overall: Q4 vs. Q1	0.76 (0.54, 1.08)	1.21 (0.61, 2.37)	-	Area of residence at diagnosis, calendar period, age at diagnosis, years of education, Gleason score, BMI, smoking habits, and total energy intake.
Zhang et BCFR, Breast Premenopausal 6,235 al. multicenter prospective patients cohort, 9.4y 9.4y 9.4% (51%) 8.4% (1,224/NR. (1,224/NR. (51%)) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4% (51%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\% (51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\% (51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\% (51\%) 8.4\%(51\%) 8.4\%(51\%) 8.4\%	Dietary isoflavones, prediagnostic and postdiagnostic, 108-item FFQ	Overall: Q4 (≥1.494 mg/d) vs. Q1 (<0.342 mg/d)	0.79 (0.64, 0.97)	-	-	Age, study site, and total caloric intake, race/ethnicity, education, total fiber intake, Health Eating Index-2010, treatment type, recreational physical activity, BMI, alcohol use, smoking status, and pack-years.
		Premenopausal: Q4 (\geq 1.494 mg/d) vs. Q1 (<0.342 mg/d)	0.93 (0.68, 1.27)	-	-	
		Postmenopausal: Q4 (\geq 1.494 mg/d) vs. Q1 ($<$ 0.342 mg/d) ER+/PR+, ER+/PR-, ER-/PR+;	0.78 (0.59, 1.05)	-	-	
		Q4 (≥1.494 mg/d) vs. Q1 (<0.342 mg/d)	0.90 (0.69, 1.19)	-	-	
		ER-/PR-: Q4 (≥1.494 mg/d) vs. Q1 (<0.342 mg/d)	0.49 (0.29, 0.83)	-	-	
Abbreviations: ABCPP (After Breast Cancer Pooling Project); BC (breast cancer); BCFR (Breast Cancer F FFQ (food frequency questionnaire); HR (hazard ratio); LACE (Life After Cancer Epidemiology); LC (lun Study); PC (prostate cancer); SWHS (Shanghai Women's Health Study); WEB (Western New York Expos § includes recurrence and breast cancer-specific mortality	mily Registry); BMI (bog cancer); LIBCSP (Long tres and Breast Cancer);	ody mass index); DHQ (dietary hist g Island Breast Cancer Study); MEC WHEL (Women's Healthy Eating	tory questionnaire); EF C (Multiethnic Cohort) and Living).	PIC (European Prospec): NR (not reported); S	tive Investigation into BCSS (Shanghai Breas	Cancer and Nutrition); st Cancer Survival
*age at enrolment #among those with no recent dietary change						

Table 3. Characteristics of the studies investigating the association between serum/plasma markers of dietary phytoestrogen intake and overall and cancer-specific mortality and recurrence in cancer patients.

Author, year	Cohort name, country	Study design, median follow-up	Populat ion	Menopausal status	Sex, age (at cancer diagnosis)	N population (overall deaths/ cancer- specific deaths/recur rence)	Exposure	Biomarkers of phytoestrogen intake categories	All-cause mortality RR (95% CI)	Cancer-specific mortality RR (95% CI)	Cancer recurrence RR (95% CI)	Adjustment covariates
Buck et al. (2011) ⁴¹	MARIE, Germany	Population- based prospective cohort, 6.1y	Breast cancer patients	Postmenopausal	F, 50-74y	1,140 (162/124 BC/NR)	Serum enterolactone, postdiagnostic	Overall: Q4 (≥42.3 nmol/L) vs. Q1 (≤7.8 nmol/L)	0.58 (0.34, 0.99)	-	-	Tumor size, nodal status, metastases, grade, ER/PR status, breast cancer detection type, diabetes, HRT use at diagnosis, BMI, and physical activity.
								Overall: per 10 nmol/L increment	0.94 (0.88, 1.00)	-	-	
								ER-positive: Q4 (\geq 42.3 nmol/L) vs. Q1 (\leq 7.8 nmol/L)	0.91 (0.45, 1.84)	-	-	
								ER-positive: per 10 nmol/L	0.96 (0.89, 1.04)	-	-	
								ER-negative: Q4 (\geq 42.3	0.27 (0.08, 0.87)	-	-	
								ER-negative: per 10 nmol/L	0.91 (0.81, 1.02)	-	-	
Olsen et al. (2011) ⁴⁵	Diet, Cancer and Health, Denmark	Population- based prospective cohort, 10y	Breast cancer patients	Postmenopausal	F, 60y (median)	424 (111/80 BC/NR)	Plasma enterolactone, prediagnostic	Overall: >20.5 nmol/L vs. ≤20.5 nmol/L	0.47 (0.32, 0.68)	0.56 (0.36, 0.87)	-	Tumor grade at diagnosis, baseline levels of alcohol intake, and use of hormone replacement therapy.
								Overall: per 20 nmol/L increment	0.82 (0.70, 0.96)	0.88 (0.75, 1.03)	-	
								ER-positive: >20.5 nmol/L vs. <20.5 nmol/L	0.43 (0.26, 0.69)	0.59 (0.32, 1.09)	-	
								ER-negative: >20.5 nmol/L vs. <20.5 nmol/L	0.56 (0.27, 1.13)	0.52 (0.25, 1.09)	-	
Gugliel mini et al. (2012) ⁴²	NR, Italy	Hospital- based retrospective cohort, 5- 10y*	Breast cancer patients	Premenopausal (29.3%), postmenopausal (70.7%)	F, 58.5y (median)	300 (180/112 BC/NR)	Serum enterolactone, postdiagnostic	Premenopausal: ≥10 nmol/L vs. <10 nmol/L	1.85 (0.49, 6.93)	1.77 (0.46, 6.86)	-	Menopausal status, tumor size, nodal status, adjuvant chemotherapy and adjuvant Tamoxifen.
								Postmenopausal: ≥10 nmol/L vs. <10 nmol/L	0.48 (0.28, 0.82)	0.52 (0.29, 0.94)	-	
Seibold et al. (2014) ⁴⁶	MARIE, Germany	Population- based prospective cohort, 5.4y	Breast cancer patients	Postmenopausal	F, 50-74y	2,182 (269/194 BC/188)	Serum/plasma enterolactone, postdiagnostic	Overall: Q4 (>45.1 nmol/L) vs. Q1 (≤8.5 nmol/L)	0.59 (0.40, 0.87)	0.59 (0.37, 0.94)	0.77 (0.51, 1.16)	Tumor size, nodal status, metastases status, histological grading, ER/PR

												status, BMI, radiotherapy, smoking, physical activity, MHT use, time between blood draw and enterolactone measurement.
								Overall: per 10 nmol/L increment	0.94 (0.90, 0.98)	0.94 (0.89, 0.99)	0.99 (0.95, 1.02)	
								ER-positive: Q4 (>45.1 nmol/L) vs. Q1 (≤8.5 nmol/L)	0.76 (0.46, 1.24)	-	-	
								ER-positive: per 10 nmol/L increment	0.95 (0.91, 1.00)	-	-	
								ER-negative: Q4 (>45.1 nmol/L) vs. Q1 (≤8.5 nmol/L)	0.37 (0.16, 0.89)	-	-	
								ER-negative: per 10 nmol/L increment	0.92 (0.83, 1.02)	-	-	
Eriksen et al. (2017) ⁴⁷	Diet, Cancer and Health, Denmark	Population- based prospective cohort, 6y	Prostate cancer patients	NA	M, 51-64y (at baseline)	1,391 (460/301 PC/NR)	Plasma enterolactone, prediagnostic	Overall: Q4 (>35 nmol/L) vs. Q1 (<10 nmol/L)	0.83 (0.64, 1.09)	0.95 (0.68, 1.32)	-	BMI, smoking status, physical activity, antibiotics use and defined daily doses
								Overall per 20 nmol/L increment	0.95 (0.90, 1.02)	0.98 (0.92, 1.05)	-	dully doses.
Jaskulsk i et al. (2018) ⁴³	MARIE, Germany	Population- based prospective cohort, 5.3y	Breast cancer patients	Postmenopausal	F, 50-74y	1,743 (180/121 BC/NR)	Serum/plasma enterolactone, postdiagnostic	Overall: doubling in concentration	0.93 (0.87, 0.99)	0.91 (0.84, 0.99)	-	Age at diagnosis, center, tumor size, nodal status, grade, ER/PR status, detection type, time between OP and blood draw, BMI and HRT use at diagnosic
Kyro et al. (2018) ⁴⁹	Diet, Cancer and Health, Denmark	Population- based prospective cohort, ~7y	Colorect al cancer patients	NA	MF, 66y (median)	953 (535/385 CRC/NR)	Plasma enterolactone, prediagnostic	Female: Q4 (≥38.6 nmol/L) vs. Q1 (≤9.9 nmol/L)	0.70 (0.47, 1.07)	0.63 (0.41, 0.99)	-	Age, smoking status, schooling, quantification of cigarette smoking, waist circumference, alcohol intake, intake of processed meat and frequency of bowel movements.
								Female: doubling in concentration	0.92 (0.84, 1.00)	0.88 (0.80, 0.97)	-	
								Male: Q4 (≥37.2 nmol/L) vs. Q1 (≤8.9 nmol/L)	1.27 (0.91, 1.78)	1.52 (1.00, 2.31)	-	
								Male: doubling in concentration	1.07 (0.99, 1.15)	1.10 (1.01, 1.21)	-	
Kyro et al. (2018) ⁴⁴	Diet, Cancer and Health, Denmark	Population- based prospective cohort, 9y	Breast cancer patients	Postmenopausal	F, 64y (median)	1,457 (404/250 BC/267)	Plasma enterolactone, prediagnostic	Overall: Q4 (≥36.9 nmol/L) vs. Q1 (≤9.5 nmol/L)	0.85 (0.65, 1.13)	0.89 (0.62, 1.27)	1.05 (0.72, 1.51)	Smoking status at baseline, smoking intensity, schooling, BMI at baseline, physical activity

												measure at baseline, and hormone use at baseline.
								Overall: doubling in concentration	0.95 (0.89, 1.01)	0.93 (0.86, 1.00)	0.96 (0.89, 1.04)	Age, gender, stage,
Jiang et al. (2019) ⁴⁸	DACHS, Germany	Population- based prospective cohort, 5.2y	Colorect al cancer patients	NA	MF, 68.2y (mean)	2,051 (475/254 CRC/400)	Serum genistein, postdiagnostic	Genistein: Q4 (≥14.13 ng/uL) vs. Q1 (<10.08 ng/uL)	1.00 (0.77, 1.30)	0.83 (0.58, 1.19)	0.98 (0.72, 1.34)	cancer site, BMI, education, physical activity, screening detected tumor, chemotherapy, diabetes, CVD, constipation, interval between chemotherapy and blood drawn, interval between surgery and blood drawn.
								Genistein: log transformed	1.03 (0.90, 1.19)	0.96 (0.80, 1.15)	1.05 (0.89, 1.25)	
Abbreviatie *restricted	ons: BC (breast to 5-10 years (n	cancer); CRC (col nedian follow-up c	orectal cance of entire study	r); DACHS (Darr v: 23 years).	mkrebs: Chancen c	ler Verhütung du	urch Screening); F (fe	male); HR (hazard ratio); M (male)	; NA (not applicable);	NR (not reported); PC	(prostate cancer); y (ye	ears).

Table 4. Summary hazard ratios (HRs) of overall mortality, cancer-specific mortality, and cancer recurrence in breast cancer patients for the highest versus lowest category of dietary 638

639

intake of isoflavones and lignans and serum/plasma enterolactone concentration. 640

	No. of datasets (cohorts)	HR (95% CI)	l ²	P _{heterogeneity}
Dietary isoflavones				
Overall mortality	8 (9)	0.84 (0.74, 0.97)	39%	0.12
Premenopausal	4 (6)	1.00 (0.83, 1.20)	0%	0.69
Postmenopausal	5 (7)	0.83 (0.68, 1.00)	39%	0.16
ER+	4 (6)	0.86 (0.71, 1.05)	41%	0.17
ER-	4 (6)	0.78 (0.57, 1.05)	41%	0.17
Cancer-specific mortality	3 (5)	0.90 (0.74, 1.08)	0%	0.63
Premenopausal	2 (4)	0.98 (0.69, 1.39)	0%	0.90
Postmenopausal	3 (5)	0.89 (0.71, 1.11)	0%	0.53
ER+	2 (4)	0.95 (0.72, 1.26)	0%	0.80
ER-	2 (4)	0.77 (0.54, 1.09)	0%	0.33
Cancer recurrence	4 (5)	0.73 (0.64, 0.84)	0%	0.59
Premenopausal	2 (4)	0.91 (0.72, 1.15)	0%	0.82
Postmenopausal	2 (4)	0.66 (0.55, 0.78)	0%	0.80
ER+	3 (4)	0.84 (0.63, 1.11)	64%	0.06
ER-	2 (4)	0.82 (0.51, 1.34)	72%	0.06
Dietary lignans				
Overall mortality	3 (2)	0.96 (0.49, 1.89)	72%	0.03
Premenopausal	2 (2)	1.52 (0.86, 2.68)	0%	0.39
Postmenopausal	2 (2)	0.72 (0.37, 1.41)	68%	0.08
Cancer-specific mortality	3 (2)	0.80 (0.33, 1.93)	72%	0.03
Premenopausal	2 (2)	1.38 (0.73, 2.60)	0%	0.49
Postmenopausal	2 (2)	0.54 (0.19, 1.57)	73%	0.06
Cancer recurrence	0 (0)	NA	NA	NA
Premenopausal	0 (0)	NA	NA	NA
Postmenopausal	0 (0)	NA	NA	NA
Serum/plasma enterolactone				
Overall mortality	4 (3)	0.70 (0.49, 0.99)	54%	0.09
Premenopausal	1 (1)	1.85 (0.49, 6.93)	NA	NA
Postmenopausal	3 (3)	0.66 (0.47, 0.92)	57%	0.10
Cancer-specific mortality	4 (3)	0.72 (0.51, 1.03)	39%	0.18
Premenopausal	1 (1)	1.77 (0.46, 6.86)	NA	NA
Postmenopausal	3 (3)	0.68 (0.49, 0.96)	37%	0.20
Cancer recurrence	2 (2)	0.91 (0.67, 1.23)	16%	0.28
Premenopausal	0 (0)	NA	NA	NA
Postmenopausal	2 (2)	0.91 (0.67, 1.23)	16%	0.28
NA: not applicable				

Figure 1. Flow chart of study identification and selection process.

508x591mm (72 x 72 DPI)

			Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Odds Ratio] SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Overall mortality				
Boyapati et al. (2005) ²²	-0.0513 0.2177	7.9%	0.95 [0.62, 1.46]	-+-
Fink et al. (2007) ²⁶	-0.6539 0.232	2 7.1%	0.52 [0.33, 0.82]	
Kang et al. (2010) ^{29 a}	-0.1278 0.2306	5 7.2%	0.88 [0.56, 1.38]	
Kang et al. (2010) ^{29 b}	0.0488 0.1517	13.0%	1.05 [0.78, 1.41]	+
Nechuta et al. (2012) ³²	-0.1393 0.1109	18.3%	0.87 [0.70, 1.08]	
Zhang et al. (2012) ³⁶	-0.478 0.1987	9.0%	0.62 [0.42, 0.92]	
Conroy et al. (2013) ²⁵	-0.0202 0.11	18.5%	0.98 [0.79, 1.22]	+
Zhang et al. (2017) ³⁵	-0.2357 0.1074	18.9%	0.79 [0.64, 0.98]	-
Total (95% CI)		100.0%	0.84 [0.74, 0.97]	•
Heterogeneity: Tau ² = 0.0	01; Chi ² = 11.40, df = 7 (P	= 0.12); l ²	= 39%	
Test for overall effect: Z =	= 2.45 (P = 0.01)	,.		
Cancer-specific mortal	lity			
Fink et al. (2007) ²⁶	-0.1393 0.2433	14.9%	0.87 [0.54, 1.40]	
Nechuta et al. (2012) ³²	-0.1863 0.1326	50.1%	0.83 [0.64, 1.08]	
Conroy et al. (2013) ²⁵	0.01 0.1587	35.0%	1.01 [0.74, 1.38]	+
Total (95% CI)		100.0%	0.90 [0.74, 1.08]	•
Heterogeneity: Tau ² = 0.0	00; Chi ² = 0.92, df = 2 (P	= 0.63); l ²	= 0%	
Test for overall effect: Z	= 1.18 (P = 0.24)			
6				
Cancer recurrence	0.4005 0.4404	40.20/	0.67 [0.64 .0.00]	-
Kang et al. (2010) ^{29 b}	-0.4005 0.1101	40.3%	0.89 [0.64, 0.83]	=
Nachuta at al. (2010) ²³⁰	-0.1278 0.187	14.0%	0.88 [0.61, 1.27]	-
Woo et al. (2012) ³²	-0.2877 0.1054	44.0%	0.75 [0.61, 0.92]	
woo et al. (2012)-	-0.5798 0.5253	5 1.8%	0.56 [0.20, 1.57]	
Total (95% CI)		100.0%	0.73 [0.64, 0.84]	•
Heterogeneity: Tau ² = 0.0	00; Chi ² = 1.93, df = 3 (P =	= 0.59); l² =	: 0%	
Test for overall effect: Z =	= 4.52 (P < 0.00001)			0.01 0.1 1 10 10

Figure 2. Forest plot of summary hazard risks (HRs) of overall and cancer-specific mortality and recurrence in breast cancer patients for the highest versus lowest category of dietary isoflavone intake. "a" indicates dataset associated with postmenopausal women, while "b" indicates dataset associated with premenopausal women.

420x313mm (72 x 72 DPI)

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% C	CI IV, Random, 95% CI
Overall mortality					
Fink et al. (2007) ²⁶	0.0296 0.	1898	41.8%	1.03 [0.71, 1.49]	aj ————————————————————————————————————
McCaan et al. (2010) ^{31 a}	-0.7133 0.1	3233	33.7%	0.49 [0.26, 0.92]	2]
McCaan et al. (2010) ^{31 b}	0.7608 0.4	4894	24.5%	2.14 [0.82, 5.58]	3]
Total (95% CI)			100.0%	0.96 [0.49, 1.89]	
Heterogeneity: $Tau^2 = 0.25$ Test for overall effect: $Z = 0$	5; Chi² = 7.12, df = 2 (P 0.12 (P = 0.90)	P = 0.0	3); I² = 72	%	
Cancer-specific mortalit	ty				
Fink et al. (2007) ²⁶	-0.0513 0.1	2345	41.7%	0.95 [0.60, 1.50]	n – 🖬 –
McCaan et al. (2010) ^{31 a}	-1.2379 0.4	4946	29.9%	0.29 [0.11, 0.76]	5j — —
McCaan et al. (2010) ^{31 b}	0.6098 0.5	5309	28.4%	1.84 [0.65, 5.21]	j +-
Total (95% CI)			100.0%	0.80 [0.33, 1.93]	
Heterogeneity: $Tau^2 = 0.43$ Test for overall effect: Z = 0	8; Chi² = 7.06, df = 2 (P 0.49 (P = 0.63)	P = 0.0	3); l² = 72	%	0.01 0.1 1 10 100

Figure 3. Forest plot of summary hazard risks (HRs) of overall and cancer-specific mortality in breast cancer patients for the highest versus lowest category of dietary lignan intake. "a" indicates dataset associated with postmenopausal women, while "b" indicates dataset associated with premenopausal women.

421x177mm (72 x 72 DPI)

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Overall mortality					
Guglielmini et al. (2012) ^{42 a}	-0.734	0.275	23.3%	0.48 [0.28, 0.82]	_ _
Guglielmini et al. (2012) ^{42 b}	0.6152	0.6778	6.2%	1.85 [0.49, 6.98]	
Seibold et al. (2014) ⁴⁶	-0.5276	0.1983	31.4%	0.59 [0.40, 0.87]	
Kyro et al. (2018) ⁴⁴	-0.1625	0.1369	39.1%	0.85 [0.65, 1.11]	- 4
Total (95% CI)			100.0%	0.70 [0.49, 0.99]	•
Heterogeneity: Tau ² = 0.07; C	Chi ² = 6.59, df = 3 (P	= 0.09);	l² = 54%		
Test for overall effect: Z = 2.0	00 (P = 0.05)				
Cancer-specific mortality					
Guglielmini et al. (2012) ^{42 a}	-0.6539	1 2979	23.7%	0.52 [0.29, 0.93]	_ _
Guglielmini et al. (2012) ^{42 b}	0.571	0.6875	6.3%	1.77 [0.46, 6.81]	
Seibold et al. (2014)46	-0.5276	0.2381	30.8%	0.59 [0.37, 0.94]	
Kyro et al. (2018) ⁴⁴	-0.1165	0.1844	39.2%	0.89 [0.62, 1.28]	i ∙
Total (95% CI)			100.0%	0.72 [0.51, 1.03]	•
Heterogeneity: Tau ² = 0.05; C	Chi ² = 4.91, df = 3 (P	= 0.18);	l ² = 39%		
Test for overall effect: Z = 1.8	81 (P = 0.07)				
Concor requirements					
Seibold et al. (2014) ⁴⁶	0.0614 0.0	102	16 20/	0 77 [0 51 1 16]	-=+
Kyro et al. (2018) ⁴⁴	-0.2014 0.2	102 4	+0.3%	0.77 [0.51, 1.16]	-
kyro et ul. (2010)	0.0488 0.19	925	53.7%	1.05 [0.72, 1.53]	T T
Total (95% CI)		1	00.0%	0.91 [0.67, 1.23]	+
Heterogeneity: Tau ² = 0.01	; Chi ² = 1.18, df = 1	(P = 0	.28); I ² =	16%	
Test for overall effect: Z = 0	0.61 (P = 0.54)				0.01 0.1 1 10 100

Figure 4. Forest plot of summary hazard risks (HRs) of overall and cancer-specific mortality and recurrence in breast cancer patients for the highest versus lowest category of serum/plasma enterolactone concentration. "a" indicates dataset associated with postmenopausal women, while "b" indicates dataset associated with premenopausal women.

420x260mm (72 x 72 DPI)

Table S1. The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	4,5	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	NA	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6, Table 1	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6, Table 1	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7, Table 1	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7, 8	

Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7, 8	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7, 8	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7, 8	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7, 8	
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	NA	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Table1, Table2	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-12, Table 3	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Supp. Info.	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	9, 10	
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-15	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15, 16	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16	
FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17	

Figure S1. Funnel plot of summary hazard risks (HRs) of overall and cancer specific mortality and recurrence in breast cancer patients for the highest versus lowest category of dietary isoflavone intake.

Figure S2. Funnel plot of summary hazard risks (HRs) of overall and cancer specific mortality in breast cancer patients for the highest versus lowest category of dietary lignan intake.

Figure S3. Funnel plot of summary hazard risks (HRs) of overall and cancer specific mortality and recurrence in breast cancer patients for the highest versus lowest category of serum/plasma enterolactone concentration.

