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Abstract
Generalized autoregressive conditionally heteroskedastic (GARCH) processes are widely used formodelling financial returns,
with their extremal properties being of interest for market risk management. For GARCH(p, q) processes with max(p, q) = 1
all extremal features have been fully characterised, but when max(p, q) ≥ 2 much remains to be found. Previous research has
identified that both marginal and dependence extremal features of strictly stationary GARCH(p, q) processes are determined
by a multivariate regular variation property and tail processes. Currently there are no reliable methods for evaluating these
characterisations, or even assessing the stationarity, for the classes of GARCH(p, q) processes that are used in practice, i.e.,
with unbounded and asymmetric innovations. By developing a mixture of new limit theory and particle filtering algorithms
for fixed point distributions we produce novel and robust evaluation methods for all extremal features for all GARCH(p, q)
processes, including ARCH and IGARCH processes. We investigate our methods’ performance when evaluating the marginal
tail index, the extremogram and the extremal index, the latter two being measures of temporal dependence.

Keywords Cluster of extremes · Extremal index · Fixed point distributions ·GARCH process ·Multivariate regular variation ·
Particle filtering · Stochastic recurrence equations
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1 Introduction

Risk management in the stock markets, commonly called
market risk management, requires the use of statistical tools
and models which aim at reducing the potential size of
losses, occurring by sudden drops or growth in the value
of stock. Losses can be amplified during periods of large
volatility. Risk managers routinely use strategies to handle,
model and predict the volatility of daily log-returns, defined
as Xt = log Pt − log Pt−1, where Pt , t = 1, 2, . . . , is the
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price of a generic asset. The behaviour of the extreme val-
ues of daily log-returns is critically important for market
risk management. Marginally these processes have power-
law heavy tail decay and determining the associated (power)
tail index is therefore important to quantify this. Addition-
ally, isolated extreme values of daily log-return can often be
managed, but there is major risk when there is a clustering
of these extreme values, and so the study of this dependence
structure during extreme events is essential.

It is standard to assume that the series {Xt } is a station-
ary series. The most widely adopted models for {Xt } are
the generalised autoregressive conditionally heteroskedastic
(GARCH)models (Bollerslev 1986) and stochastic volatility
models (Taylor 1986). These models are capable of captur-
ing many of the empirical features of daily log-returns. Both
processes have heavy tailed marginal distributions but they
differ in terms of their extremal dependence structure. One
of the most common ways to measure this is through the lag
τ tail dependence

χX (τ ) = lim
x→∞Pr(Xt+τ > x | Xt > x),
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proposed by Ledford and Tawn (2003), with Davis and
Mikosch (2009b) terming {χX (τ )}τ≥0 the extremogram. For
stochastic volatility models Breidt and Davis (1998) show
that there is no clustering of extreme values, so that χX (τ ) =
0 for all τ > 0. Thus extreme values from this stochastic
volatility process occur in temporal isolation, although there
are examples of other such processes for which this is not
the case (Mikosch and Rezapour 2013). In contrast, for any
GARCH(p, q) process χX (τ ) > 0 for at least one value of
τ > 0. The values of the extremogram, and other extremal
dependence features, are only known for a very restricted
subclass of GARCH(p, q) processes.

The aim of our paper is to derive all the extremal features
for all GARCH(p, q) models used in a wide range of finan-
cial applications and to present computationally efficient
algorithms for their evaluation. We consider GARCH(p, q)
models, for p ∈ N and q ∈ N+, of the form

Xt = σt Zt , where σ 2
t = α0 +

q∑

i=1

αi X
2
t−i +

p∑

j=1

β jσ
2
t− j ,

(1)

for t ∈ Z, where the parameters are α0 > 0, αi ≥ 0, i =
1, . . . , q − 1, αq > 0 and β j ≥ 0, j = 1, . . . , p − 1,
βp > 0 for p ≥ 1, and {Zt } are independent and identi-
cally distributed (i.i.d.) random variables with E(Zt ) = 0
and Var(Zt ) = 1 for all t ∈ Z. The processes {σt } and
{Zt } are commonly referred to as the conditional volatil-
ity and innovations of {Xt }. We additionally assume that
{Zt } are continuous randomvariables,which avoids technical
issues that occur when Pr(Zt = 0) > 0 (Buraczewski et al.
2016). For the process to be strictly stationary the parame-
ters need to satisfy the constraints in Sect. 2.2. Properties of
GARCH(p, q) processes are often determined by

φ :=
q∑

i=1

αi +
p∑

j=1

β j . (2)

Two important special cases of GARCH(p, q) processes
arise when p = 0 or φ = 1, corresponding to ARCH(q) and
IGARCH(p, q) processes respectively. The IGARCH(p, q)
process is strictly stationary but not weakly stationary, due
to violating the condition E(X2

t ) < ∞ for all t . We develop
new numerically robust and efficient methods for assessing
whether anyGARCH(p, q) process is strictly stationary. Our
results cover all of the GARCH(p, q) processes including
these special cases.

Existing theoretical and computational methods for deriv-
ing the extremal properties are well established for special
cases of the GARCH(p, q) process, namely: for symmet-
ric Zt with p = 0, q = 1, corresponding to the ARCH(1)
process (de Haan et al. 1989) and for p = q = 1, corre-

sponding to a GARCH(1,1) (Laurini and Tawn 2012); and
for asymmetric Zt with p = q = 1 (Ehlert et al. 2015).
For a class of processes which contain both the ARCH(1)
and GARCH(1,1) processes, but not any GARCH(p, q) pro-
cess with max(p, q) ≥ 2, Collamore et al. (2014) provide
an algorithm to derive Pr(Xt > v) for any v. For general
GARCH(p, q) models, with arbitrary (p, q) many theoreti-
cal extremal properties have been derived by Basrak et al.
(2002), Davis and Mikosch (2009a), Basrak and Segers
(2009) and Collamore and Mentemeier (2018), including
marginal distributions and some results for the extremal clus-
tering properties. At first sight it seems that these results
give everything that is needed for their numerical evalua-
tion. But, as we will show, this is far from the case. In fact,
until now none of these features can be evaluated for general
GARCH(p, q) processes or for the processes considered by
Collamore and Mentemeier (2018).

Consider the marginal tail behaviour of |Xt | and X2
t for

GARCH(p, q) processes Xt . Basrak et al. (2002) give a limit
expression, as u → ∞, that there exists κ > 0 such that for
fixed x > 1

Pr(|Xt | > ux | |Xt | > u) → x−2κ , and

Pr(X2
t > ux | X2

t > u) → x−κ .

These papers only give an asymptotic limiting expression for
κ , but do not evaluate it.Wefind that direct computation using
their expression gives very poor numerical performance.
Janssen (2010) presents an alternative approach to evalu-
ate κ , however that approach requires Zt to have bounded
support, ruling out distributions used by practitioners, e.g.,
Zt being Gaussian or t-distributed. Furthermore, the asso-
ciated numerical methods are very slow and unreliable.
Collamore and Mentemeier (2018) characterise the limit
limu→∞ uκ Pr(X2

t > u) = C > 0, with κ formulated as
in Basrak et al. (2002). So, without techniques to obtain κ

their methods cannot evaluate C or any of the other proper-
ties they characterise. We propose the first computationally
efficient numerical algorithm for the evaluation of κ , which is
valid irrespective of whether Zt are unbounded or bounded.
We also provide strong empirical evidence for how φ influ-
ences κ , including κ = 1 for all IGARCH(p, q) and how our
evaluation of κ can be used for assessing stationarity.

Now consider the extremal dependence and the cluster-
ing features of GARCH(p, q) processes. Basrak and Segers
(2009) propose algorithms for their evaluation with bounded
innovations. However, Basrak and Segers (2011) identify
these methods have major limitations and that they do
not hold for any GARCH(p, q) process. So currently no
extremal clustering features for GARCH(p, q) processes,
when max(p, q) ≥ 2, can be evaluated. We propose an
entirely new algorithm to evaluate a range of cluster fea-
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tures regardless of p and q and for Zt having any continuous
distribution.

There are a range of features ofGARCHprocesses that are
of interest in managing financial stress periods.We focus pri-
marily on {χX (τ ); τ ≥ 0}, discussed above, and the extremal
index for the process Xt denoted 0 < θX ≤ 1, where 1/θX
is the limiting mean number of extreme values per indepen-
dent extreme event (Hsing et al. 1988).We also evaluate these
properties for the lower tail and for the square of the GARCH
process. Other features can also be derived using our meth-
ods, such as the duration of a stress period and the total losses
in such a period.

All of these cluster functionals can be obtained from the
tail process (Smith et al. 1997; Segers 2003; Planinić and
Soulier 2018). For a heavy tailed process {Xt } the tail pro-
cess {X̂t }t≥0 is defined in the followingway. If for any t ∈ N+
the variables (X0/u, X1/u, . . . , Xt/u) | X0 > u, con-
verge weakly to (X̂0, X̂1, . . . , X̂t ), with X̂0 non-degenerate
as u → ∞, then the limit process {X̂t }t≥0 is termed the
forward tail process. For Breidt and Davis (1998) models of
stochastic volatility X̂t = 0 almost surely for all t ≥ 1, so
large values are not followed by large values for these pro-
cesses. In contrast, for anyGARCH(p, q) process at least one
X̂t , for t ≥ 1, is non-degenerate, and furthermore all elements
of the tail process are non-degenerate if all the coefficients
of σ 2

t in expression (1) are positive.
In this paperwe derive the theory for obtaining the forward

tail process, the extremogram, the extremal index and cluster
size distribution for anyGARCH(p, q) processwith bounded
or unbounded support for the innovations. We provide a new
fast, yet accurate, Monte Carlo algorithm for the numerical
evaluation of these extremal features. Our approach is quite
different from that of Collamore and Mentemeier (2018),
who start their Markov chains in non-extreme states and use
a form of importance sampling to move into the tail region.
Relative to our approach, using the tail process, this is guar-
anteed to be inefficient for evaluation of limiting properties,
as we start in the limit. However, for evaluating non-limit tail
features the Collamore andMentemeier (2018) approach has
advantages over ours, but to be useful they need our evalua-
tion of κ .

The paper is structured in the following way. In Sect. 2
we give the required background details for the properties of
stationary GARCH(p, q) processes and the theory of multi-
variate regular variation that is required for ourmethodology.
InSect. 3wegive new results for robust computational testing
for stationarity and in Sect. 4 a novel particle filtering algo-
rithm for fixed point distributions that enables us to obtain
the tail index κ and to sample from a (p + q)-dimensional
extreme state of the process. In Sect. 5 we derive the tail pro-
cesses for the squared and original GARCH(p, q) processes.
Section6 discusses the numerical evaluation of the method,
including checking for stationarity, evaluating κ , and illus-

trating the rapid convergence of the particle filter algorithm.
Section7 has a study of a range of extremal dependence fea-
tures of the GARCH(p, q) process for a variety of parameter
values. In particular, the empirical evidence from the sys-
tematic study of two sub-classes of GARCH(p, q) process
suggests a number of other features that remain to be proved.
In Sect. 8 we discuss the likely wider impact of our methods
and in the Appendix give proofs. In SupplementaryMaterial,
Laurini et al. (2022), we provide some theory on the conver-
gence properties of our methods and extensive illustrations
of their reliability.

2 Known properties of GARCH(p,q)
processes

2.1 Matrix formulation

Focusing on the squared GARCH process, X2
t , we write the

process as a stochastic recurrence equation (SRE) to enable
the exploitation of a range of established results (Kesten
1973). Let the (p + q) vector Yt , the (p + q) × (p + q)

matrix At and the (p + q) vector Bt be

Yt =
(
X2
t , . . . , X

2
t−q+1, σ

2
t , . . . , σ 2

t−p+1

)T
,

At =

⎛

⎜⎜⎝

α(q−1)Z2
t αq Z2

t β(p−1)Z2
t βp Z2

t
Iq−1 0q−1 0(q−1)×(p−1) 0q−1

α(q−1) αq β(p−1) βp

0(p−1)×(q−1) 0p−1 I p−1 0p−1

⎞

⎟⎟⎠ ,

Bt =
(
α0Z

2
t , 0q−1, α0, 0p−1

)T
(3)

where the superscript T denotes vector’s transpose, α(s) =
(α1, . . . , αs) ∈ R

s , β(s) = (β1, . . . , βs) ∈ R
s , I s is the

identity matrix of size s, 0(r×s) is a matrix of zeros with
r rows and s columns and 0s is a length s column vector
of zeros. If s ≤ 0 these terms are to be interpreted as being
dimensionless, henceARCH(q) processes arise using the top
left q × q elements of the matrix. Squared GARCH(p, q)
processes satisfy the SRE

Yt = AtYt−1 + Bt , t ∈ Z, (4)

where {At } and {Bt } are each i.i.d. sequences. As Zt is a
continuous variable, At has no rows of zeros, this avoids
problems discussed by Buraczewski et al. (2016).

The expression of the GARCH(p, q) in the SRE formu-
lation (3) is due to Francq and Zakoïan (2010, Section 2.2.2,
p. 29). This SRE formulation is less parsimonious than that
of Bougerol and Picard (1992), but has the benefit of cov-
ering all GARCH(p, q) processes, unlike that of Bougerol
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and Picard (1992) which excludes the p = q = 1 case that
expression (3) gives, simplifying to

Yt =
(
X2
t

σ 2
t

)
, At =

(
α1Z

2
t β1Z

2
t

α1 β1

)
, Bt =

(
α0Z

2
t

α0

)
, (5)

where α(s) and β(s) are scalar and none of the I s, 0r×s or 0s
terms are included.

2.2 Strict stationarity

Kesten (1973) presents necessary and sufficient conditions
for SREs of the form (4), with general matrix At and vector
Bt , to have a unique, strictly stationary solution. The condi-
tions that are non-trivially true for GARCH(p, q) processes
are that E(ln+‖At‖) < ∞ and E(ln+‖Bt‖) < ∞ (here
ln+ x = ln x, if x ≥ 1 and 0 otherwise), and that the top
Lyapunov exponent γ , given by

γ = lim
t→∞

1

t
E (ln‖AtAt−1 · · ·A1‖) , (6)

has the property that γ < 0. This result holds for all norms.
Here and subsequently we use the L1 norm, so for a matrix
Awith ai, j being the (i, j)th element, ‖A‖ = ∑

i, j |ai, j | and
for a vectorBwith bi being the (i)th element, ‖B‖ = ∑

i |bi |.
For the squared GARCH(p, q) the moment conditions

on At and Bt always hold. To illustrate this for At , first
consider the random variable Kt := φZ2

t + φ + p + q,
where φ > 0 is defined by (2). Then Kt > 1, so 0 <

ln(Kt ) < Kt and E(Kt ) < ∞ as E(Z2
t ) = 1. As

0 ≤ ‖At‖ = φ(Z2
t + 1) + p + q − 2 < Kt , we have

0 ≤ E(ln+‖At‖) ≤ E(ln+ Kt ) = E(ln Kt ) < E(Kt ) < ∞.
So for GARCH(p, q) processes X2

t and Xt to be strictly
stationary it is necessary and sufficient that γ < 0. Expres-
sion (6) is not an ideal starting point for evaluating γ . Instead
we also have that

γt = 1

t
ln ‖AtAt−1 · · ·A1‖ and γt

a.s.−→ γ, as t → ∞,

(7)

where a.s. denotes almost sure convergence, (Francq and
Zakoïan 2010, Theorem 2.3—p. 30). It would appear that a
relatively simple simulation can be performed to obtain a reli-
able estimate of γ via expression (7). However, in Sects. 3.3
and 6.2 we show this is far from the case and a mix of careful
asymptotic approximation analysis and numerical evaluation
is required to evaluate γ .

In some cases we do not need to evaluate γ to find if the
process is strictly stationary, e.g., GARCH(p, q) processes
are always strictly stationary when φ ≤ 1; this includes all
IGARCH(p, q) processes. Also

∑p
j=1 β j < 1 is necessary

but not sufficient for strict stationarity. So, numerical evalu-
ation of γ is required whenever φ > 1 and

∑p
j=1 β j < 1.

2.3 Multivariate regular variation results

Basrak et al. (2002) and Collamore and Mentemeier (2018)
show that there exists a unique stationary solution to the
SRE (4) and that this solution exhibits a multivariate reg-
ular variation property, i.e., for any t , any vector norm ‖·‖
and all r > 0,

Pr(‖Yt‖ > r x,Yt/‖Yt‖ ∈ ·)
Pr(‖Yt‖ > x)

v→r−κ Pr(�̂t ∈ ·), (8)

as x → ∞, where
v→ denotes vague convergence, κ > 0,

and �̂t is a (p + q)-dimensional random vector on the unit
sphere (with respect to a norm ‖·‖) defined bySp+q ⊂ R

p+q .
If condition (8) holds thenYt is said to exhibitmultivariate

regular variation with index κ and the distribution of �̂t is
termed the spectral measure of the vectorYt (Resnick 1987).
A consequence of property (8) for GARCH(p, q) processes
is that all the marginal variables ofYt have regularly varying
tails with index κ > 0, i.e., for r ≥ 1 and all t

Pr(X2
t > r x | X2

t > x) → r−κ ,

and Pr(σ 2
t > r x | σ 2

t > x) → r−κ , as x → ∞.

It is insightful to consider a slightly rearranged version of
limit (8), and with the L1 vector norm. We define radial, Rt ,
and angular (two variants �t and �−

t ) random variables by

Rt = ‖Yt‖ = X2
t + . . . + X2

t−q+1 + σ 2
t + . . . + σ 2

t−p+1,

�t = Yt/‖Yt‖
= (X2

t , . . . , X
2
t−q+1, σ

2
t , . . . , σ 2

t−p, σ
2
t−p+1)/Rt

�−
t = (X2

t , . . . , X
2
t−q+1, σ

2
t , . . . , σ 2

t−p)/Rt , (9)

with Sp+q now being the (p + q) dimensional unit simplex.
For GARCH(p, q) processes, with p ≥ 1, we have two

angular variables as the p + q dimensional variable �t has
redundancy in its final dimension as ‖�t‖ = 1, and so for
studying the distribution of angular variables it is simpler to
work with the p + q − 1 dimensional variable �−

t , which is
related to �t by �t = (�−

t , 1 − ‖�−
t ‖) where �−

t is �t

without its last component.We use thisW− notation to create
a (p+q−1)dimensional vector fromany (p+q)dimensional
vectorW on the simplex Sp+q throughout. Furthermore, for
w ∈ R

p+q−1, we define

H�−
t
(w) = Pr(�−

t ≤ w), (10)

with vector algebra, here and elsewhere, interpreted as being
componentwise. We will denote the limit random variables,
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that arise in limit (8), for (Rt ,�t ,�
−
t ) by (R̂t , �̂t , �̂

−
t ),

with the distribution function of �̂
−
t , denoted by H

�̂
−
t
,

defined similarly to distribution (10). Then, for r ≥ 1, as
x → ∞, the limit (8) becomes,

Pr(Rt > r x,�−
t ≤ w | Rt > x)

v→ Pr(R̂t > r)Pr(�̂
−
t ≤ w)

= r−κ H
�̂

−
t
(w). (11)

From the first expression for the asymptotic form in limit (11)
we see that the radial variable Rt and the angular variables
�−

t become asymptotically independent, as the radial vari-

able Rt grows due to x → ∞, i.e., the variables R̂t and �̂
−
t

are independent. The second term in this limit shows that R̂t

is a Pareto random variable with tail index κ , i.e.,

Pr(R̂t > r) = r−κ for r ≥ 1. (12)

Basrak and Segers (2009) and Janssen (2010) identify that
there is additional structure imposed on H

�̂
−
t
and κ respec-

tively by the GARCH(p, q) process. We discuss these
restrictions below.

For the GARCH(1, 1) process, Laurini and Tawn (2012)
provided an expression for the spectral measure, for a differ-
ent description of the angular variable to that used here. For
the choice of the angular variable (9), for all t , their result

translates to a univariate �̂
−
t , with distribution

H
�̂

−
t
(w) = 2

E(|Z |2κ)

∫ (
w

1−w

)1/2

0
(1 + s2)κFZ (ds), (13)

where FZ is the distribution function of Zt . When max(p, q)

≥ 2, through use of the multivariate regular variation struc-
ture, Basrak and Segers (2009, Propositions 3.3, 5.1) show
that

E(‖A�̂t‖κ) = 1, (14)

where 0 ≤ w ≤ 1 andA is i.i.d. toAt , and uniquely Pr(�̂t ∈
·) = E(‖A�̂t‖κ ;A�̂t/‖A�̂t‖ ∈ ·), where the notation
E(X; Y ) := E(X1(Y )) and 1(Y ) is the indicator of the event
Y . Thus

H
�̂

−
t
(w) = E(‖A�̂t‖κ ; (A�̂t/‖A�̂t‖)− ≤ w). (15)

Basrak and Segers (2009, p. 1075) propose an approach to
simulate from H

�̂
−
t
(w) for a SRE of the form (4), with the

required distribution H
�̂

−
t
being the invariant distribution of

a Markov chain and MCMCmethods used for its evaluation.
However, this method cannot be used for any GARCH(p, q)
process for the following reasons. Firstly, they make an

assumption that At is bounded, which excludes the possi-
bility of Zt being, for example, Gaussian or tν distributed.
Much more critically though, Basrak and Segers (2011) note
that their proof was flawed and their results only hold under
very specific conditions on the matrix At in the SRE frame-
work (4), which excludes all GARCH(p, q) processes. Our
approach in Sect. 4 overcomes these restrictions.

2.4 Janssen’s approach to determine �

Next focus on how κ has been determined. Following meth-
ods of Kesten (1973), Basrak et al. (2002) showed that there
exists a κ > 0 which is the unique positive solution of the
equation

lim
t→∞

1

t
ln E

(‖AtAt−1 · · ·A1‖κ
) = 0. (16)

Collamore and Mentemeier (2018) found the same expres-
sion for the marginal tail index for more general stochastic
recurrence relations. For the GARCH(1, 1) process Mikosch
and Stărică (2000) show that κ is simple to evaluate using
expression (16). Specifically, taking At as in expression (5)
then AtAt−1 · · ·A1 = At

∏t−1
i=1(α1Z2

i + β1), from which
it simply follows that expression (16) holds and κ sat-
isfies E

[(
α1Z2

t + β1
)κ] = 1. Setting β1 = 0 for the

GARCH(1, 1) process gives the same result for κ derived
by de Haan et al. (1989) for the ARCH(1) process. For
general GARCH(p, q) processes no such simplification of
equation (16) exists. So it is natural to try to evaluate κ by
solution of the equation (16), but such an approach is impos-
sible due to numerical instabilities.

The only existing feasible method to evaluate κ has
been proposed by Janssen (2010, Proposition 4.3.1), which
exploits Kesten (1973, Proof of Theorem 3). With A speci-
fied in (4) the conditions required for the results of Kesten
(1973) apply and the equality

∫

Sp+q
E

[
‖Aw‖kg

(
Aw

‖Aw‖
)]

Hk(dw)

= ρk

∫

Sp+q
g (w) Hk(dw), (17)

holds for all continuous functions g, where Hk is a probability
measure on S

p+q (see step 1 in the proof of Theorem 3 in
Kesten 1973), and where ρk > 0. For all pairs (ρk, Hk) that
satisfy equality (17), for any given k ∈ (0,∞) then ρk is
determined solely by k. The special case of g ≡ 1 in (17)
gives the simplification

∫

Sp+q
E
[
‖Aw‖k

]
Hk(dw) = ρk

∫

Sp+q
Hk(dw) = ρk . (18)
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Fromcondition (14)weknow that the κ-thmoment of‖A�̂t‖
is equal to 1, where �̂t ∼ H

�̂t
on the space Sp+q . It follows

from property (18) that ρk = 1 when k = κ . Kesten (1973)
and Janssen (2010) show that there is only one solution to
equation (14), so κ is the unique solution of

∫

Sp+q
E
[‖Aw‖κ

]
Hκ(dw) = 1, (19)

and that the unit measure Hκ must be H
�̂t
. Thus if we can

find, or simulate from, H
�̂t

we can find κ . To evaluate κ all
that is required is to define a class of unit measures Hk , over
k ∈ (0,∞), which contains within it as an interior point H

�̂t
,

and then vary k until property (19) is found.
By adapting the algorithm of Basrak and Segers (2009),

Janssen (2010) proposes a valid algorithm to simulate from
a class of functions Hk , which enables the evaluation of κ

and H
�̂t
. Critically this only applies when the innovations

Zt have bounded support. In Sect. 4 we describe an algorithm
that applies even if Zt is unbounded andwhich has substantial
computational efficiency gains for calculating κ , compared
to the algorithm of Janssen (2010), even when Zt is bounded.

3 Alternative formulations for assessing
strict stationarity of GARCH processes

3.1 Preliminaries

Let φ = (α1, . . . , αq , β1, . . . , βp) = (φ1, . . . , φp+q), with
φi ≥ 0 for all i = 1, . . . , p + q. From (2) it follows that
φ = ∑p+q

i=1 φi . Also let φ(M) = max{φi ; i = 1, . . . , p + q}
so 0 < φ(M) ≤ φ for all GARCH(p, q) processes as they
require that αq > 0, even for ARCH(q) processes. As we use
the L1 norm of the matrix, ‖At‖ = φ(Z2

t + 1) + p + q − 2,
so it is linear in Z2

t .
Results (7) and (16), for γ and κ respectively, involve the

behaviour of the ‖AtAt−1 · · ·A1‖ as t → ∞. As this term
tends to zero we need to capture its dominant behaviour to
stabilise it. The approachwewill take uses products of simple
scalar summaries of the individual matrices. One possibility
is the trace of At , with trace(At ) = α1Z2

t + β1 for all t, p
and q, as the trace of a square matrix is the sum of all its
eigenvalues.Aswe can haveα1 = β1 = 0whenmin(p, q) ≥
2, we instead focus on the related quantities

λ∗
t = αq Z

2
t + βp and λ∗ = αq Z

2 + βp, (20)

where Z is i.i.d. from {Zt }.Hereαq > 0 for allGARCH(p, q)

processes so λ∗
t > βp > 0, but for ARCH(q) processes

βp = 0 so λ∗
t can be arbitrarily close to 0. Another possi-

ble summary of At is λt , the largest magnitude eigenvalue
of all of its eigenvalues, and similarly we use the term λ for

this when Z2
t is replaced by Z2. For At , given by represen-

tation (3), it is guaranteed that λt is simple and exceeds all
other eigenvalues in absolute value; see Seneta (1981, The-
orem 1.1). In general λt does not have a simple closed form
expression.

At first sight the two proposals for stabilising the matrix
product seems quite different. However, their properties are
highly related. For example in the GARCH(1,1) case λt =
λ∗
t = α1Z2

t + β1, which is an important term as the property
E[(α1Z2

t + β1)
κ ] = 1 determines κ > 0 for this process.

So both proposals form natural extensions to the case with
p �= 1 and/or q �= 1. In the only other case where we have
found a closed form solution forλt similar relationships hold.
Specifically, for a GARCH(p, p) processes, i.e., q = p,
when αi = βi = 0 for i = 1, . . . , p − 1 we have that
λt = (αp Z2

t + βp)
1/p = (λ∗

t )
1/p. Lemma 1 shows that λt

and λ∗
t have similar moment properties and related growth

rates when multiplied over different t .

Lemma 1 Suppose that {At } are given by (3) where Zt are
as defined by (1), λ∗

t is defined by (20), and let λt be the
largest magnitude eigenvalue of the matrix At . Then for all
GARCH(p, q) processes with p > 0

E(| ln λ∗
t |) < ∞ and E(| ln λt |) < ∞, (21)

and

μt =: 1
t
ln

(
t∏

i=1

λ∗
i

λi

)
a.s.−→ μ as t → ∞

to a finite constant μ where μ = E(ln λ∗) − E(ln λ), with
−∞ < μ < ∞. When p = 0, i.e., an ARCH(q) pro-
cess, all convergences only hold if additionally we have that
E(ln |Zt |) < ∞.

Note that E(ln |Z |) < ∞ holds for all Gaussian and Student-
t distributions as the additional restriction that the condition
implies is that the density of Z is bounded at zero. In all
examples we considered we found that μ ≤ 0.

There are pros and cons of the two approaches. As we
have seen, λ∗

t is analytically simple and so it is easy to derive
closed form results and interpret, but we find in Sect. 6 it has
limitations in terms of the numerical stability of its products
and in Sect. 3.2 show that different derivations for GARCH
and ARCH cases are required. In contrast, although λt in
general lacks a simple closed form, which makes analytical
derivations more difficult as seen by the proof of Lemma 1,
our numerical studies find that obtaining λt is simple, fast
and that there are no issues of numerical instability with its
products. These properties influence our strategy. We first
workwith λ∗

t to develop bounds (for GARCH in Sect. 3.2 and
ARCH in Appendix A) and limits, then derive the equivalent
results for λt .
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3.2 Bounds onmatrix product norms for
GARCH(p, q)with p > 0

For a GARCH(p, q) process (p > 0), consider the (p+q)×
(p + q) matrix At · · ·A1 with (i, j)th entry a(t)

i, j . Given the

form of At in expression (3), we have that a(t)
i, j ≥ 0 for all

t, i and j . Then

‖At+1 · · ·A1‖ =
(
Z2
t+1 + 1

)
⎡

⎣
q∑

i=1

αi

p+q∑

j=1

a(t)
i, j

+
p∑

i=1

βi

p+q∑

j=1

a(t)
q+i, j

⎤

⎦+
p+q−1∑

i=1,i �=q

p+q∑

j=1

a(t)
i, j .

(22)

Weuse expression (22) to develop bounds on‖At · · ·A1‖ that
hold for all GARCH(p, q) processes. As φi ≤ φ(M) for all
i = 1, . . . , p + q the term in the square brackets is bounded
above by φ(M)‖At · · ·A1‖ and as a(t)

i, j ≥ 0 the last term is
bounded above by ‖At · · ·A1‖. By applying this combined
bound iteratively, starting from t , we have

‖At · · ·A1‖ ≤
{

t∏

i=2

[
φ(M)

(
Z2
i + 1

)
+ 1

]}
‖A1‖. (23)

The lower bound follows from expression (22) by drop-
ping all terms involving αi , i = 1, . . . , q − 1 and β j , j =
1, . . . , p − 1, taking a common lower bound on the coef-
ficients of a(t)

i, j terms for all i and j , and setting cp,q :=
min(αq , βp) > 0, to give

‖At+1 · · ·A1‖ ≥ min[(Z2
t + 1)cp,q , 1]‖At · · ·A1‖

≥
(

t∏

i=2

min[(Z2
i + 1)min(αq , βp), 1]

)
‖A1‖.

The value of these bounds is not obvious at first sight
given that they are stochastic and involve t products (where
we are interested in t → ∞) over unbounded variables. As
the norm of the product ‖At · · ·A1‖ is tending to zero it
seems sensible to first normalise the size of the individual
terms in the product to get more helpful bounds. We do this
by scaling each matrix Ai by λ∗

i . Let

�∗
t =

t∏

i=1

(
At+1−i/λ

∗
t+1−i

)
and η∗

t = 1

t
ln‖�∗

t ‖, (24)

then, using upper bound (23), gives that

η∗
t ≤ 1

t

t∑

i=2

ln

{[
φ(M)

(
Z2
i + 1

)+ 1

λ∗
i

]}
+ 1

t
ln

(‖A1‖
λ∗
1

)
.

(25)

Using the property that λ∗
i ≥ βp > 0 for any GARCH(p, q)

process, Lemma 2 in Appendix B for each term in expres-
sion (25), and that log is an increasing function, we have

η∗
t ≤ t − 1

t
ln

[
max

(
φ(M) + 1

βp
,
φ(M)

αq

)]

+1

t
ln

[
max

(
φ

αq
,
φ + p + q − 2

βp

)]
.

Similarly, the lower bound for the norm of the product
together with Lemma 2 gives

η∗
t ≥ 1

t

t∑

i=2

ln
{
min[cp,q(Z2

i + 1), 1]/λ∗
i

}

+1

t
ln

[
min

(
φ

αq
,
φ + p + q − 2

βp

)]
.

The final term in each inequality bound converges almost
surely to 0 as t → ∞. The second term of min[cp,q(Z2

i +
1), 1] occurs with probability Pr(Z2

i > (1 − cp,q)/cp,q)
and, as t → ∞, the sample mean of these terms con-
verge to E[− ln(αq Z2 + βp) | Z2 > (1 − cp,q)/cp,q ],
which is a finite constant as E(ln |Z |) < ∞. Similarly the
sample mean of the first terms in the minimum converges
to ln(cp,q) + E{ln[(αq Z2 + βp)/(αq Z2 + βp)] | Z2 <

(1 − cp,q)/cp,q}, where the random variable concerned has
finite bounds. These convergences followby the strong lawof
large numbers and as E(| ln λ∗

t |) < ∞. If limt→∞ η∗
t exists,

then this limit is in the finite interval [cL , cU ], where

cL = E
(
ln
{
min[cp,q(Z2 + 1), 1]/(αq Z

2 + βp)
})

, and

cU = ln[(φ(M) + 1)/min(αq , βp)]. (26)

3.3 New formulations for � in terms of �∗ and �

Theorem 1 Suppose that {At } are given by (3) with Zt

defined by (1), λ∗
t and λ∗ are defined by (20), the limit (6)

exists, and η∗
t is defined by (24). It follows that as t →

∞, η∗
t

a.s.−→ γ − E(ln λ∗) := η∗, for p > 0, and for
p = 0 this holds when E(ln |Z |) < ∞, with the con-
stant limit η∗ ∈ [cL , cU ], with these bounds defined by
(26) and (35) for GARCH and ARCH processes respectively.
Hence, for both processes the Lyapunov exponent satisfies
γ = E(ln λ∗) + η∗, where η∗ is the almost sure limit of η∗

t .

At first sight the value of Theorem 1 seems limited, as it
simply expresses a limit γ as function of two terms. Whilst
one is a simple expectation, the other, η∗, is also a limit. The
benefits though are for numerical evaluation and interpreta-
tion. Under definition (7), γ is the limit of γt as t → ∞
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where both the numerator and denominator diverge to infin-
ity, with the numerator a product of t unbounded stochastic
terms and is numerically unstable to evaluate as a limit. In
contrast there are finite bounds for η∗

t for all t .
An alternative version of Theorem 1 applies when the

largest magnitude eigenvalue λt of the set of eigenvalues of
At replaces λ∗

t . Similarly to the definition of η∗
t , define

�t =
t∏

i=1

(
At+1−i

λt+1−i

)
, ηt = 1

t
ln‖�t‖ and η = lim

t→∞ ηt . (27)

Sect. 6.2 shows that �t and ηt are numerically stable to eval-
uate for large t , unlike �∗

t and η∗
t .

Theorem 2 Suppose that {At } are given by (3) with Zt

defined by (1) and the limit γ of expression (6) exists. Let
λ∗ be defined by (20), λ be the largest magnitude eigen-
value of a matrix A, which is identically distributed to At ,
and let both ηt and η be defined by (27). We then have that
ηt

a.s.−→ η as t → ∞where η is a finite constant, η
a.s.= η∗+μ,

where μ = E(ln λ∗) − E(ln λ), with −∞ < μ < ∞ and
γ

a.s.= E(ln λ) + η.

To assess Theorems 1 and 2 in terms of what is already
known we first compare with the GARCH(1, 1) process
which is known to satisfy At · · ·A1 = At

∏t−1
i=1(α1Z2

i +
β1) = At

∏t−1
i=1 λ∗

i , and λ∗
i = λi . So

γt = 1

t
ln‖

t∏

i=1

At+1−i‖

= 1

t
ln‖At‖ + 1

t

t−1∑

i=1

ln λ∗
i

a.s.−→ E(ln λ∗).

Hence Mikosch and Stărică (2000) conclude that γ =
E[ln(α1Z2

t + β1)] = E(ln λ∗). Theorems 1 and 2 agree
with this result, which implies that η∗ = η = 0 for all
GARCH(1,1) processes.

4 Evaluating the spectral measure and the
tail index

This section gives the details of our algorithm for sampling
from the limit distribution H

�̂t
and then uses this algorithm

repeatedly to find κ . The algorithm requires no assumptions
on the support for Zt . Throughout we take t = 0 as we start
the tail process at that time in Sect. 5.1. We will first assume
that κ is known and present Algorithm 1 for generating from
H

�̂
−
0
and then discuss the case when κ is unknown.

To simulate from the spectral measure H
�̂

−
0
, defined via

(15), our approach is to introduce a series of distributions

related via a recursion, and whose invariant distribution
is H

�̂
−
0
. We will then use sequential importance sampling

(Doucet et al. 2000, ) to generate approximate samples from
these distributions at consecutive iterations. We simulate this
process until convergence, and then take the samples after this
time as draws from H

�̂
−
0
. The recursion can be viewed as that

for distributions associated with Feynman-Kac models, and
our algorithm is similar to the use of sequential Monte Carlo
for sampling from Feynman-Kac distribution (e.g. DelMoral
andMiclo 2000) and fixed point distributions (e.g. DelMoral
and Miclo 2003).

Denote the series of random variables whose distribution
we are simulating from by �̃s , for iteration s ≥ 0. The recur-
sion relating the distributions of these random variables for
s ≥ 1 is

Pr(�̃s ∈ ·) = E(‖A�̃s−1‖κ ;A�̃s−1/‖A�̃s−1‖ ∈ ·)
E(‖A�̃s−1‖κ)

, (28)

where as above E(X; Y ) := E(X1Y ). By construction, the
invariant distribution of this process is H

�̂
−
0
, since if �̃s−1

is drawn from H
�̂

−
0
, then the right-hand side of (28) is equal

to

E(‖A�̂0‖κ ;A�̂0/‖A�̂0‖ ∈ ·)
E(‖A�̂0‖κ)

.

As E(‖A�̂0‖κ) = 1, this distribution is equal to the defini-
tion of H

�̂
−
0
given by expression (15).

Algorithm 1 uses importance sampling to generate a sam-
ple from Pr(�̃s ∈ ·) based on a sample from Pr(�̃s−1 ∈ ·).
This involves first simulating a value for �̃s via �̃s =
A�̃s−1/‖A�̃s−1‖, and assigning this value a weight propor-
tional to ‖A�̃s−1‖κ . Thus we can use sequential importance
sampling to generate samples of �̃s for s ≥ 1 from an initial
sample of �̃0. The assessment of the algorithm’s conver-
gence is discussed in Sect. 6.3.

Our approach is similar to the MCMC algorithm Basrak
and Segers (2009) propose for simulating from H

�̂
−
0
. Both

algorithms simulate from the sameMarkov process. The dif-
ference is that they simulate a single realisation of a path of
the process, and simulate the dynamics at each time point
using rejection sampling. By comparison we use sequential
importance sampling to simulate a sample of values from
expression (28) at each time-point. The main advantage of
our approach is thatwe do not need the distribution of Zt to be
bounded. Algorithm 1 is also computationally more efficient
than that of Basrak and Segers (2009) in situations where a
bound exists, but is large, as their probability of rejection is
close to 1.

As it stands neither Algorithm 1, nor the algorithm Bas-
rak and Segers (2009), have guaranteed unique convergence
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to the true limit. For Feynman-Kac models, which include
H

�̂
−
0
, Del Moral and Guionnet (2001) provide conditions

under which the convergence of Algorithm 1 is unique. Lau-
rini et al. (2022) show that these conditions amount to a
subtle, but relatively weak, condition on the mixing of the
process, but we have not been able to prove that condition
is satisfied by all GARCH processes. Instead, Sect. 6.3 and
Laurini et al. (2022) presents extensive empirical evidence
to show Algorithm 1 converges to the correct limit each time
it has been used, with the convergence achieved after very
few steps whatever the initial distribution of �̃0. The results
obtained there are in very strong agreement with empirical
extremal properties of the GARCH(p, q) process when esti-
mated using very long simulations of the true process.

Now consider the situation when κ is unknown. For a
trial value of k (for κ), apply Algorithm 1 until convergence,

giving a sample of weighted particles {�̃( j)
(k),m( j)(k)}Jj=1

after the chain is deemed to have converged. Using these
particleswe approximate the expectation E(‖A�̃0‖k) to give
ρ̃k , by the Monte Carlo approximation of ρk , as

ρ̃k =
∫

R

J∑

j=1

‖A�̃
( j)

(k)‖k m( j)(k)
∑J

n=1m
(n)(k)

FZ (dz), (29)

where FZ is the distribution function of Zt . We repeat this
evaluation over k > 0 until we find the unique value of k
which gives ρ̃k = 1. This value is k = κ . See Sect. 6.4 for
how we solve this equation whilst accounting for the Monte
Carlo noise in ρ̃k .

Algorithm 1: Sampling from H
�̂

−
0
(w)

1 Generate a sample of �̃0 from a distribution of Sp+q . Set s = 1.

2 Generate J independent copies of A, denote these as A( j)
s for

j = 1, . . . , J .
3 Generate J equally weighted particles at time s − 1 by sampling
independently from our approximation to the distribution of
�̃s−1. Denote these particles as �

�( j)
s−1 for j = 1, . . . , J .

4 Generate J particles at time s,

�̃
( j)
s = A( j)

s �
�( j)
s−1/‖A( j)

s �
�( j)
s−1‖, j = 1, . . . , J

5 Assign each particle a weight, m�( j)
s = ‖A( j)

s �
�( j)
s−1‖κ for

j = 1, . . . , J , and normalise these via

m( j)
s = m�( j)

s
∑J

j=1 m
�( j)
s

. (30)

The weighted particles, {�̃( j)
s ,m( j)

s }Jj=1 gives our approximation

to the distribution of �̃s .
6 If converged to stationarity, output the set of weighted particles.
Otherwise set s = s + 1 and go to step 2.

To use Algorithm 1 we need to be able to sample from a
suitable randomvariable �̃0 onSp+q . Ideally the distribution
of this random variable should be as close as possible to the
target limit distribution function H

�̂
−
0
(w), so that the rate of

convergence of �̃s →d �̂0 as s → ∞ is maximised. From
limit (11) we have that Pr(�−

0 ≤ w | R0 > x)→H
�̂

−
0
(w),

as x → ∞. So for large enough x , i.e., x ≥ u for some
high threshold u, if we treat this limiting representation as
an equality, this gives us an initial estimate H (0)

�̃
− of H

�̂
−
0
.

We select u as a high quantile of the sample of Rt values,
such that limit property (11) appears to be well represented,
i.e., radial values appear to have a Pareto tail and radial and
angular values appear to be independently distributed.

To obtain H (0)

�̃
− we generate a sample of length n from the

GARCH(p, q) process and take the empirical distribution of
simulated values of �t given that Rt > u after a burn in
period of nb i.e.,

H (0)

�̃
−(w) =

n∑

j=nb+1

1(R j > u,�−
j ≤ w)/

n∑

j=nb+1

1(R j > u).

As initial particles for Algorithm 1 we use all the realisations
of �t given that Rt > u, for t = 1, . . . , n. We take n =
1.1 × 107, with u being the 99.99% quantile of Rt giving
J = 103 particles, each with equal weight J−1.

5 Tail processes and associated properties
for GARCH(p,q)

5.1 Generation of different tail processes for
GARCH(p, q)

The tail process {X̂2
t }t≥0 is evaluated using Algorithm 2.

There are two stages to the algorithm, initialisation and prop-
agation. However, in most cases we are interested into the
extremal properties of both the upper and lower tails for Xt ,
and denote their respective tail processes by {X̂U

t }t≥0 and
{X̂ L

t }t≥0, defined in expression (32). These additional tail
processes are evaluated using Algorithm 3, which is driven
by outputs fromAlgorithm 2 and exploits the GARCH(p, q)

formulation (1). In the special case where p = 0, i.e., the
ARCH(q) process, an adaption to Algorithm 3 is required.

For the initialisation stage for Algorithm 2, we consider
the behaviour of the squared GARCH process conditional on
it being in an extreme state at time t = 0, so we require that
X̂2
0 > 1. Focusing on limit (11) when t = 0, we have that the

radial and angular limit variables are independent with dis-
tributions (12) and (15) respectively. We denote these limit
variables by R̂0 and �̂0 = (ϑ̂

(1)
0 , . . . , ϑ̂

(p+q)
0 ) ∼ H

�̂0
, with

R̂0 > 1 and �̂0 ∈ S
p+q . Direct simulation of (R̂0, �̂0)
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Algorithm 2: Obtaining the tail process of squared
GARCH(p, q)

1 Simulate �̂0 using Algorithm 1 and independently set

R̂0 = U−1/κ where U is uniform(0,1).

2 Repeat step 1 until R̂0ϑ̂
(1)
0 > 1 and set �̂

TC
0 = �̂0.

3 Evaluate �̂
TC
t = At�̂

TC
t−1 for t = 1, . . . , T , for large T .

4 Extract the tail process X̂2
t = R̂0ϑ̂

(1)
t and associated

σ̂ 2
t = R̂0ϑ̂

(q+1)
t , for t = 0, . . . , T .

5 Repeat steps 1-4 to evaluate independent replicates of the tail

process {X̂2
t }t≥0 of X2

t , and of the associated volatilities {σ̂ 2
t }t≥0,

with each tail process having the property that X̂2
0 > 1.

produces X̂2
0 = R̂0ϑ̂

(1)
0 > 0, not automatically X̂2

0 > 1.
So we use the rejection simulation method where replicates
of (R̂0, �̂0) are generated until a realisation with X̂2

0 > 1
is achieved, which is guaranteed to happen as Pr(X̂2

0 >

1) > 0. For a generated pair (R̂0, �̂0), with X̂2
0 > 1,

we have most interest in (X̂2
0, σ̂

2
0 ) = (R̂0ϑ̂

(1)
0 , R̂0ϑ̂

(q+1)
0 ),

but all elements of (R̂0, �̂0) are needed for Algorithms 2
and 3.

The propagation stage uses results of Basrak et al. (2002),

with the tail chain for �̂, denoted {�̂TC
t }t≥0, given by

�̂
TC
t = At�̂

TC
t−1 for t ≥ 1 with �̂

TC
0 = �̂0 (31)

with �̂0 being the vector generated in the initialisation

step. From property (31), for t ≥ 0 we have �̂
TC
t =

AtAt−1 · · ·A1�̂0. We denote the components of the vec-

tor variable in the tail chain by �̂
TC
t = (ϑ̂

(1)
t , . . . , ϑ̂

(p+q)
t )

for t ≥ 1. From this tail chain for t = 1, 2, . . . and from
the initialisation variable R̂0, we determine the tail pro-
cess for X2

t and associated conditional variances, by setting

X̂2
t = R̂0ϑ̂

(1)
t and σ̂ 2

t = R̂0ϑ̂
(q+1)
t for all t ≥ 1.

Ideally tail chain (31) is run until t = T , where T is
such that X̂2

t < 1 for all t > T with probability 1. A good

approximation of T is achievable as all components of �̂
TC
t

have negative drift and converge almost surely to 0 as t →
∞. So T is taken as large as possible subject to limits of
storage and computational time. Following sensitivity checks
we took T = 1000, but for processes with weak extremal
dependence T = 50 is more than sufficient.

For the class of GARCH(p, q) processes (1) we are inter-
ested in both the upper and lower tails of Xt , and denote their
respective tail processes {X̂U

t }t≥0 and {X̂ L
t }t≥0, with the lat-

ter the negated lower tail process of Xt . Here the constituent

variables of these processes are defined by

X̂U
t = lim

u→∞{Xt/u|X0 > u}, and

X̂ L
t = lim

u→∞{−Xt/u|X0 < −u} for t ≥ 0,
(32)

so X̂U
0 > 1 and X̂ L

0 > 1, with no constraints on the
subsequent values/signs of the subsequent terms in the tail
processes. When the distribution of the innovations Zt is
symmetric about 0 these two processes are identical stochas-
tically. When deriving the upper and lower tail processes
for Xt it may appear best to evolve the strategy of de Haan
et al. (1989) by starting directly from the {X̂2

t }t≥0 tail process
and to square root this process and filter the series retaining
positive values by using independent Bernoulli(δ) variables,
with 0 ≤ δ ≤ 1 termed the tail balance, given by Breiman’s
lemma to be

δ = Pr(Xt > x | |Xt | > x)

= lim
x→∞Pr(σt (Zt )+ > x)/Pr(σt |Zt | > x)

= E((Zt )
2κ+ )/E(|Zt |2κ),

where (Zt )+ = max(Zt , 0). Then δ = 1/2 when the tails
are symmetric (this is the case considered by de Haan et al.
(1989)) and if δ = 0 or 1 the lower and upper tail are dom-
inant respectively. Unfortunately {X̂2

0} and the Bernoulli(δ)
variable associated with this are not independent, which we
are grateful for a referee for identifying. Although δ is not
required for our approach we do report its value as it gives
a good indication of the general asymmetry in the tails of
GARCH processes.

A more subtle approach is required. Critically, in addition
to the {X̂2

t }t≥0 tail process, Algorithm 2 also provides the
associated values of {σ̂ 2

t }t≥0 when p > 0. ForGARCH(p, q)

processes we have the relationship Z2
t = X2

t /σ
2
t for all t

for the innovations. Hence for realisations of (X̂2
t , σ̂

2
t ; t =

0, . . . , T ) we let st := X̂2
t /σ̂

2
t denote the correspond-

ing value of Ẑ2
t . These st values are observations from

the i.i.d. variables Z2
t , for t = 0, . . . , T , with Zt having

probability density fZ .Given {st }0≤t≤T , the signs of the asso-
ciated Z0, . . . , ZT variables are determined by independent
Bernoulli(δt ) variables with
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δt = Pr(Zt > 0 | Z2
t = st )

= fZ (s1/2t )/[ fZ (s1/2t ) + fZ (−s1/2t )]. (33)

Taking account of whether Z0 is positive or negative deter-
mines the tail processes {X̂U

t }t≥0 and {X̂ L
t }t≥0, see Algo-

rithm 3.
When p = 0, i.e., with ARCH(q) processes, then Yt in

the relationship (3) does not involve σ̂ 2
t in �̂0 ∈ S

q . As we
need σ̂ 2

t for t = 0, . . . , T in Algorithm 3, the methods used
for the GARCH(p, q) processes do not immediately apply.
However, with a slight of hand, we can derive the results for
this case using the GARCH(1, q) process formulation (3)
with β1 = 0, and then applying Algorithms 1-3. This works
as σ̂ 2

t is then part of the initial simulation and propagation of

{�̂TC
t }t≥0.

Algorithm 3: Obtaining the upper and lower tail pro-
cesses of GARCH(p, q)

1 Input X̂2
t and σ̂ 2

t for t = 0, . . . , T from the output of
Algorithm 2.

2 Define Ẑ2
t = X̂2

t /σ̂
2
t and evaluate δt , for t = 0, . . . , T , using the

expression (33).
3 Simulate a sequence of independent variables {I0, . . . , IT },
where It ∼ Bernoulli(δt ) is random variable which given δt is
independent of (X̂2

t , σ̂
2
t ) for all t = 0, . . . , T .

4 If I0 = 1 then X̂U
0 = (X̂2

0)
1/2 and X̂U

t = (2It − 1)(X̂2
t )

1/2 for
t = 1, . . ..

5 If I0 = 0 then X̂ L
0 = (X̂2

0)
1/2 and X̂ L

t = (1 − 2It )(X̂2
t )

1/2 for
t = 1, . . ..

6 A single iteration produces a single tail process iteration of either

{X̂U
t }t≥0 or {X̂ L

t }t≥0 with probability δ0 and 1 − δ0 respectively.

5.2 The evaluation of cluster functionals for squared
and original GARCH processes

From repeated realisations of the tail processes {X̂2
t }t≥0,

{X̂U
t }t≥0 and {X̂ L

t }t≥0 we can derive the properties of key
cluster functionals for the X2

t , Xt and−Xt processes respec-
tively. Here we illustrate this for the extremogram, the
extremal index and the cluster size distribution.

The extremogram for the squared GARCH(p, q) process
is

χX2(τ ) = Pr(X̂2
τ > 1|X̂2

0 > 1) = Pr(X̂2
τ > 1).

Similarly the extremogram for the upper and lower tails of
the GARCH(p, q) process are given by χXU (τ ) = Pr(X̂U

τ >

1|X̂U
0 > 1) = Pr(X̂U

τ > 1) and χXL (τ ) = Pr(X̂ L
τ >

1|X̂ L
0 > 1) = Pr(X̂ L

τ > 1). Thus, in each case, we can

estimate the extremogram as the proportion of simulated tail
processes, over independent replicates, with an exceedance
of 1 at t = τ .

Rootzén (1988, Theorem 4.1) and de Haan et al. (1989)
derive both the extremal index and the cluster size distribution
for a process by first deriving the probability that the forward
tail process has i exceedances, so that there are at least i
values being in a cluster. Expressed in terms of the tail process
{X̂2

t }t≥0 for the squared GARCH this gives θ
(i)
X2 = Pr

(
#{t =

1, 2 . . . : X̂2
t > 1} = i − 1 | X̂2

0 > 1
)
. Then the extremal

index 0 < θX2 ≤ 1 of the squared GARCH process, is given
by θX2 = θ

(1)
X2 and the probability that a cluster is of size i

is given by πX2(i) = [θ(i)
X2 − θ

(i+1)
X2 ]/θ(1)

X2
for i = 1, 2, . . .,

with the reciprocal of themean of this cluster size distribution
being θX2 . Identical results hold for extremal indices θXU and
θXL for Xt and −Xt processes respectively.

6 Investigation of the performance of the
algorithms

6.1 Introduction

Throughout this section a range of GARCH(p, q) models
will be illustrated. The details of these models are given here
andwill be referenced subsequently as GARCHmodels A-E,
where
A: p = q = 2 with (α1, α2, β1, β2) = (0.3, 0.15, 0.2, 0.1)
so φ = 0.75.
B: p = q = 2with (α1, α2, β1, β2) = (0.07, 0.04, 0.8, 0.08)
so φ = 0.99.
C: p = q = 1 with (α1, β1) = (0.1, 0.9) so φ = 1.
D: p = q = 2 with (α1, α2, β1, β2) = (0.07, 0.03, 0.8, 0.1)
so φ = 1.
E: p = 0, q = 2 with (α1, α2) = (1.2, 0.5) so φ = 1.7.
We selected these volatility models to give a variety of
extremal behaviours, with all of these models known to be
strictly stationary. Models A and B are also weak stationary.
Models C and D, which are IGARCH models, and model E
(Francq and Zakoïan 2010, p. 35) are not weak stationary
as they have E(X2

t ) = ∞. With the exception of model C
all models have max(p, q) ≥ 2, so extremal properties can-
not be derived using existing methods of Laurini and Tawn
(2012). Model C, with max(p, q) = 1, is an IGARCH(1,1)
process, is not covered by previous results but it helps to
illustrate the new methods in a case where some analytical
solutions are possible. Model E is a ARCH(2) process. The
parameter φ increases from model A to E, with φ = 1 for
models C and D.

To illustrate the effect of different choices for the distri-
bution of the innovation Zt , throughout the remainder of the
paper we focus on the special cases [1] a scaled Student-tν
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distribution, [2] the skew Student-tν distribution introduced
in Azzalini and Capitanio (2003) and [3] the standard nor-
mal distribution. In each case the innovation distribution
has zero mean and unit variance. First consider the uni-
variate skew-t distribution, denoted by St(μ, ω, ξ, ν), where
(μ, ω, ξ, ν) ∈ R × R+ × R × (2,∞) are location, scale,
skewness and degrees of freedom parameters respectively.
For the existence of the variance of Z we require that ν > 2.
The distribution of Z has density

fZ (z;μ,ω, ξ, ν)

= 2

ω
fT (zS; ν)FT

(
zSξ

√
ν + 1

ν + z2S
; ν + 1

)
, z ∈ R

where zS = (z − μ)/ω, and fT (·; ν) and FT (·; ν) denote,
respectively, the density and distribution function of a
Student-t random variable with location and scale param-
eters 0 and 1 respectively and with ν degrees of freedom.
The moment conditions on Z of model (1) require that

ω =
[

ν

ν − 2
− b2ν,ξ

]−1/2

and μ = −ωbν,ξ ,

wherebν,ξ = ξ

(1 + ξ2)1/2

( ν

π

)1/2 �(ν/2 − 1/2)

�(ν/2)
,

with � being the gamma function and where ν and ξ are
constrained further to ensure that ω is a positive real number.
The parameter ξ ∈ R controls the skewness: ξ > 0 and ξ < 0
correspond to right and left skew respectively, and ξ = 0 to a
symmetric distribution. Important special cases arise when:
ξ = 0, Z is the (scaled) Student-tν distribution; ν → ∞, Z
is a skew-Normal distribution; ξ = 0 and ν → ∞, Z is the
standard normal distribution.

Table 1 presents values of γ, η, κ, θX2 , θXU , θXL and δ for
each of models A-E and for the three innovation distribu-
tions, where here, and subsequently, use of volatility model
Awith innovation distribution [1] is denoted asmodelA1 and
similarly for all possible 15 combinations. These values are
derived using our numerical methods and evidence for their
validity is provided in Sects. 6.2-6.6 for some of the mod-
els, and for all the rest in Laurini et al. (2022). Although the
Monte Carlo evaluation of these results are subject to noise,
it is possible to obtain any desired level of accuracy by run-
ning sufficient replicates and assessing the variability using
central limit results. Throughout, we have ensured that all
numerical values reported are accurate to the stated number
of decimal places with a very high probability.

6.2 Evaluation of � and�

Using expression (7) for the evaluation of γ , suggests using
Monte Carlo methods taking t to be very large. Through

Table 1 Values of key stationarity and extremal properties for models
A–E for three innovation distributions: 1 t3; 2 skew t3 with ξ = 1; and
3 Gaussian, with Model A3 denoting GARCH model formulation A
with innovation distribution 3. Empty entries for θXL are identical to
the associated θXU

Model γ η κ θX2 θXU θXL δ

A1 −0.472 0.017 1.27 0.64 0.76 0.50

A2 −0.486 0.016 1.23 0.66 0.76 0.74 0.80

A3 −0.340 0.020 2.37 0.59 0.72 0.50

B1 −0.039 0.004 1.12 0.31 0.41 0.50

B2 −0.042 0.004 1.09 0.34 0.44 0.33 0.73

B3 −0.017 0.003 1.92 0.16 0.24 0.50

C1 −0.030 0 1 0.21 0.29 0.50

C2 −0.034 0 1 0.24 0.33 0.24 0.69

C3 −0.008 0 1 0.03 0.05 0.50

D1 −0.025 0.002 1 0.21 0.29 0.50

D2 −0.029 0.002 1 0.25 0.33 0.23 0.69

D3 −0.006 0.002 1 0.03 0.05 0.50

E1 −0.621 0.262 0.65 0.27 0.40 0.50

E2 −0.637 0.252 0.68 0.29 0.45 0.39 0.55

E3 −0.175 0.218 0.25 0.04 0.07 0.50

Values reported are accurate to the number of decimal digits

Theorems 1 and 2, we have two new ways to evaluate γ

using (λ∗, η∗) and (λ, η) respectively. Of our methods, we
prefer Theorem 2 as we found it had superior computational
stability and reliability.We illustrate the performance of these
methods formodelA3,with similar results found for the other
models.

Figure 1 (left) shows that γt , evaluated using expres-
sion (7), has serious numerical instabilities for large t . The
plotted traces of ten independent realisations of γt appear to
have little variability, each with roughly the same negative
value for 500 < t < 2000. Critically though, the plotting
of each trace terminates at a random time point ti > 2000
for each of the i = 1, . . . , 10, with the numerically derived
values of γt = −∞ for t ≥ ti not plotted in Fig. 1 (left). For
large t all entries of the matrix At · · ·A1 are non-negative,
but at ti they are all calculated as being equal to 0 to com-
puter machine precision, and hence γti = −∞. For t > ti it
follows that γt = −∞. The value of ti varies over replica-
tions as it depends on the set of realisations of {Zt ; t ≤ ti }
in replicate i . These numerical findings suggest we cannot
draw conclusions about the convergence of γt , as t → ∞,
fromdirectMonteCarlo evaluation of γ using expression (7).
Similar numerical degenerate features were found using η∗

t ,
although the associated times of degeneracy, ti , were found
to be larger than in Fig. 1.

This numerical instability for evaluating γ does not appear
to have been reported. For example, estimates of γ using this
approach are presented forARCH(2) processes in Francq and
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Fig. 1 Monte Carlo properties for evaluation of γ for GARCH model A3 against iteration t : left shows γt ; right ηt . Both panels have the same 10
replicates of A1, . . . ,At displayed by greyscale lines. In the left panel each trace terminates at a random time ti for the i th replicate, with γt = −∞
for all t ≥ ti
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Fig. 2 Illustrations of Algorithm 1 convergence for model C3 at iter-
ations s = {0, 1, 2, 100}. Left, spectral distribution function shown
by thick grey solid line being H (0)

�̃
− (w) and the true limit distribution

H
�̂

− (w) is shown by thick black line. For s = 0 the 95% confidence

intervals are given by light grey lines. Right, kernel density estimate for
the particle mass. Left panel has s = 0, 1, 2 and s = 100 (only s = 0 is
visible as the other values are equal to the true limit); Right panel has
s = {1, 2, 100}: s = 1—dashed grey line, s = 2—dotted dark grey line
and s = 100 is the black thick solid line

Zakoïan (2010, p. 34/35), however they stop evaluating γt ,
when t = 1000, which is before we see the critical failure of
numerical evaluation in Fig. 1. By increasing t , for the cases
they study, we find identical numerical problems to those
experienced for model A3 in Fig. 1.

From Theorem 2, γ = E(ln λ) + limt→∞ ηt , with ηt
defined by (27). Critically, here each of the At terms in the
product are first divided by the associatedλt before thematrix
multiplication, thus avoiding any computer precision prob-
lems. Figure1 (right) shows that ηt is converging for each of
the same 10 replicates shown (left) and does not experience
any numerical instability; a finding that holds whatever the
value of t . The value we report for η = limt→∞ ηt is eval-
uated as the mean over the ten different realisations using
t = 3000, giving η = 0.019. We evaluated E(ln λ) by both
numerical integration and using theMonte Carlo approxima-
tion

∑t
i=1 ln(λi )/t for large t and obtained identical results

of−0.359 onceMonte Carlo noise is accounted for. Combin-
ing results we find that γ = −0.359 + 0.019 = −0.34 < 0,

showing that model A3 satisfies the strict stationarity condi-
tion.

6.3 Convergence of Algorithm 1

We illustrate the convergence of Algorithm 1 for models C3
andD3. First considermodelC3where the true distribution of
�̂0, here a scalar, is given by expression (13). Hence we can
compare the s iteration estimate H (s)

�̃
−(w) against the truth

H
�̂

−
0
(w). Figure2 illustrates this distributional convergence

as well as that of the distribution of the particle weights,m( j)
s

( j = 1, . . . , J ) of expression (30) on iteration s, where we
take J = 106. First note that the 95% pointwise confidence
intervals of the initial estimate H (0)

�̃
− given in Sect. 4 do not

contain the true target distribution H
�̂

−
0
(w). Despite having

a good initial guess for Algorithm 1, there is a statistically
significant difference here due to the slow convergence of the
distribution of Pr(�−

0 < w|R0 > u) to H
�̂

−
0
(w) as u → ∞.
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Fig. 3 Convergence of Algorithm 1 for model D3 at iterations s =
{0, 1, 2, 100} with marginal distribution of the spectral measure con-
vergence for H

ϑ̃
(i)
s

(wi ), for i = 1, 2, 3 and the kernel density for the
particle mass. Line types are as for Fig. 2. The rightmost panel displays

s = {1, 2, 100}. Although we do not have an expression for the true
values of marginal distributions, our algorithm gives identical values
for these distributions for all iterations with s > 100. So it is reasonable
to interpret the algorithm to have converged by iteration s = 100 and
so for the distributions with s = 100 to be the truth

After one step of Algorithm 1 we have that H (s)

�̃
−(w) for

s ≥ 1 is equal to H
�̂

−
0
(w) to within visible detection, so

convergence is achieved in one step. Initially, i.e., for s = 0,
all particle weights are equal to J−1, but, as Fig. 2 (right)
shows, within an iteration they have quite a different dis-
tribution of weights and that this distribution essentially has
converged at s = 2 to its limit form. Thus Algorithm 1works
exceptionally well in this case where we know the answer.
Similar tests over other GARCH(1,1) processes gave iden-
tical convergence performances. We found almost perfect
convergence after one or two iterations whatever the initial
distribution estimate. This feature is consistent with there
being a unique solution for H

�̂
−
0
(w) for this model and that

our algorithm is robust and highly efficient in converging to
this limit.

Next we assess the convergence of H (s)

�̃
−(w), for model D3

where �̂
−
0 has three dimensional distributionwedonot know.

We cannot easily show graphically the full joint distribution
convergence and even for lower dimensional summaries we
canonly show the algorithmconverges to some limit. Figure3
illustrates convergence for each of the marginal distribu-
tions of H (s)

�̃
−(w) and the distribution of the particle weights

over iterations, for s = 0, 1, 2 and 100. We also assessed
(not shown) the convergence of the dependence structure
of H (s)

�̃
−(w) through monitoring how corr(ϑ̃(i)

s , ϑ̃
( j)
s ) con-

verges as s → ∞, for all 1 ≤ i < j ≤ p + q − 1, where
�̃

−
s = (ϑ̃

(1)
s , . . . , ϑ̃

(p+q−1)
s ). In all the cases we explored,

visual convergence was obtained before s = 10 and identical
values found for s > 100.

The same limit values were achieved for a wide range
of starting values which reassure us that there is a unique
limit. Although in our examples the selection of a good ini-
tialisation to the algorithm (Sect. 4) was not found to be
important on the convergence speed, we anticipate it could be
when the complexity of the GARCH(p, q) model increases.
Our extensive empirical findings in Sect. 7 and Laurini et al.
(2022) show that the limit we find using Algorithm 1 leads to

values of κ and the extremogram and extremal index all fully
in accord with long run simulations of the GARCH process,
for each of models A-E, which gives us extra confidence in
the convergence.

6.4 Evaluation of �

Basrak and Segers (2009), and subsequent authors, imply
that the way to evaluate κ is by numerical solution of the
limiting equation (16), although they do not illustrate this.
In Fig. 1 (left panel) we showed that there are major numer-
ical instabilities in evaluating ‖At · · ·A1‖ for large t ; so in
practice it is impossible to solve equation (16) directly. We
have developed a numerically robust approach for evaluat-
ing κ for any p and q, using Algorithm 1. Here we illustrate
this method and discuss the values of κ that are obtained for
models A-E.

To calculate κ we apply Algorithm 1, iterating over dif-
ferent values of k. Key to the solution is the evaluation of the
Monte Carlo estimate ρ̃k of ρk in expression (29). Figure4
shows ρ̃k against k for each of the models A3-E3. There is
clearly a unique solution for k > 0 to the equation ρ̃k = 1,
with the values of k = κ that solve this equation given in
Table 1. We restricted the Monte Carlo noise in the esti-
mates ρ̃k of ρk , for each value of k shown in Fig. 4, by taking
J = 106 and evaluated the Monte Carlo integral (29) with
104 replicates on Z to get κ to the required precision. To find
κ , from the curve of ρ̃k , we used an initial grid search coupled
with a bisection method.

Table 1 illustrates that φ has an impact on the value of
κ . When φ �= 1 no explicit relationship appears to hold
between φ and κ , as κ changes markedly with the innovation
distribution. When φ < 1 the shorter the tail of the innova-
tion distribution gives the larger κ and hence shorter tails of
theGARCH(p, q)marginal distribution;whereas the reverse
holds when φ > 1; and when φ = 1 then κ is invariant to the
innovation distribution, with κ = 1. The case when φ > 1
is somewhat surprising, as it might be expected that hav-
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Fig. 5 Diagnostic QQ plot for the marginal tail of the squared GARCH
models A3 and B3, left and right respectively, comparing empirical and
limit distributions. Results are based on 1000 simulations of 5 × 107

GARCH processes with threshold x the 0.99998marginal quantile. The

solid line has a gradient κ and the conditional quantiles of empirical
estimators are shown for 2.5% − 97.5% as the shaded region and for
25%, 50% and 75% quantiles as grey lines

ing a heavier tail innovation would result in a heavier tailed
process, whereas in fact the opposite occurs. This feature is
found to hold much more broadly, and can easily be illus-
trated in the GARCH(1,1) case. The explanation is that the
larger φ is the greater σ 2

t can grow over a period of time, and
ultimately the large σ 2

t values produce the extremes and not
isolated large Z2

t values.
Next, we illustrate that the derived value of κ is consis-

tent with the GARCH(p, q) process’ observed marginal tail.
The observable tail can be derived from long run simula-
tions. We compare the limiting probabilities Pr(X̂2

t > r |
X̂2
t > 1) = r−κ with the empirical estimate of the prob-

abilities Pr(X2
t > r x | X2

t > x) for very large x over a
range of r > 1. Figure5 shows this comparison for x being
the 0.99998 marginal quantile on a log-scale. If κ is correct
and x is large enough, the log-probabilities should be pro-
portional with gradient κ . The results show that the limit tail
is consistent with the empirical distribution subject to Monte
Carlo noise, and hence the κ value seems appropriate.

6.5 Extremogram

Figure 6 gives the extremogram χX2(τ ) for the squared of
GARCH process for models A3, A1, D3 and D1, with equiv-
alent plots for the other models given in Laurini et al. (2022).
In all cases the heavier tailed innovation distribution leads to
weaker extremal dependence at all lags. Models D3 and D1,
both IGARCH processes, exhibit much slower decay rates
in extremal dependence as lag τ increases than for models
A3 and A1 with φ < 1. The level of extremal dependence
appears to be strongly related to φ. Furthermore, we see
for models D3 and D1 that χX2(2) > χX2(1), with χX2(τ )

decaying monotonically for τ ≥ 2. We believe that the rea-
son for this feature is that β2 > max(α1, α2), which makes
the variance σ 2

t more likely to be larger at observations with
lag 2 than lag 1, and hence this induces stronger clustering
of extreme values two time points apart.
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Fig. 6 Extremogram (τ, χX2 (τ )) for squared GARCH processes of
models A3-A1 (top-bottom left panels) and D3-D1 (top-bottom right
panels). Black lines are our algorithm’s approximation of the true limit
values and the three grey lines are empirical extremogram estimates

χ̃X2 (τ, u), based on a sample of size n = 5 × 107, at u corresponding
to 0.99 (continuous solid light grey), 0.999 (dashed grey) and 0.9999
(dotted dark grey) quantiles of X2

t

An empirical estimate χ̃X2(τ, u), where u is a threshold,
of the extremogram of χX2(τ ) based on a sample of length
n from a GARCH(p, q) process is given by

χ̃X2(τ, u) =
n−τ∑

j=1

1(X2
j > u, X2

j+τ > u)/

n−τ∑

j=1

1(X2
j > u).

Figure 6 shows χ̃X2(τ, u) for large n and for three thresh-
old choices u corresponding quantiles of X2

t . This gives
strong evidence that our evaluation of χX2(τ ) is accurate.
Specifically, the agreement with limit values χX2(τ ) is very
good generally, with the empirical estimates suffering from
bias and variance trade-off, as with all threshold based esti-
mates. Model A has the slowest convergence of the empirical
estimators, but even here at the highest threshold there is
almost perfect overlap between empirical estimates and the
true values for all lags. In contrast, for model D the high-
est threshold produces the least good estimate, presumably
due to its high variance. Additional comparisons are given in
Laurini et al. (2022) for the other models.

6.6 Evaluation of the extremal index

Algorithms 1-3 give output values than can be used to evalu-
ate the extremal index, θX2 , θXU and θXL , for processes X2

t ,
Xt and −Xt respectively by using the methods discussed in
Sect. 5.2. Here we show that these values are consistent with
empirical estimates obtained from long-run simulations from
the GARCH(p, q) process.

Wecan estimate the extremal index for a stationaryprocess
{Vt } using the runs estimator, θ̃V (u,m), proposed by Smith
andWeissman (1994), basedon a sample of sizen, a threshold
u and a run length m, where

θ̃V (u,m) = P̂r
(
Vt < u; t = 1, 2, . . . ,m | V0 > u

)

=
∑n−m

j=1 1(max(Vj+1, . . . , Vj+m) < u, Vj > u)
∑n−m

j=1 1(Vj > u)
.

We take Vt = X2
t , Xt and −Xt respectively, where Xt is a

GARCH(p, q) process. We compare the runs estimator (for
a range of u and m) with our values of the extremal indices.
As the selection of the run length m in the runs estimator is
subjective (we takem = 100 and 1000 to assess sensitivity to
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Fig. 7 The extremal indices θX2 , θXU and θXL for the model D2 with
asymmetric Z (left to right), as calculated using our algorithms, shown
by the horizontal dotted line. Runs estimator (m = 100 (+) and
m = 1000 (×)) and the intervals estimator (◦) are illustrated with their

estimated 95% confidence intervals (shaded regions) based on 100 inde-
pendent replicates of n = 108 sample data. The number of exceedances
for each u are reported on the top axis

this choice), we also consider the intervals estimator of Ferro
and Segers (2003) where m is objectively chosen for each u
based on the distribution of inter-arrival times of consecutive
exceedances of u by {Vt }.

For model D2, Fig. 7 shows θX2 , θXU and θXL together
with the runs estimator (m = 100 and 1000) and the inter-
vals estimator, based on n = 108, for a range of values of
u and then averaged over 100 independent replicates. Also
shown are the estimated 95% confidence intervals (of these
averaged estimators), with uncertainty increasing with larger
u. Of the two estimators, the intervals estimator is more sta-
ble and typically closest to the limit value. In each case we
see that the runs estimator with m = 100 is overestimating
all three extremal indices for all thresholds, indicating that
this choice of m is too small for the level of extremal depen-
dence. Although the runs estimator with m = 1000 and the
intervals estimator perform similarly, they both suffer under-
estimation for lower thresholds. It is reassuring that at the
highest thresholds our values of the extremal indices typi-
cally fall inside the confidence intervals despite them being
narrow, e.g., of width 0.01 − 0.02. Extensive comparisons,
with similar conclusions, are given in Laurini et al. (2022)
for all 15 of the models covered in Table 1.

Now that we are confident that we have reliable estimates
of the extremal index, we examine the implications for the
three extremal indices for models A-E, and each innovation
distributions, with these values given in Table 1. Recall that
the extremal index, θV , of the process {Vt } determines the
average size of clusters of extremes of {Vt } via 1/θV . We find
that shorter tailed innovations give larger clusters on average.
For increasing φ, for 0 < φ ≤ 1, we have increasing average
cluster sizes, but that pattern does not follow when φ > 1.
In all cases, min(θXL , θXU ) ≥ θX2 , indicating the extremes
of the processes {Xt } and {−Xt } exhibit less clustering on
average than the {X2

t } process.When ξ = 0 then θXL = θXU ,
whereas for ξ > 0more clustering occurs in the upper than in

the lower tail of the GARCH(p, q) process, with the reverse
when ξ < 0.

7 Study of extremal properties for
subclasses of the GARCH(2,2) process

7.1 Subclass specification

AlthoughSect. 6 illustrates that our algorithmsprovide robust
methods for the computational evaluation of extremal prop-
erties of a general GARCH(p, q) process, a systematic study
of the extremal properties of a general GARCH(p, q) pro-
cess is beyond the scope of this paper. However, we consider
some investigation of these properties is justified for simple
subclasses, to show how different features of the construction
affect the various extremal characteristics.

We consider the following classes of GARCH(2, 2) with
Gaussian innovations, Class 1: α1 = α2 = ωφ/2, β1 =
β2 = (1 − ω)φ/2 and Class 2: α1 = β1 = ωφ/2, α2 =
β2 = (1 − ω)φ/2, with φ > 0 having its usual meaning (2).
Here 0 < ω < 1 controls the relative importance of the past
process values relative to the past volatility values (Class 1)
and values of process and volatility at t − 1 to t − 2 (Class
2), with increasing ω giving more weight the former in each
case. For 0 < φ ≤ 1 the process is stationary, whereas the
necessary condition for strict stationarity when φ > 1, given
inSect. 2.2, impliesφ < 1/(1−ω) (Class 1) andφ < 2 (Class
2). So for these cases we need to check for strict stationarity
as well.

7.2 Tail index

Without restrictingφ to give strict stationarity, i.e., not check-
ing the value of γ to assess if strict stationarity applies, we
explored what κ values were given by applying Algorithm 1
for Classes 1 and 2. Figure8 plots the values of evaluated κ
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Fig. 8 Plot of κ (black) and κA (grey) against φ, for classes 1 (left)
and 2 (right): for ω = (0.25, 0.5, 0.75) corresponding to continuous,
dashed and dotted line types respectively. The vertical and horizontal

black dotted-and-dashed lines cross at φ = κ = 1. The values of φ

which our algorithms produce a value of κ = 0 correspond to GARCH
models that are not strictly stationary

against φ, for 0.5 ≤ φ ≤ 1.5. For both classes and all stud-
iedω values, the derived values for κ decreasemonotonically
with increasing φ. There are three conclusions we can draw
from these results which have broader implications.

Firstly, for each of the examples in Fig. 8 the evaluated
value is κ = 0 for large φ. In this plot we report a value
κ = 0 when the only solution of k to the equation (19) is
k = 0 (we realise that κ cannot really be 0), with these cases
arising when ρk is found to be an increasing function for
k ≥ 0. The value of φ for which κ = 0 is achieved appears
to be different for each example. We denote this by φS , with
φS = min{φ > 0 : κ = 0}, and note that φS > 1 in all cases.

As κ = 0 for φ > φS is obtained using Algorithm 1 this
suggests that for these φ values the Class 1 and 2 examples
are not like the processes studied in Fig. 4,whichwere strictly
stationaryprocesses.Apossible reason for this could be thatκ
is found to be 0 byAlgorithm1when the process is not strictly
stationary. We investigated this supposition by testing for
strict stationarity of the example classes for values (φL , φU )

of φ, which are within 0.01 of φS , with 1 < φL < φS < φU .
In all the examples we evaluated γ for (φL , φU ) and found
that φL gave γ < 0 and all φU gave γ > 0, with the odd case
requiring longer runs to reduce Monte Carlo noise issues.
For this example it appears that 0 < φ < φS is required
for strict stationarity. As there is nothing special about these
classes of examples it appears that strict stationarity holds if
and only if the only solution to equation (19) is κ > 0. If this
were found to hold for all GARCH(p, q) processes then this
would offer a novel and computationally efficient way to test
for strict stationarity, with some benefits over the approach
we developed in Theorem 2.

Secondly, Fig. 8 shows thatφ strongly influences the value
of κ , though κ also varies over ω. Critically we have that,
whatever the value of ω, for Classes 1 and 2 that 0 < φ <

1, φ = 1, φ > 1 if and only if κ > 1, κ = 1, 0 ≤ κ < 1,

respectively. These findings about κ and φ are consistent
with our results in Table 1 for models A-E, and with exten-
sive empirical evidence we have obtained for a range of
GARCH(p, q) process with different p and q and different
innovation tail decays, so we believe they are indicative of
a general result. It is also noteworthy that κ is much more
sensitive toω in Class 1 than Class 2, suggesting that the pro-
cess term values are much more important than the volatility
terms in determining κ .

Thirdly, if our supposition that φ = 1 if and only if κ = 1
for any IGARCH(p, q) process with max(p, q) ≥ 2 held
generally, it would be a novel result. This result was proved
for p = q = 1 by Mikosch and Stărică (2000) and κ = 1
impliesφ = 1 can be shown general usingBreiman’s Lemma
(as noted by a referee). However, the result should not be
a surprise as the finite mean and infinite variance of the
IGARCH(p, q) process implies that 0.5 < κ ≤ 1. So if
our claim is true it gives that all IGARCH(p, q) processes
have E(|Xt |2−ε) < ∞ for any ε ∈ (0, 2]. This claim for κ

is not too surprising though, as the variance of Xt is infinite
when φ = 1 but is finite when φ < 1, suggesting that κ , for
the IGARCH(p, q), is the boundary point for having a finite
variance.

Aweakness ofAlgorithm1 is that it is rather black-boxand
requires considerable numerical exploration to gain insight
into how key stochastic features like (λ∗, η∗) or (λ, η) influ-
ence the value of κ . To provide some insight into the role of
these features we have developed a relatively good approx-
imation κA for κ which can be expressed transparently and
trivially as a function of these features. We used a range of
heuristic arguments and empirical investigations, to propose
κA > 0 as the unique positive solution the equation

E
([λ exp(η)]κA) = 1, (34)

123



Statistics and Computing (2022) 32 :104 Page 19 of 22 104

α1

β 1

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.25
0.400.600.800.900.95

α2

β 2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.10

0.200.400.600.800.900.95

Fig. 9 Contour plots for the extremal index θXU for the GARCH(2, 2) process: left, as function of (α1, β1) with α2 = β2 = 0.05; right, as function
of (α2, β2) with α1 = β1 = 0.05. In both panels the innovation Zt is standard normal and the grey dashed line is the IGARCH(2, 2) model

whereλ and η are defined in Sect. 3.3. To explain a little about
where κA comes from consider the GARCH(1,1) processes,
where in Sect. 3.3 we found that λ∗ = λ and η∗ = η = 0, yet
from Mikosch and Stărică (2000) we know that κ > 0 must
satisfy E[(α1Z2

t +β1)
κ ] = 1, which is simply equation (34)

in this case, so here κA = κ . Figure8 shows that κA generally
provides an excellent approximation to κ in terms how it
varies with φ and ω for examples Classes 1 and 2, typically
being within 7% of the value of κ . Furthermore, for models
A3-E3we find κA to be, approximately +1%, +8%, 0%, +4%,
and -25% different than κ , respectively.

7.3 Extremal index

To see how the GARCH(2,2) parameters in affect the
extremal index, Fig. 9 presents a contour plot of θXU , with
normal Zt , over parameters (α1, α2, β1, β2). In each panel
we hold fixed two parameters and contour over the others.
Figure9, shows that θXU decreases, i.e., average cluster sizes
increase, with increasing φ, up to an IGARCH(2,2) model.
Consequently, contours are near linear in the parameters.
Unless max(β1, β2) is large then small values of α1 and α2

tend to lead to very limited clustering. This seems logical
as small α1 and α2 reduce the effect of the large X2

t value
on subsequent volatilities, so without β1 and β2 being large,
to pick up the momentum of the evolution of the event, the
large event is very likely to die out rapidly.Weobtain stronger
extremal dependence with larger values of the pair (α2, β2)

than for (α1, β1) for equal values of φ, as seen by values of
θXU being smaller in Fig. 9 right panel by comparison to the
left panel.

8 Discussion

Naïvely, it might seem that for a GARCH(p, q) process
the extremal features can be obtained sufficiently accurately

using empirical estimators based on simulated data fromvery
long runs. However, Figs. 5, 6 and 7 illustrate that this is
essentially impossible due to the needs for a very large thresh-
old u, to be selected for convergence to be assured, and the
need for large numbers of exceedances of u, for numerical
stability; collectively these lead to n needing to be too large
for computation. This is seen through the confidence intervals
and threshold sensitivity in such estimates given by Laurini
et al. (2022).

It appears likely that the new theory and methods we
present extend to the broader class of stochastic recur-
rence equations discussed by Collamore and Mentemeier
(2018). Specifically, for any process Yt ∈ R

d , with Yt =
AtYt−1+Bt , whereAt andBt are stochastic, i.i.d. sequences
ofmatrices and vectors respectively, satisfying the conditions
of Kesten (1973), then our paper gives methods which help
assess stationarity of the process; determine marginal distri-
bution tail index of Yt ; determine ways to simulate from the
spectral measure; and are able to generate a wide range of
extremal properties.

None of these properties can currently be obtained due to a
lack of appropriate numerically stable algorithms. The theory
and methods presented here overcome these limitations and
provide a broad toolbox of numerically robust approaches
to derive the extremal properties of a wide class of stochas-
tic recurrence equations. Extensions of our methods to allow
Pr(Zt = 0) > 0, to cover liquidity issues, missing values
and market closures, and to account for asymmetric volatil-
ity behaviour, both areas of active research (see Francq and
Zakoïan, 2013 and Francq and Sucarrat, 2021), will be par-
ticularly useful.

We focused on the limiting extremal properties, but
there is also interest in sub-asymptotic properties, e.g., sub-
asymptotic versions of the extremogram and the extremal
index given by
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χX (τ ; x) = Pr(Xt+τ > x | Xt > x),

and θX (x,m) = Pr(Xt < x; t = 1, 2, . . . ,m | X0 > x)

respectively, for large but finite x and a suitably large m.
These sub-asymptotic quantitiesmight converge quite slowly
to their respective limits χX (τ ) and θX . So it is worth evalu-
ating how this convergence behaves and obtaining values of
these extremal properties for values of x which are of rele-
vance to applications. We believe that it should be possible
to get such results using our methods in combination with
the techniques of Collamore and Mentemeier (2018).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10164-
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AppendixA:Boundsonmatrixproductnorms
for ARCH(q)

For the ARCH(q) process (i.e., a GARCH process with
p = 0), it is easiest to work from the q × q matrix At in
expression (3). Then, letting α(m) = max(α1, . . . αq−1),

‖At+1 · · ·A1‖ =

Z2
t+1

q∑

i=1

αi

q∑

j=1

a(t)
i, j + αq Z

2
t+1

q∑

j=1

a(t)
q, j +

q−1∑

i=1

q∑

j=1

a(t)
i, j

≤ [max(α(m), αq)Z
2
t+1 + 1]‖At · · ·A1‖,

by combining upper bounds on the first two terms and adding
in the a(t)

q, j values for the final term. Similarly, by dropping

the first term, and joining lower bounds on the last two terms,
gives

‖At+1 · · ·A1‖ ≥ min(1, αq Z
2
t+1)‖At · · ·A1‖.

By iteration of bounds, and defining ct (Z1) = t−1 ln [‖A1‖/
(αq Z2

1)
]
, then η∗

t , in (24), satisfies

1

t

t∑

i=2

ln[min(1, 1/αq Z
2
i )] + ct (Z1) ≤ η∗

t

≤ 1

t

t∑

i=2

ln[(max(α(m), αq)Z
2
i + 1)/(αq Z

2
i )] + ct (Z1).

If η∗ := limt→∞ η∗
t exists, then −∞ < cL ≤ η∗ ≤ cU <

∞, with

cL = E(−2 ln |Z | − ln αq | Z2 > 1/αq)Pr(Z
2 > 1/αq),

cU = E{ln[(max(α(m), αq)Z
2 + 1)/(αq Z

2)]}, (35)

where this follows by the strong law of large numbers and
that E(| ln λ∗

t |) < ∞.

Appendix B: Lemmas and proofs of theorems

Proof of Lemma 1 First we show that E(| ln λ∗
t |) < ∞ holds

for all GARCH(p, q) processes with p > 0. We have that
for z2 > max[1, (1 − βp)/αq ], then | ln(αq z2 + βp)| =
ln(αq z2+βp) < ln((αq +βp)z2) = ln(αq +βp)+2 ln |z| <

ln(αq+βp)+2|z|. By this inequality anddefinition (1),which
requires E(Z2

t ) = 1, for the upper tail of |Z | there are no con-
ditions required for convergence of E(| ln λ∗

t |). Similarly,
for the lower tail of |Z |, λ∗

t ≥ βp > 0 so there are con-
vergence issues. However, when p = 0, i.e., an ARCH(q),
| ln λ∗

t | = | ln αq | + 2 ln |z|, so E(ln|Z |)) < ∞ as required.
We now show that E(| ln λt |) < ∞ holds for all

GARCH(p, q) processes. To do this we derive the tail
behaviour of λt by studying the limiting properties of the
solutions of the eigenvalue equation for values of Z2

t tend-
ing to ∞ and 0 respectively. The eigenvalues s of matrix At

are the solutions to the equation det(At − s I) = 0, where
I is the (p + q) × (p + q) identity matrix. Thus s satisfies
s p+q −∑max(p,q)

i=1 λ+
i s

p+q−i = 0, where λ+
i = αi Z2

t + βi ,
for i = 1, . . . ,max(p, q) where we define αi = 0 for
i > q and βi = 0 for i > p. It follows that smin(p,q)(sm −∑max(p,q)

i=1 λ+
i s

m−i ) = 0, there are at least min(p, q) eigen-
values which are zero and for m = max(p, q) the non-zero
eigenvalues satisfy

sm −
m∑

i=1

λ+
i s

m−i = 0.
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Now consider the behaviour of the largest eigenvalue λt
for large Z2

t = z. In this case the βi terms are negligible
in λ+

i for all i . Let I denote the index of the first non-
zero αi , so by construction I ≤ q. Then sm − z2αI sm−I −
z2
∑m

i=I+1 αi sm−i = o(1), where we can drop the terms
i = 1, . . . , I − 1 as these are zero. Substitute s = |z|2/I y
and solve for y. This gives that as |z| → ∞

|z|2t/I ym − αI |z|2t/I ym−I + o(|z|2t/I ) = 0.

So as |z| → ∞ we have that y = α
I/(Im+I−m)
I + o(1) and

so s = α
I/(Im+I−m)
I |z|2/I + o(|z|2/I ), and all other eigen-

values are smaller order. Thus there exists some constants
0 < C1 < C2 such that C1 < λt < C2|z|2/I ≤ Cz2 for large
z2. So as forλ∗

t , no additional conditions need to hold. Similar
arguments produce a lower bound on λt as z2 → 0, although
we prove the result differently for the GARCH p > 0 and
ARCH cases. First consider p > 0, then in the limit as
|z| → 0 then

sm −
p∑

i=1

βi s
m−i = sm−p(s p −

p∑

i=1

βi s
p−i ) = 0.

The p non-zero roots have product−βp, so the root (possible
complex) with the largest magnitude is bounded away from
zero. Hence there exists a constant c > 0, such that λt > c. In
the ARCH case then s = (αI )

1/I |z|2/I (1+ o(1)), so ln λt =
ln s is linear in ln |z|, so we require that E(ln |Zt |) < ∞.

We now show that the products of λt and λ∗
t grow in a

related way

μt = 1

t
ln

(
t∏

i=1

λ∗
i

λi

)

= 1

t

t∑

i=1

ln λ∗
i − 1

t

t∑

i=1

ln λi
a.s.−→ E(ln λ∗) − E(ln λ) = μ,

as t → ∞. The convergence is given by the strong law of
large numbers and property (21). ��
Lemma 2 If α, β ∈ R with min(α, β) > 0 and there are
constants c, d with c ≤ d then for all s ≥ 0

c

max(α, β)
≤ c(s + 1)

αs + β
<

d(s + 1) + 1

αs + β

≤ max

(
d + 1

β
,
d

α

)
.

Proof of Lemma 2 For s ≥ 0 note that

g1(s) = c(s + 1)

αs + β
= c

α
+ c(α − β)

α(αs + β)

then g1(s) is monotone decreasing, increasing and a constant
if α > β, α < β and α = β respectively. So, for example, in
the α > β case it follows that the minimum of g1(s) occurs
as s → ∞ giving a minimum value of c/α. Similarly,

g2(s) = d(s + 1) + 1

αs + β
= d

α
+ β

(d + 1)/β − d/α

αs + β

with this being decreasing, increasing and constant depend-
ing on whether (d + 1)/β − d/α > 0,< 0 or = 0. The
upper bound for g2(s) follows similarly to the lower bound
for g1(s). ��
Proof of Theorem 1 Under the conditions of Lemma 1 we
have E(| ln λ∗

t |) < ∞, so as t → ∞

η∗
t = 1

t
ln

∥∥∥∥∥

t∏

i=1

(
At+1−i

λ∗
t+1−i

)∥∥∥∥∥ = 1

t
ln

(
‖∏t

i=1 At+1−i‖∏t
i=1 λ∗

t+1−i

)

= γt − 1

t
ln

(
t∏

i=1

λ∗
i

)

= γt − 1

t

t∑

i=1

ln(λ∗
i )

a.s.−→ γ − E(ln λ∗)

where in the first line the equality holds due to linearity of
norms, and in the second line the convergence step γt

a.s.−→ γ

from limit (7) and
∑t

i=1 ln λ∗
i /t

a.s.−→ E(ln λ∗) < ∞ due
to the strong law of large numbers (Grimmett and Stirzaker
2001). So limt→∞ η∗

t must converge almost surely to a con-
stant γ − E(ln λ∗) with the limit having deterministic finite
bounds (26) and (35) for p > 0 and p = 0 cases respectively.
Denoting limt→∞ η∗

t by η∗ we have that γ = E(ln λ∗)+η∗.
��

Proof of Theorem 2 The conditions of Lemma 1 ensure that
both E(| ln λ∗

t |) < ∞ and E(| ln λt |) < ∞ hold, and withμt

and μ as defined by Lemma 1, then as t → ∞ we have that

ηt = 1

t
ln‖�t‖ = 1

t
ln

(
‖∏t

i=1 At+1−i‖∏t
i=1 λt+1−i

)

= 1

t
ln

(
‖∏t

i=1 At+1−i‖∏t
i=1 λ∗

t+1−i

×
t∏

i=1

λ∗
t+1−i

λt+1−i

)

= 1

t
ln

(∥∥∥∥∥

t∏

i=1

(At+1−i

λ∗
t+1−i

)∥∥∥∥∥

)
+ 1

t
ln

(
t∏

i=1

λ∗
t+1−i

λt+1−i

)

= η∗
t + μt

a.s.−→ η∗ + μ,

where the almost sure limit follows from Theorem 1 and
Lemma 1. So η = η∗+μ. FromTheorem 1 and the definition
of μ we have that γ = η∗ + E(ln λ∗) = η −μ+ E(ln λ∗) =
η + E(ln λ). ��
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