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ABSTRACT 24 

The recognized economic and nutritional value of cephalopods has recently led to a widespread 25 

capture fishery and distribution worldwide, thus increasing the possibility of fraudulent substitution 26 

of the products and posing into question the truthfulness of the geographic indications reported on 27 

the label. Modern analytical techniques using miniaturized and portable near infrared (NIR) 28 

spectroscopy instruments are particularly suited for assessing the authenticity of fishery products 29 

since meeting the requirements of rapidity, eco-friendliness, cost-effectiveness, and easiness of 30 

application. The objective of the present study was to verify the suitability of use of a portable and 31 

ultra-compact NIR spectrometer combined with machine learning to characterize the geographic 32 

origin of two widely consumed octopus species. Replicate NIR spectra in the (908.1–1676.2 nm) NIR 33 

region of 118 musky and 29 common octopus specimens (Eledone spp. and Octopus vulgaris) from 34 

Portuguese Atlantic or Spanish Mediterranean fishing areas were recorded, pre-processed and 35 

elaborated via the following classification algorithms: orthogonal partial least square discriminant 36 

analysis (OPLS-DA), logistic regression (LR), random forest (RF), support vector machine (SVM), 37 

and multilayer perceptron-artificial neural network (MLP-ANN). When 7-fold cross validation was 38 

performed on 75% of data, the results showed that linear tools (OPLS-DA and LR) were the most 39 

powerful and stable techniques in recognizing the origin of both octopus species, with (mean 40 

sensitivity, specificity, accuracy, and precision values above 98%) and the lowest associated standard 41 

deviations.  During the external validation phase (using 25% of the remaining spectral data) OPLS-42 

DA, SVM, and MLP-ANN performed better for common octopuses  (with no classification errors), 43 

while LR and MLP-ANN for musky octopuses (with only 2 and 3 Mediterranean samples 44 

misclassified, respectively).  The achieved outcomes suggest the combination of portable NIR 45 

spectroscopy and machine learning as a promising plan of action to be adopted for the creation of 46 

an integrated analytical platform with capabilities for automated data recording, processing, and 47 

reporting, which may be helpful for on-site and in-line monitoring of fishery products. 48 
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1. Introduction 59 

Cephalopod mollusk species belonging to the Octopodidae and Eledonidae families (collectively 60 

known as octopuses) represent an important fishery resource, with high economic, social, cultural, 61 

and nutritional values, especially for Asiatic and Mediterranean countries. Common octopus 62 

(Octopus vulgaris) and horned and musky octopus (Eledone spp.) are the main octopus species 63 

produced and exploited for human consumption by Mediterranean and Central Eastern Atlantic 64 

countries. According to the most recent data, Italy, Spain, Portugal, Greece, and France together 65 

account for 7% and 95% of world and European production, respectively (European Market 66 

Observatory for Fisheries and Aquaculture Products (EUMOFA), 2020), being characterized by 67 

large- as well as small-scale artisanal octopus fisheries which are of extreme importance for local 68 

economy (Pita et al., 2021). Notwithstanding this, octopus catches by European Union countries have 69 

steadily declined over the past decade as a combined result of the effects of overfishing practices, 70 

new fisheries management policies focusing on sustainable practices, and climate change (Tinacci et 71 

al., 2020). On the other hand, to compensate the increased demand, large volumes of frozen octopus 72 

are now imported from third countries (Morocco and Mauritania mainly) (EUMOFA, 2020) and 73 

retailed by the local markets predominantly as thawed products. This market configuration increases 74 

the chances of species and fisheries suffering unfair competition, as well as illegal, unreported, and 75 

unregulated fishing activities being pursued, thus bringing about commercial frauds regarding the 76 

falsification of the geographic origin and traceability problems which, in turn, have important 77 

economic and sustainability repercussions (Fox et al., 2018). Indeed, fraudulent mislabeling of 78 

cephalopods and cephalopod-based products, occurring at any level of the supply chain, was reported 79 

more than two and three times frequently compared to that of crustaceans and fish (Guardone et al., 80 

2017). Despite being economically motivated, mislabelling concerning the geographic origin of 81 

cephalopods may represent a safety risk for consumers due to the potential exposure to different 82 

contaminants and pollutants. Indeed, cephalopods originating from areas at risk of harmful algal 83 

bloom have been reported to accumulate several marine biotoxins, such as tetrodotoxin, saxitoxins, 84 
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palitoxins, and domoic acid, thus possibly acting as toxin vectors to humans (Lopes et al., 2013; 85 

Whitelaw et al., 2019; Karlson et al., 2021). Public health consequences may also arise from the 86 

consumption of cephalopods from specific polluted fishing areas due to the presence of very high 87 

concentrations of heavy metals and persistent organic pollutants (Gomes et. al., 2013; Rjeibi et al., 88 

2014; Roldán-Wong et al., 2018). Similarly, an actual food safety concern is related to the human 89 

exposure to microplastics through the consumption of seafood whose contamination can vary a lot 90 

among countries over the world (EFSA CONTAM Panel, 2016). Microplastics were in fact reported 91 

to be a vector  for chemical contaminants (heavy metals, organochlorine pesticides, drug residues, 92 

polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and polybrominated diphenyl ethers) 93 

(Brennecke et al., 2016; Camacho et al., 2019; De-la-Torre, 2020).  94 

The prevention of food fraud should be based on a management system approach relying on two main 95 

supports: a proper vulnerability assessment system and the design and implementation of mitigation 96 

measures (Fox et al. 2018). That one is the framework within which the development of appropriate 97 

analytical methods, testing compliance of foods with their label descriptions, is set as a fundamental 98 

part of the management of food fraud incidents (Stadler et al., 2016). Recent attempts in literature 99 

and practice have suggested a few analytical laboratory methods as appropriate means to identify 100 

different types of frauds affecting cephalopod products. The issue of species mislabeling was 101 

addressed by using DNA barcoding (Guardone et al., 2017; Tatulli et al., 2020), while the replacement 102 

of fresh with frozen/thawed products was successfully identified through proteomics (Guglielmetti et 103 

al. 2018) or histological evaluation of tissues (Tinacci et al., 2020). Likewise, illicit water addition 104 

was uncovered by measuring electric conductivity and dielectric properties of samples (Mendes et 105 

al., 2018), as well as through the development of ad hoc fast 3D scanning methods (Han et al., 2020). 106 

Facing with the task of identifying the geographical origin of cephalopods is more challenging 107 

because of many pre-catch (e.g., seasonality, sizes) and post-catch (e.g., storage conditions) factors 108 

overlapping with the issue of interest and the lack of target measurable parameters providing the 109 

certainty of geographical authenticity (Esslinger et al., 2014; Varrà et al., 2021a). Nevertheless, 110 
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considering the territorial nature, the small activity area, and the very small capability of 111 

metabolization (Oliveira et al. 2018; Arechavala-Lopez et al., 2019) cephalopod mollusks and, in 112 

particular, octopuses, appear to be good indicators of the seawater areas they inhabit. Based on this 113 

consideration, the use of comprehensive approaches relying on the combination of modern 114 

instrumental and advanced statistical methods, such as those based on near infrared (NIR) 115 

spectroscopy and machine learning, may represent a direct solution for the identification of the 116 

sources of origin of cephalopod stocks. 117 

With the advances in instrumentatal technology, the latest years are witnessing a shift from the 118 

laboratory usage of stationary benchtop NIR equipments to miniature and portable devices for quality, 119 

safety, and authenticity testing of food of animal origin, including fish and seafood (Grassi et al., 120 

2018; Cruz-Tirado et al., 2021; Dos Santos et al., 2020; Silva et al., 2020; Dos Santos Pereira et al., 121 

2021; González-Mohino et al., 2020; Müller-Maatsch et al., 2021a; Pennisi et al., 2021; Yakes et al., 122 

2021; Yu et al., 2020; Currò et al., 2022). Nevertheless, only one study proved the suitability of using 123 

portable NIR technology coupled with machine learning to monitor traceability of cuttlefish 124 

cephalopods (Currò et al., 2021). Portable instruments, besides being rugged, user-friendly, compact, 125 

ultra-light, and cheaper compared to traditional stationary instruments, allow direct analysis without 126 

sample processing and consumption, thus facilitating on-site or in-line analysis and globally 127 

minimizing times and costs associated with the analytical flow (Beć et al. 2021; McVey et al. 2021; 128 

Müller-Maatsch et al., 2021b). Moreover, methods based on the use of portable NIR devices meet the 129 

requirements and goals of ‘White Analytical Chemistry’, showing a sinergy between analytical, 130 

ecological, and practical attributes (Nowak et al., 2021). Indeed, the greenness of the approach 131 

(absence of waste generation and toxic solvents, low power consumption) is perfectly balanced both 132 

with analytical efficiency (accuracy, precision, sensitivity) and practical/economic efficiency (Nowak 133 

et al., 2021). Although these benefits and , the extensive research done, and the substantial progress 134 

in the development of more efficient computer algorithms, no reliable methods haves been yet 135 

deployed in routine monitoring or accepted as an official standard since there is still the need to 136 
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identify the proper machine learning algorithms able to speed up and simplify the analytical workflow 137 

and accurately ascertain the sought food authenticity features (Ríos-Reina et al., 2021). 138 

Based on the above considerations, the goal of the present study is to propose a rapid, cheap, and eco-139 

friendly analytical methodology to identify possible fraudulent mislabeling concerning the country 140 

of origin of different octopus species, which can be potentially useful for regulators, industry, and 141 

stakeholders, for the inspection and certification of cephalopods authenticity. To this end, a handheld, 142 

portable, and wireless NIR spectrometer was used to analyze two species of octopus originating from 143 

two different fishing areas (Spanish Mediterranean and Portuguese Atlantic), and the resulting 144 

spectral fingerprints were patterned by different traditional and modern machine learning tools in 145 

order to identify a fit-for-purpose methodology for their origin recognition. 146 

2. Materials and Methods 147 

2.1. Sample collection and handling   148 

Three different batches of musky octopuses (Eledone spp., Cephalopoda: Octopodidae) of medium 149 

size (200–300 g total body weight, bw) and fished by means of otter trawls were collected during the 150 

autumn season from each of the two sampling sites chosen, corresponding to the FAO fishing areas 151 

37.1.1 (i.e., Balearic waters of the Western Mediterranean Sea) and 27.9.a (i.e., Eastern Portuguese 152 

waters of the North-East Atlantic Ocean). Musky octopus from Mediterranean Sea and Atlantic 153 

Ocean accounted for 61 and 57 specimens, respectively. Similarly, three different batches of common 154 

octopuses (Octopus vulgaris, Cephalopoda: Octopodidae) of medium size (1300–1500 g bw) and 155 

caught by means of otter trawls in summer were retrieved from the FAO fishing area 37.1.1, 156 

accounting for a total of 29 specimens. Other 10 common octopus samples of the same size (1000–157 

1500 g bw) and fishing season were collected from the FAO fishing areas 27.9.a. The sampling plan 158 

is graphically summarized in Figure 1.  159 

All the samples were transported and delivered as fresh products and stored at freezing temperature 160 

(-21 ± 2°C) once arrived at the laboratory. Before analysis, the samples were defrosted in a 161 
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refrigerator (4 ± 2°C per at least 18 hours) and the temperature gradually brought to room-conditions 162 

(20 ± 2°C) for 60–90 min. The octopuses were then manually skinned and dissected. Since the mantle 163 

was the flesh portion selected for the experiments, it was separated from the arms and left whole for 164 

subsequent spectral analysis.  165 

2.2. MicroNIR setup and measurement  166 

The octopus mantles were analyzed by using the ultracompact, portable and wireless NIR device 167 

MicroNIR OnSite-W (Viavi Solutions, Santa Rosa, CA) equipped with the spectral acquisition 168 

software MicroNIR ProTM (v.3.1, Viavi Solutions, Santa Rosa, CA, USA).  169 

Diffuse reflectance NIR spectra were recorded in the 908.1–1676.2 nm region as 100 co-added scans 170 

and with an integration time of 10 ms. The spectral apparent resolution was 6.25 nm, hence each 171 

spectrum consisted of 125 reflectance points. NIR spectra were recorded by perpendicularly 172 

interfacing the acquisition window of NIR spectrometer with the surface of the sample. Spectral 173 

scanning was performed on four different points of the ventral and dorsal side of the mantle in order 174 

to collect heterogenicity of composition and thickness. The four replicate spectra were all individually 175 

used for statistical processing, thus resulting in two data matrices consisting of 472 spectra of musky 176 

octopus (118 samples × 4 spectral replicates) and 156 spectra of common octopus (39 specimens × 4 177 

spectral replicates). Before NIR analysis and every 15 minutes during the analysis execution, the 178 

MicroNIR device was calibrated by recording a total absorbance (dark) reference spectrum (by 179 

leaving the lamps on and the acquisition window of the spectrometer empty) and a total reflectance 180 

reference spectrum (by using the external white diffuse reflectance standard disc Spectralon® 99%, 181 

LabSphere, North Sutton, NH, USA) to correct the background signal for the proper response over 182 

operation time and any little temperature changes. 183 

2.3. Statistics and data modeling pipeline 184 

The spectral data were exported, transformed to apparent absorbance values, mean-centered, and 185 

preprocessed by using standard normal variate (SNV), multiplicative scatter correction (MSC), first 186 
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derivative (1st Der), and second derivative (2nd Der), alone or as combined spectral filters, to identify 187 

the best solution enhancing the signal-to-noise ratio and spectral resolution.  188 

To achieve significant and robust results, each classification model was trained on 75% and validated 189 

on 25% of the common or musky octopus spectral pre-processed dataset. The low number of samples 190 

in the common octopus dataset hindered the possibility of averaging the four spectral replicates 191 

recorded for each sample. Therefore, it was decided to retain the four individual spectral replicates of 192 

each sample and to perform the 75:25 splits by randomly allocating them together into either the 193 

internal calibration sets (i.e., training sets) or the external validation sets (i.e., validation sets). as 194 

follows: i) 354 spectral data into the training set of musky octopuses (118 samples × 3 spectral 195 

replicates, i.e. 75% of total spectral replicates); ii) 118 spectral data into the validation set of musky 196 

octopuses (118 samples × 1 spectral replicate, i.e. 25% of total spectral replicates); iii) 156 spectral 197 

data into the training set of common octopuses (39 samples × 3 spectral replicates, i.e. 75% of total 198 

spectral replicates); iv) 39 spectral data into the training set of common octopuses (39 samples × 1 199 

spectral replicate, i.e. 25% of total spectral replicates. Thereby, a balanced repartition of the two 200 

representative classes to be discriminated (i.e., the two geographical provenances of the samples), as 201 

well as the maximum independence among samples in the two sets were assured. In order to enhance 202 

statistical confidence with small sample sizes, training data were also 7-fold cross-validated (internal 203 

calibration phase), thus the models were trained on 6/7th and internally evaluated on 1/7th of the data. 204 

Considering that for small-sized datasets the whole performances of the machine learning models are 205 

influenced by the exact repartition of samples into the training and the test validation sets, the 75:25 206 

splits were repeated 4 times for all the models. Hence, four different training and testing validation  207 

sets were generated for each octopus species. The final statistical outcomes resulting from training 208 

and validation stages were reported as means and standard deviations (Michelucci & Venturini, 209 

2021).  210 

After data repartition, the spectra of the training sets were used to create two principal component 211 

analysis (PCA) models (one for each of the octopus species considered). PCA was used for the sake 212 



10 
 

of screening data structure, to reveal any potential hidden correlations among samples and variables, 213 

and to detect potential outliers, otherwise detrimental for the accuracy and stability of the subsequent 214 

machine learning classification models. Nevertheless, since used as a preliminary investigation tool, 215 

PCA was computed only once, i.e., by using data included in only one of the four training sets created.  216 

The following supervised classification tools were then tested: orthogonal partial least square 217 

discriminant analysis (OPLS-DA), logistic regression (LR), random forest (RF), support vector 218 

machine (SVM), and multilayer perceptron artificial neural network (MLP-ANN). Calculations of 219 

PCA and OPLS-DA were performed by using the statistical software packages SIMCA (v. 16.0.2, 220 

Sartorius Stedim Data Analytics AB, Umea, Sweden), while calculations of LR, RF, SVM, and MLP-221 

ANN were done by using IBM SPSS Modeler software (v. 18.2, SPSS Inc., Chicago, IL, USA).  222 

2.3.1 Training parameters of the machine learning models 223 

In this work, the number of predictive and orthogonal new latent variables of the calibration OPLS-224 

DA models was estimated by cross-validation. The fitting and prediction abilities of the models were 225 

evaluated by analyzing the following parameters: R2X (cumulative variability of the spectral data 226 

modelled by all the extracted latent variables), R2Y (cumulative variation associated to class labels 227 

explained by all the extracted latent variables) , Q2X (cumulative variability associated to class labels 228 

predicted by all the extracted latent variables), RMSECV (root-mean-squared error of cross 229 

validation) and RMSEP (root-mean-squared error of prediction).  230 

The overall significance of the logistic regression equation to classify octopus samples was indeed 231 

estimated by the likelihood ratio Chi-square test (using -2 times the log of the likelihood as reference 232 

value) and taking into consideration the Cox-Snell pseudo-R2 regression value.  233 

As for RF models, their structures were created using the Gini Impurity Index as a tree branching and 234 

variable selection criterion. According to the default settings suggested by the software, the number 235 

of trees to be generated was beforehand set to a maximum of 100. To avoid over splitting, the 236 

maximum depth of the tree structure was set to 10 levels while the minimum number of samples to 237 
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be included into each child node was set to 5. Finally, the number of split variables for each tree node 238 

was set at 11 (square root of the total number of variables).  239 

For the training of the SVM models, the Radial Basis Function (RBF) was used as kernel function. 240 

The balance between the model complexity and training error was established by setting the 241 

regularization parameter C (box-constraint or penalty factor) to 90, the additional kernel function γ 242 

parameter to 0.1, and the regression precision parameter ε to 0.1, by following the default settings 243 

suggested by the software.  244 

Finally, the architecture of the MLP-ANN was built automatically and included an input layer 245 

(containing the NIR spectral data), one single hidden layer with one hidden neuron (transforming the 246 

weighted sum of the inputs by a hyperbolic tangent activation function to generate the outputs), and 247 

an output layer (using SoftMax activation function to estimate the probability of samples belonging 248 

to each classification group). 249 

The relative contribution of each NIR wavelength to the predictive models was measured through 250 

different functions, based on the machine learning algorithm employed: while model-dependent 251 

methods consisting on the evaluation of the of Variable influence on projection (VIP) index, t-test 252 

statistics, and mean squared error were applied for OPLS-DA, LR, and RF, respectively, model-253 

independent method based on the calculation of the area under the receiver operating characteristic 254 

(ROC) curve values (AUROC) were applied both for SVM and MPL-ANN. 255 

2.3.2. Evaluation and comparison of the classification models performances 256 

The estimation of the goodness of each classification model was performed on multiple fronts. 257 

Considering that each classification model is characterized by its own statistic outputs, standardized 258 

metrics providing a direct comparison of the performances of the models were chosen.  259 

Firstly, the mean accuracy, specificity, sensitivity, and precision parameters (Fawcett, 2006) were 260 

calculated from the confusion matrices reporting percentages of common and musky octopus samples 261 

of the training sets correctly classified in the proper class during the cross-validation process. 262 

Prediction capabilities of the models were then graphically inspected through the area under the 263 
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receiver operating characteristic (ROC) curve values (AUROC)AUROC values for each of the two 264 

classes (Mediterranean, Atlantic) of the validation sets, which is an optimal compromise to 265 

summarize sensitivity and specificity. ROC curves for validation data were created by plotting the 266 

true positive rate (TPR or sensitivity) versus the false positive rate (FPR or 1-specificity) at all 267 

predicted probability cut-off values (Fawcett, 2006).  268 

3. Results and Discussion 269 

3.1. NIR spectral characteristics and correction  270 

Pre-processing of NIR spectra is quite a mandatory step in common practice to minimize the 271 

systematic variation in the spectra deriving from light scattering. Non-linearity and multiplicative 272 

effects deriving from this variation appear in the form of baseline shifts and drifts which are not 273 

directly related to the chemical properties, but rather to the structural features and physical status of 274 

the sample (Rinnan et al., 2009).  275 

As it can be observed form Figure 2, light scattering effects were found in the raw absorbance spectra 276 

of both musky and common octopus samples recorded by MicroNIR. Therefore,  , different pre-277 

processing techniques were applied to the raw spectra by finding a compromise among drifts/shifts 278 

minimization, an acceptable peak separation degree, and the addition of unwanted noise. As a result, 279 

MSC and 2nd Der were discarded, while transformation by SNV followed by 1st Der (Norris-Williams, 280 

quadratic polynomial order, 15 points gap) was selected the best suited combination of spectral filters 281 

since allowed to re-align NIR spectra and partially suppress broad bands, without over processing 282 

and potential information loss (Figure 2). Despite intrinsic differences related to species, the average 283 

SNV plus 1st Der spectra of musky and common octopuses from the two geographical provenances 284 

were not characterized by rough visual differences in the absorbance pattern. The predominant bands 285 

were found in the 950–1000 nm, 1100–1200 nm, and in the 1300–1450 nm NIR regions (Figure 2). 286 

Nevertheless, considering that the original maximum peaks in the raw spectra correspond to the zero-287 

crossing segment of the 1st Der spectra, the predominant individual features observables within the 288 
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above mentioned NIR regions for common octopus dataset were at 1194 and 1440 nm, where –CH2 289 

and –CH3 bonds of aliphatic hydrocarbons were reported to absorb (Workman & Weyer, 2012). In 290 

the case of musky octopus spectral dataset, the first feature moved to a lower wavelength (1186 nm), 291 

while the second one was located at the same wavelength (1440 nm) (Figure 2). Due to difficulties in 292 

sampling procedures and in the interpretation of the NIR spectra, only a few research works have 293 

focused on the correlation between NIR absorbance spectra and the geographical origin of fish and 294 

seafood. Mostly, NIR wavelengths related to lipid absorption and, sometimes, proteins, were already 295 

identified as useful for the classification of fish by origin (Ghidini et al., 2019; Currò et al., 2021; 296 

Varrà et al., 2021b). Nevertheless, the assumption behind the possibility of fingerprinting the origin 297 

of cephalopods by using lipid and protein spectral features rely on the well-known link existing 298 

between the characteristics of the specific marine environment (water saline composition and average 299 

temperature, sediments, currents, seasonal temperature changes, population, and availability of fish 300 

preys) and the parallel variation of the chemical constituents of the fish tissues (Saito et al., 1997 In 301 

this context, octopus species, since particularly sensitive to any variation of the aquatic ecosystem, 302 

can provide useful information about the seawaters of origin, including the environment pollution 303 

status (Sillero-Ríos et al., 2018), Indeed, especially  due to previous studies demonstrated that both 304 

variations of the fatty acid and elemental profiles vary a lot among O. vulgaris populations sampled 305 

in different areas and, therefore, they can be successfully used as markers of geographical origin 306 

(Arechavala-Lopez et al., 2019; Semedo et al., 2012). On the other hand, also pollutants or toxic 307 

elements on the fishing area may be similarly reflected into octopus tissues, leading to questioning 308 

food safety. This is one of the reasons why the authentication of seafood according to the geographic 309 

origin represent an important prerequisite of food safety (Freitas et al., 2020).  310 

The possible differences in composition pointed out in the NIR spectra might explain the results 311 

achieved upon applying PCA. Specifically, the PCA models for musky and common octopuses were 312 

characterized by 8 and 7 principal components (PCs), covering 99.3 and 99% of the total variance, 313 

respectively. From the score scatter plots of the first three PCs (Figure 3), it can be sated that none of 314 
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the octopus samples was suspected of being an outlier, since not crossing the 95% confidence limits 315 

for Hotelling’s T2 defined by plot ellipse. At the same time, the PC1 collected the inter-origin 316 

variability only among common octopuses, but not among musky octopuses, which did not separate 317 

efficiently each other.  318 

Nevertheless, all the above aspects suggested a promising route for the application of supervised 319 

classification methods which could efficiently address the challenge of identifying the origin of 320 

octopuses by using NIR spectroscopy.  321 

3.2. Analysis and comparison of machine learning models performances 322 

In the field of food quality, safety and authenticity, there is a definite trend towards the automation 323 

and the use of smart fingerprint technologies, able to collect a huge amount of data to characterize 324 

foods and food systems in a comprehensive way, such as those based on miniaturized and portable 325 

spectroscopic sensors (Mcvey et al., 2021). This trend has been accompanied by a substantial progress 326 

in the development of more efficient computer algorithms and solutions, aimed to speed up and 327 

simplify the analytical workflow without sacrificing the reliability of the results. At the same time, 328 

coupling fingerprinting techniques with advanced computer-assisted data analysis offers the 329 

advantages of extending the domain of food applications thanks to the possibility of monitoring 330 

quality, safety, authenticity though one single analysis and, thus, preventing food fraud and food-331 

borne illness.  332 

In this work, five different powerful machine learning tools were tested against NIR spectroscopic 333 

data of musky and common octopus specimens of Mediterranean or Atlantic fishing origin included 334 

into the training sets, with the aim to develop a new tool for the prevention of potential frauds related 335 

to the falsification of the origin. The information embedded into the SNV + 1st Der pre-processed 336 

spectra was thus modelled by selecting OPLS-DA, LR, SVM, RF, and ANNs as supervised 337 

classification tools, which were initially tested on the training data by applying a cross-validation 338 

process (see Section 2.3).  339 
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The cross-validation results of the five tested machine learning tools are illustrated in Figure 4, while 340 

a summary of the modelling statistics is reported in Supplementary Materials (Tables S1, S2, S3, 341 

Figure S1). Each model was trained by considering all the spectral variables included into the dataset, 342 

corresponding to 125 NIR absorbance values (908.1–1676.2 nm spectra). The only exception was 343 

represented by RF models which automatically perform a feature selection to avoid overfitting. These 344 

models were built by using a total of 53 and 60 input variables for musky and common octopus 345 

classifications, respectively.  346 

Contrary to what achieved when applying PCA (see Section 3.1) slightly better results were obtained 347 

when modelling musky octopuses compared to common octopuses, thus potentially confirming that 348 

the higher number of the analyzed samples still included in their NIR spectra a fraction of discriminant 349 

information related to the origin which was captured and described by the more powerful supervised 350 

algorithms. The performance metrics in cross validation were all above 96% except for RF models, 351 

which were characterized by the highest error rates (with approx. 6 and 16% of musky and common 352 

octopus wrongly recognized). The conventional linear algorithms were the most performant ones. 353 

Specifically, LR was found to be the best solution to recognize the origin labelling of common 354 

octopuses (average values of accuracy, specificity, sensitivity, and precision over 4 repetitions of 355 

99.79 ± 0.43, 99.86 ± 0.29, 99.86 ± 0.29, and 99.60 ± 0.81%, respectively), while OPLS-DA showed 356 

the highest accuracy, specificity, sensitivity, and precision metrics for musky octopuses (average 357 

values over 4 repetitions of 99.58 ± 0.67, 99.59 ± 0.66, 99.59 ± 0.66, and 99.57 ± 0.68%, respectively) 358 

(Figure 4). In particular, the highest sensitivity (related to the true positive rates) and specificity 359 

(indicating the true negative rate) values shown by OPLS-DA and LR have both important positive 360 

consequences on the overall goodness of the discriminant methodology. In fact, sensitivity values 361 

indicate the degree of confidence in identifying the real authentic samples, thus having a direct impact 362 

on the economic side. On the other hand, specificity values indicate the degree of confidence in 363 

identifying the real non-authentic samples, with significant repercussions on the legal front.  364 
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As for computational performances of both MLP-ANN and SVM, also these tools showed very good 365 

predictions in cross-validation. SVM is one of the most frequently used machine leaning technique 366 

in food chemistry and authentication studies and, compared to linear classification methods, offers 367 

the advantages of adaptability towards the non-linear distribution of the data typical of NIR 368 

spectroscopy (Jiménez-Carvelo et al., 2019). The superiority of SVM methods over traditional linear 369 

classifiers combined with NIR spectral data in verifying different food authenticity claims has been 370 

demonstrated in several works (Cardoso & Poppi, 2021; Benes et al., 2020; Parastar et al., 2020; 371 

Sampaio et al., 2020; Bisutti et al., 2019). The suitability of using SVM to authenticate cephalopods 372 

(Sepia officinalis) has been also confirmed in a recent work, where its application yielded 83–100% 373 

balanced accuracy, 67–100% sensitivity, and 88–100% specificity for the classification of the 374 

samples according to 5 different geographical origins (Currò et al., 2021). It should be noted, 375 

however, that in the present work SVM, as well as RF, were characterized by very large standard 376 

deviations associated with all the metrics (Figure 4). This result might alert on the dependency of 377 

these techniques on the specific repartition of samples into training and validation sets, thus 378 

suggesting a potential instability and lack of robustness towards future prediction of unknown 379 

samples.  380 

In conclusion, it can be stated that the data support the hypothesis that the simplest and the most 381 

interpretable classifiers (i.e., OPLS-DA and LR) also guarantee the best results in cross validation. 382 

The reason underlying this finding could be due to the existence of a direct linear rather than indirect 383 

correlation between NIR spectral patterns and the geographical origin of octopuses achieved by 384 

applying optimal spectral pre-processing operations. Therefore, although the complex nature of the 385 

samples, this correlation can be easily extrapolated by traditional linear techniques (Zareef et al., 386 

2020). Evidence for this theory is however limited to the results obtained throughout the present 387 

research and it can be easily supposed that, with increasing sample size and non-linear variability (in 388 

terms of different fishing seasons, batches, sizes, storage times and temperatures), the more complex 389 

and flexible algorithms such as SVM, RF, and MLP-ANN might be the most performing ones. 390 
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Additionally, it is worth to say that the training of SVM and RF usually involves the identification of 391 

the best numerical values to be assigned to building parameters, so as to increase accuracy and 392 

performance of the final models. This operation is a very complex task requiring time, expertise, and 393 

efforts and, therefore, it does not sit well with the purpose of having a speedy, cost-effective, easy 394 

and fully exploitable procedure. In this work, the values for these building parameters (maximum 395 

number and depth of trees, minimum size and number of variables included into each child nodes for 396 

RF, as well as the C, γ, and ε parameters for SVM) were chosen by following the default settings 397 

recommended by the software and no complex operations such as manual search, use of genetic 398 

algorithms or grid search were performed (Phan et al., 2017).  399 

3.2.1 Comparison of predictive NIR wavelengths 400 

Given the different mathematical nature of the models being presented, also the relative strength of 401 

each NIR wavelength in guiding the classification of octopus samples based on the geographic 402 

provenance is expected be different. .For each predictive model computed, a different ranking of NIR 403 

wavelengths in terms of their importance (i.e., their relative contribution to the predictive models) 404 

was obtained since dependent on the mathematical function employed (see Section 2.3.1).  405 

Information about the first ten most influential NIR bands extracted as strong predictors of origin by 406 

individual cross-validated models obtained by training sets is provided in Table 1. Considering that 407 

the training phase was performed four consecutive times by changing sample datasets (Section 2.3), 408 

the kind and order of importance of the wavelengths were sometimes found to be different based on 409 

the dataset considered for modelling. For the sake of conciseness, those extracted by the most accurate 410 

of the four fitted models were reported.  411 

NIR wavelength absorbance at 1453.2 nm was the most common important variable for musky 412 

octopuses, since it was extracted by four out five machine learning algorithms (OPLS-DA, RF, SVM, 413 

and MLP-ANN). Similarly, NIR band at 1632.8 had a strong influence on musky octopus samples 414 

discrimination for OPLS-DA, LR, and SVM. On the contrary, RF stood out the most from the other 415 

models because six out ten wavelengths (1081.5, 1075.3, 1465.6, 1137.3, 1341.7, 1093.9 nm) were 416 
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exclusive predictors. As for common octopuses, absorbance peaks at 970 and 976.2 nm were shared 417 

as important predictors respectively by OPLS-DA, LR, RF, and SVM and by OPLS-DA, RF, SVM, 418 

and MLP-ANN, while that located at 963.8 by OPLS-DA, SVM, MLP-ANN (Table 1). 419 

From the above results, it seems that NIR bands around the 1137.3 and 1341.7 nm, which are 420 

potentially related to aliphatic and aromatic hydrocarbons (Workman & Weyer, 2012), were strongly 421 

involved in differentiating Atlantic from Mediterranean musky octopuses, thus corroborating what 422 

emerged from the visual inspection of the pre-processed spectra discussed in Section 3.1. However, 423 

whereas OH-group absorption bands (1453 nm, 1075.3–1093.9 nm, and 963.8–976.2 nm) were 424 

clearly influent, the additional contribution of water to musky and octopus discrimination by origin 425 

should not be overlooked (Workman & Weyer, 2012). Considering that sample processing before 426 

NIR recording was standardized and freezing/defrosting as well as acquisition procedures performed 427 

at the same time/temperature conditions, it could be inferred that the water content varied across 428 

specimens to such an extent that inter-origin difference was higher than inter-individual one in both 429 

octopus species. Nevertheless, another hypothesis can be derived from the principles of 430 

aquaphotomics, according to which, since one single biological compound is solvated by many water 431 

molecules, the NIR response to individual biological compounds was amplified by water absorption 432 

which, indirectly, contributed to the achievement of high accuracy in prediction (Muncan & 433 

Tsenkova, 2019).  434 

3.3. Independent evaluation of the predictivity of machine learning models 435 

The ability of the fitted trained models to generalize beyond the training data and confidently assign 436 

the correct labels of geographical origin to future candidate octopus samples was estimated by using 437 

the samples 25% of data (i.e., one out four spectral replicates for each sample) belonging the 438 

validation sets) and previously excluded from the calibration phase (see Section 2.3). The resulting 439 

label assignments for 118 musky and 39 spectral data of musky and common, respectively, included 440 

into of the validation sets are reported in the confusion matrices plotted in Figure 5. In agreement to 441 

what observed for PCA, but in contrast to results of cross-validation, the absolute best outcomes in 442 
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external validation were achieved when recognizing the origin of common octopuses: three out five 443 

models (OPLS-DA, SVM, and MLP-ANN) predicted both the Mediterranean and Atlantic origin of 444 

common octopus validation these samples with 100% accuracy (Figure 5). More in detail, OPLS-DA, 445 

SVM, and MLP-ANN classifiers were all characterized by mean AUROC values of 1, with OPLS-446 

DA and MLP-ANN also showing the lowest associated standard deviation values for the prediction 447 

of Mediterranean and Atlantic common octopus samples, respectively. On the contrary, despite the 448 

optimistic results in cross-validation, the analysis of the LR confusion matrix reported in Figure 5 449 

revealed the poorest performances, since one Atlantic (10%) and nine Mediterranean common 450 

octopus validation samples (31%) were misclassified. The associated AUROC values were in fact 451 

0.638 ± 0.002 and 0.631 ± 0.019 and, thus, quite close to the randomly guess rate of class membership 452 

recognition of 0.5. In this instance, it is important to reiterate that the better best classification of 453 

common octopuses compared to musky octopuses is likely to be the consequence of the smaller-sized 454 

group which determined the inclusion into the models of a smaller amount of variation available for 455 

self-learning which, in turn, hindered finding the best predictive correlation between NIR 456 

wavelengths and octopus origins. Hence, definite conclusions on this aspect could not be drawn, but 457 

it can be assumed that, although the noisy and collinear nature of the NIR spectra, none of the trained 458 

models underwent overfitting, as can be seen from the similarity between training and validation 459 

results.  460 

As for musky octopuses, no models were able to recognize the provenance with 100% accuracy 461 

(Figure 5). The maximum correct classification rates in validation were shown by SVM and LR 462 

predicting the Mediterranean samples (98 and 97%, respectively) and by LR and MLP-ANN 463 

predicting the Atlantic ones (100%). Although SVM and MLP-ANN classifiers had high mean 464 

AUROC values, the lowest associated standard deviations were found for LR classifiers (AUROC= 465 

0.989 ± 0.009 for Mediterranean samples; AUROC= 0.992 ± 0.009 for Atlantic samples). Shifting 466 

the focus from machine learning classifiers to single classes (i.e., geographical origins), it can be also 467 

noticed that, whatever the octopus species considered, samples from Atlantic Ocean were better 468 
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recognized than samples from Mediterranean sea. From this finding it could be inferred that the small 469 

extension of the water surface and the close proximity to the coast of the Eastern Portuguese waters 470 

of the North-East Atlantic Ocean (FAO fishing area 27.9.a) are reflected in a more uniform 471 

environment which, in turn, might be responsible for the composition of octopus originating from 472 

this area to be more stable and preserved compared to that of octopuses from Western Mediterranean 473 

waters (FAO fishing areas 37.1.1). In fact, if on the one hand Western Mediterranean Sea is a semi-474 

enclosed area characterized by stable temperature and salinity, the North-East Atlantic Ocean is 475 

characterized by a continuous input of organic matter from the Portuguese coast. This contributes to 476 

the permanent availability of prey and constant accessibility to food, which is the main factor 477 

influencing the fatty acid composition of octopuses (Massutí et al., 2004). Indeed, in the present work, 478 

the same lipid composition was hypothesized to be determinant in differentiating samples according 479 

to their country of origin (Section 3.1). As an example, concentrations of monounsaturated and n-6 480 

polyunsaturated fatty acids were found to be constantly lower in Eastern Atlantic populations of O. 481 

vulgaris than Western Mediterranean ones, while concentrations of total fatty acids and n-3-6 482 

polyunsaturated fatty acids higher in Atlantic populations (Arechavala-Lopez et al., 2019; Torrinha 483 

et al., 2014).  484 

4. Conclusions 485 

The results achieved from this study indicate that portable NIR sensors a potential integrated 486 

analytical platform combining portable and miniature NIR spectroscopy and machine learning might 487 

be a suitable solution to can identify with great accuracy the geographical origin of two widely 488 

consumed octopus species widely consumed in Europe,coming from Mediterranean or Atlantic 489 

fishing areas, thus helping fraud prevention and having a direct impact on the quality and safety of 490 

the products. Regardless of the classification method employed, equally good results were achieved 491 

when fitting the models. Nevertheless, musky octopuses (Eledone spp.) were better modelled 492 

compared to common octopuses (O. vulgaris) when using traditional linear algorithms, (OPLS-DA 493 

and LR), thus suggesting the presence of a direct linear relationship between NIR spectra and the 494 
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provenances of octopuses which can be easily extracted with increasing sample sizes. Following the 495 

validation of the fitted models, OPLS-DA, SVM, and MLP-ANN allowed to achieve the maximum 496 

label recognition rates of common octopuses, while LR and MLP-ANN performed better for musky 497 

octopuses. Additionally, rRegardless of the octopus species considered, the origin label estimates 498 

were better for the Atlantic sample population compared to the Mediterranean one, probably because 499 

of the specific characteristics of the fishing waters, which contributed to make Atlantic population 500 

more homogenous from a compositional point of view.  501 

In conclusion, the obtained data might be transferred to the fish chain environment and, provided 502 

their constant validation, find concrete application for the protection of the reputation of national and 503 

regional traditional fisheries. This application may materialize in the direct interface of a portable 504 

NIR system to the production flow and its customization based on the products to be handled and the 505 

specific industrial facility processes, so as to online monitor quality, authenticity, and safety of 506 

cephalopods and contribute to the development of quality certification schemes. 507 

Given the promising outcomes, future research will be focused on the creation of multi-class 508 

classification models for the detection of commercial fraud, including additional fishing areas and, 509 

possibly, also different species of octopus. In this context, the most important impact under a future 510 

perspective would be the setting up of a tool to promote and protect the reputation of national and 511 

regional traditional fisheries and which would also help in the development of quality certification 512 

schemes.  513 

If this is shown to be possible and satisfying results are achieved, then the next step might be the 514 

exploitation of the methodology for complementary applications addressing food safety and 515 

surveillance, such as the detection of contaminants, residues, and food additives. This way, a single 516 

integrated methodology might be used to characterize in a comprehensive way the fishery products 517 

found in the marketplace and ensure high quality and safety standards.  518 
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Table 1 538 

Comparison among the ten most important predictive NIR wavelengths used by each machine 539 

learning tool to categorize the octopus samples of the training sets by their origin.  540 

Models Important predictors (wavelengths, nm)* 

 Musky octopus  Common octopus 

OPLS-DA 

1453.2; 1459.4; 1447; 1632.8; 1440.8; 

1564.7; 1558.5; 1626.6; 1570.9; 1434.6 

 982.4; 976.2; 988.6; 970; 963.8; 957.7; 951.5; 

994.8; 1193; 1199.2 

LR 

1552.3; 1614.3; 1577.1; 1632.8; 1564.7; 

1589.5; 1316.9; 1397.5; 1409.8; 1583.3 

 957.7; 951.5; 970; 1304.5; 1298.3; 982.4; 

1316.9; 1248.8; 1236.4; 1224 

RF 

1453.2; 1081.5; 1459.4; 1323.1; 1075.3; 

1465.6; 1137.3; 1341.7; 1447; 1093.9 

 970; 1180.7; 1304.5; 976.2; 1174.5; 1298.3; 

1205.4; 1434.6; 1440.8; 1193.0 

SVM 

1632.8; 1626.6; 1620.5; 1614.3; 1608.1; 

1453.2; 1601.9; 1595.7; 1589.5; 1583.3 

 1583.3; 1248.8; 963.8; 1316.9; 994.8; 970; 

976.2; 1007.2; 982.4; 1180.7 

MLP-ANN 

1453.2; 982.4; 1100.1; 1069.2; 1620.5; 

1106.3; 1205.4; 1007.2; 1001; 1186.8 

 1025.8; 1459.4; 976.2; 1019.6; 988.6; 963.8; 

1242.6; 1211.6; 1236.4; 1069.2;  

* For all the models, wavelengths are sorted in descending order of predictive importance. The reported wavelengths 541 

refer to the most accurate among the four trained models.   542 

  543 
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Figure captions  767 

Figure 1. Sampling area extensions of musky and common octopuses.   768 

Figure 2. Effect of the application of different pre-processing filters (Standard Normal Variate, SNV; 769 

first derivative, 1st Der) on the quality and usefulness of the 908.1–1676.2 nm spectra recorded by 770 

MicroNIR (Atlantic samples: red lines; Mediterranean samples: red lines). The main spectral features 771 

in SNV + 1st Der spectral patterns are highlighted by dotted marker boxes.  772 

Figure 3. 3-D score scatter plot from PCA applied to musky and common octopuses.  773 

Figure 4 Main figures of merit (mean ± standard deviation) of the five different machine learning 774 

tools (OPLS-DA, LR, RF, SVM, and RF) obtained by cross-validation of the training samples for the 775 

characterization of the geographic origin of musky and common octopuses.  776 

Figure 5.  Confusion matrices (mean classification rates) and corresponding areas under the curve 777 

(AUC) values of receiver operating characteristic (AUROC) AUROC values (mean ± standard 778 

deviation) resulting from the origin prediction of 118 musky and 39 common octopus test spectral 779 

samples (included into the external validation sets) by the five different classifiers (OPLS-DA, LR, 780 

RF, SVM and MLP-ANN). Correct classification rates in confusions matrices are included into green 781 

boxes (Med: Mediterranean samples, Atl: Atlantic samples). 782 


