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A B S T R A C T   

Integrated energy systems have recently gained primary importance in clean energy transition. The combination 
of the electricity, heating and gas sectors can improve the overall system efficiency and integration of renewables 
by exploiting the synergies among the energy vectors. In particular, real-time optimization tools based on Model 
Predictive Control (MPC) can considerably improve the performance of systems with several conversion units 
and distribution networks by automatically coordinating all interacting technologies. Despite the relevance of 
several simulation studies on the topic, however, it is significantly harder to have an experimental demonstration 
of this improvement. This work presents a methodology for the real-world implementation of a novel smart 
control strategy for integrated energy systems, based on two coordinated MPC levels, which optimize the 
operation of all conversion units and all energy vectors in the short- and long-term, respectively, to account also 
for economic incentives on critical units. The strategy that was previously developed and evaluated in a simu
lation environment has now been implemented, as a supervisory controller, in the integrated energy system of a 
hospital in Italy. The optimal control logic is easily actuated by dynamically communicating the optimal set- 
points to the existing Building Management System, without having to alter the system configuration. Field 
data collected over a two-year period, firstly when it was business as usual and when the new operation was 
introduced, show that the MPC increased the economic margin and revenues from yearly incentives and lowered 
the amount of electricity purchased, reducing dependency on the power grid.   

1. Introduction 

The clean energy transition is a fundamental pathway required to 
reduce energy-related carbon emissions and mitigate the effects of 
climate change. Among the steps that should be taken, there is the 
efficient coordination of different energy production technologies in 
integrated energy systems [1]. They involve the integration of elec
tricity, heating, cooling [2] and even the transportation sector [3] 
within the same energy system concept, with several advantages in 
terms of flexibility [4] and overall efficiency [5]. 

In the past, operating individual energy systems was rather 
straightforward, as it was sufficient to coordinate the available plant 
with the demand of a given energy vector, providing a linear energy flow 
from the source to the end-user. However, nowadays a new paradigm of 
integrated energy systems has emerged, with the contribution of energy 
distribution networks and interconnected flows of different energy 

vectors (i.e. energy is subject to several conversion processes from one 
form to another in order to be stored or transferred more efficiently). 
This concept has brought about the need for advanced techniques to 
cope with this higher complexity. In particular, these systems can 
become “smart” with the addition of a smart control strategy, i.e. 
automatic and with advanced optimization features. 

Several new methods for the design, optimal management and con
trol of integrated energy systems have been proposed in the scientific 
literature. For instance, the optimal sizing of on-grid and off-grid sys
tems with the integration of renewable energy sources and renewable 
fuels is carried out in Ref. [6], while the authors in Ref. [7] couple the 
system design with the optimization of its operation, reducing carbon 
emissions of a neighborhood with distributed resources by (30 ÷ 40) %. 

Another trend in research on complex energy systems is focusing on 
their operation optimization, as mentioned in Ref. [8]. This is done 
through multi-objective optimization methods [9], algorithms that 
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schedule an entire operating year with a lower level of detail [10], al
gorithms that allocate the load [11] and dispatch the short-term pro
duction with a day-ahead perspective [12], and even algorithms that 
combine both approaches [13]. 

Probably, however, advanced control is the most challenging task 
according to Ref. [14], as it requires combining the accuracy in the 
optimization results with a computational speed sufficient to produce a 
reliable control action. Li et al. [15] propose a hierarchical control 
strategy for multi-energy systems, divided into different tasks for fore
casting and dispatching the load, and finally for the control of the ac
tuators in the system. The strategy is tested in simulation by means of the 
TRNSYS software and demonstrates an optimal yearly performance. 
Similarly, Yan et al. [16] develop an energy management control 
method with a carbon trading scheme and verify it in a simulation 
example of a low-carbon economy. 

Another widely studied strategy is Model Predictive Control (MPC), 
which carries out optimal control of a given system by exploiting the 
prediction of a model and external inputs, and updates the control action 
at every defined time interval [17]. In the energy sector, the most 
widespread field of application of MPC is for heating and air condi
tioning systems, while implementation for more complex energy sys
tems (e.g. district heating networks in Ref. [18]) has emerged only 
recently. 

As for integrated energy systems, Hu et al. [19] develop a multi-time 
scale MPC strategy for the tasks of day-ahead scheduling and intra-day 
adjustments, at the end of which a 3.8% reduction in cost is achieved. 
A significant number of these studies presents predictive controllers 
enhanced with data-driven forecasting methods [20], e.g. multi-agent 
deep Q networks [21]. 

Nonetheless, it is paramount to highlight that all the cited works 
limit the presentation of their solutions to simulation environments 
[16]. This step is fundamental as it gives the possibility to simulta
neously test different control strategies and system configurations 
through evaluation platforms [22], but it does not allow innovative 
solutions to reach a high Technology Readiness Level [23] and be 
exploited in reality. 

Some examples of the real-world demonstration of innovative con
trol solutions are presented by Kim et al. [24] regarding the experi
mental tests of an MPC for a chiller unit, by the TEMPO project 
consortium [25] regarding a district heating smart substation optimally 
controlled by an MPC, and by La Bella and Del Corno [26] regarding an 
Italian heating system. Additionally, researchers from the STORM 
project successfully tested in two real applications a controller based on 
machine learning [27] capable of shifting heating and cooling demands 
in district energy networks [28]. These applications are noteworthy and 
show the superior performance of such algorithms. However, the liter
ature does not show the actual implementation and testing of an MPC 
controller in more complex integrated energy systems in order to obtain 
a demonstrated smart energy system. The main reasons for the lack of 
real-scale demonstrators of smart energy systems are (i) that it is difficult 
to setup such large-scale experimental sites (unlike individual conver
sion units or components) and (ii) there is the risk of compromising the 
quality of service provided to users or activities during testing. The latter 
is even more limiting when dealing with critical end-users, e.g. hospitals 
[29]. Furthermore, most experimental works on smart controllers are 
based on tests carried out for limited periods (e.g. days/weeks), and a 
long-term evaluation of these advanced solutions is not possible. 

This paper deals with these challenges by defining a methodology for 
the implementation, testing and demonstration of smart controllers for 
integrated energy systems. This methodology is applied to the energy 
system of a hospital where a novel control strategy has been successfully 
demonstrated. The novel strategy is constituted by a double optimiza
tion algorithm (with daily and yearly optimization horizons) for 
defining the control action while also considering the long-term goals 
[13]. This algorithm, developed by the authors, is considered relevant 
when economic incentives for production plants are assigned on a yearly 

basis, e.g. as in the case of high efficiency cogeneration units in the 
Italian legislation. While the work in Ref. [13] involved the preliminary 
phases of algorithm conceptualization and operability verification in a 
simulated environment, there was no interaction with the physical 
system. The real implementation, connection and long-term demon
stration of the novel strategy is, on the other hand, provided in the 
present paper. The work, carried out within the DISTRHEAT project 
[30], thus provides the following contributions to the literature.  

• The integrated methodology for developing, implementing and 
demonstrating a smart control strategy for integrated energy systems 
(with all conversion units and energy vectors), including the adopted 
communication protocols.  

• The real-world demonstration of the control strategy in an operating 
hospital, which is generally recognized as a critical environment due 
to the importance of the service provided and the difficulty in 
accessing or modifying the management strategy. 

• The implementation of security measures for ensuring a safe opera
tion if the new control algorithm encounters any issues, and the 
demonstration that these measures are successful in such a delicate 
test site.  

• The experimental data of two years of continuous operation, when it 
was business as usual and when the new strategy was introduced, in 
order to provide insights on the long-term performance of the latter 
(which provides significant added value compared to existing 
experimental studies). 

2. Methods 

This section describes the whole methodology adopted to concep
tualize a novel control algorithm for integrated energy systems and to 
bring it to the real-world demonstration phase. This is shown in Fig. 1. 

It can be noted that the methodology is divided into three main 
phases.  

1. Development phase. The integrated energy system of the case 
study, as well as the interactions between the systems sections and 
units, are analyzed. All relevant features of the conversion units and 
distribution networks in the integrated energy system are collected, 
e.g. from manufacturers’ datasheets and system diagrams. In paral
lel, the requirements and constraints of the new control strategy are 
determined. The strategy is conceptualized and the corresponding 
set of algorithms are selected and assembled (Section 3).  

2. Simulation phase. The new control strategy is evaluated on a digital 
twin of the case study (Section 3), in order to ensure its feasibility 
before interacting with the real system. It is also possible to verify the 
fulfillment of the requirements and to apply necessary changes. 

3. Demonstration phase. Once the control strategy has shown its po
tential in a virtual and safe environment, the final phase consists of 
implementing and demonstrating this with real field tests (Section 
4). 

All phases of the methodology are subject to feedback loops that, as 
soon as an issue or error is encountered, return back to a previous ac
tivity to make adjustments and improve the robustness of the controller. 
The lessons learnt from the issues emerged during this methodology are 
discussed in Section 4. 

The requirements of the control algorithm are derived from the 
specific case study but are considered valid for general integrated energy 
systems with similar features. The key requirements are identified as 
follows.  

• R-IES: Integrated Energy System. The new strategy should be designed 
to optimize the management of all sections of the systems, including 
all energy conversion units and multiple interacting energy vectors. 
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• R-MPC: a new management strategy based on Model Predictive Control 
(MPC). The new strategy should improve the control performance 
and robustness by continuously updating optimization in real-time, 
based on the prediction of a model [17]. The superiority of MPC 
over traditional strategies has been demonstrated in several studies 
[13,19,31].  

• R-MTS: Multiple Time Scales. The new management strategy should 
be designed not only to satisfy short-term objectives (e.g. operating 
cost over a few days), but also long-term goals and constraints. One 
of the key examples is the credits (i.e. a form of incentive repre
senting a revenue for the utility) awarded to high efficiency cogen
eration units based on yearly energy saving criteria [10]. In the 
Italian regulation, cogeneration units that meet two energy effi
ciency indices evaluated on yearly data [10,13] obtain incentives 
which are determined though a procedure based on yearly con
sumption/production. Hence, system operators are generally inter
ested in carrying out real-time control actions that also consider 
long-term future effects and, therefore, can bring long-term benefits.  

• R–CF: Computational Feasibility. The proposed algorithm has to be 
suitable for on-site implementation through standard computing 
units. 

In order to meet these requirements, the control strategy was struc
tured into two interacting MPC optimization levels, to deal with short- 
term and long-term features simultaneously. The related details as 
well as the verification of compliance with these requirements are 

reported in Section 3. 

3. Controller development and simulation 

This section gives an overview of development and simulation pha
ses (Fig. 1), which consist of conceptualizing the control algorithm and 
carrying out a preliminary verification in a simulation environment. 
Here, the basic architecture and main results of the application are 
summarized, while the full details are reported in Ref. [13]. 

Energy systems dedicated to complex end-users (e.g. hospitals) are 
subject to high complexity, not only because they involve several energy 
vectors, but because production, distribution in heating and cooling 
loops, and delivery have to be coordinated in the most profitable and 
safe way. In order to reach the control requirements defined in Section 2, 
the control problem of the integrated energy system (requirement R-IES) 
was divided into two interacting control modules.  

• LoTS module: a Long-Term Supervisory controller performs yearly 
scheduling of the integrated energy system, considering long-term 
goals and constraints coherently with requirement R-MTS. It de
termines the boundaries of operation for the real-time control actions 
[13], in order to lead the system to a more profitable overall per
formance. These problem and boundaries are updated daily.  

• ShoTS module: a Short-Term Supervisory controller solves a unit 
commitment problem for the integrated energy system over a few 
days, and determines the actual control action while meeting the 
LoTS boundaries. In detail, the energy inputs and outputs to each 
unit are variables of the optimization problem, and are calculated by 
solving that optimization problem, i.e. Mixed Integer Linear Pro
gramming. Being an MPC, the control is updated every 15 min during 
operation (meeting requirement R-MPC), taking into account infor
mation on the actual operation of the system. 

The controller models of the energy conversion units included in the 
modules are based on physical laws set with the parameters from the 
manufacturers’ datasheets (e.g. efficiency curves). The objective func
tion of both MPC modules is the minimization of the operating cost for 
the related prediction horizon, with all typical unit commitment con
straints (energy demand satisfaction and technical constraints [13]). 

The heating and cooling energy sent from the integrated energy 
system to the heating and cooling distribution branches is controlled 
through dedicated distribution modules, the demonstration of which 
was carried out in an operating environment in Ref. [31]. 

The novel prototype to be demonstrated is constituted of the inte
gration of the LoTS and ShoTS modules within an integrated energy 
system, as shown in Fig. 2. 

The controller code, as well as the communication between the 
modules, was firstly verified in a simulation environment operated in 
MATLAB®/Simulink®. The real system was, in this case, replaced by its 
digital twin, a detailed model that emulates its dynamic behavior in any 
external conditions. The digital twin was created through a library for 
high-detail simulation of energy systems developed by the authors and 
validated in previous studies [31]. In detail, the simulation models are 
based on physical laws (e.g. energy balance equation) set with param
eters from the network. 

The tests were carried out in a Model-in-the-Loop (MiL) configura
tion, by using the MPC modules to control the digital twin [13]. As noted 
in Section 2, this phase is paramount to ensure the effectiveness and 
feasibility of the controller before involving the real system to some 
extent. The relevant results that have to be checked are related to the 
overall yearly economic and energy performance as well as to the 
following indices.  

• Fulfilment of R-MTS: global energy results obtained at the end of the 
year, in order to verify if the long-term objectives are achieved 
thanks to the MPC controller. 

Fig. 1. Methodology for the development and demonstration of a novel control 
strategy for integrated energy systems. 
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• Fulfilment of R–CF: average computational time to compute the so
lution, in order to understand if each control module is able to pro
duce a solution in a time interval that is compatible with the MPC 
implementation (i.e. 15 min for ShoTS, 1 day for LoTS). 

The MiL tests involved the simulation of the integrated energy sys
tem, including all energy conversion units and heating and cooling 
distribution networks, for a realistic operating year in two situations: the 
business-as-usual (BaU) management (i.e. standard operating strategy 
based on scheduled set-points) and the MPC management (i.e. set-points 
for plant operation established online by the MPC controller). The 
boundary conditions and disturbances (i.e. the way the environment 
interacts with the system) were the same for the two situations in order 
to provide a valid comparison. 

The most significant results [13] that emerged from the simulation 
phase were summarized as follows. 

• The overall operating cost was reduced by 10% in the MPC opera
tion, compared to the BaU.  

• Despite an increase in fuel consumption by 9.9%, the purchase of 
electricity in the MPC operation was reduced by 27%, indicating a 
lower dependency on the power grid. 

The overall efficiency and primary energy saving of the cogeneration 
unit were increased by 5% and 12%, respectively, due to a lower amount 
of heat dissipated into the environment and to a more profitable oper
ation of all conversion units. This led to higher revenues deriving from a 
10% increase in energy efficiency credits for high efficiency cogenera
tion (R-MTS).  

• The computational time for all ShoTS solutions (R–CF) was always 
shorter than 20 s with a standard laptop, with the most part of the 
occurrences shorter than 5 s. Since the ShoTS run times were much 
shorter than the time-step, and this was the most critical module 
from the computational point of view (the LoTS module is updated 
daily), controller feasibility in real implementation was confirmed.  

• Finally, the effectiveness of the proposed algorithm was assured by 
the fact that both control modules achieved convergence in all oc
currences, despite the variety of the boundary conditions encoun
tered throughout the year. 

It is concluded that the development and simulation phases were 
successful, as all requirements were achieved, as reported in Table 1. 
The controller was evaluated as suitable to be implemented in practice 
through the actual demonstration phase, presented in the following 
sections. 

4. Case study and implementation 

This section reports the full description of the case study, with a focus 

on the characteristics and composition of the energy system. Then, the 
controller installation is described, which was carried out according to 
the timeline shown in Fig. 3. 

After the selection of the test site, the measurement and control 
equipment were installed to monitor the plant performance and deter
mine the benchmark. Moreover, the Building Management System 
(BMS) was prepared for its integration with an external supervisor. 
Successively, the control code of the strategy described in Section 3 was 
implemented in the case study to operate in the background (i.e. collect 
the data, perform the calculation but not send any control command), to 
test its robustness without endangering the energy system or stopping 
the service. Finally it was linked to the BMS, and the data collection 
campaign to determine the new controller performance started. 

4.1. Case study description 

The case study is the Sant’Anna Hospital of Cona, close to the city of 
Ferrara (Emilia-Romagna region), in northern Italy. It has around 900 
beds and manages more than 27,000 hospitalizations per year. The 
hospital has demands of heating, cooling and electricity, as well as a 
demand for high-temperature energy for producing steam, which is used 
for other special utilities (e.g. sterilization department and laundry). The 
yearly demands of these energy vectors (for the year 2021), normalized 
with reference to electricity for confidentiality reasons, are reported in 
Table 2. 

The hospital buildings of the site (Fig. 4) are supplied by heating and 
cooling networks. These are fed by an integrated energy system (Fig. 5), 
the items of which are listed below.  

• Four identical natural gas-fed boilers;  
• Three identical natural gas-fed steam generators; 

Fig. 2. Architecture of the proposed control prototype for integrated energy systems.  

Table 1 
Compliance of the new control strategy with the established control 
requirements.  

Requirement Description Compliance of new strategy 

R-IES Control strategy should be 
designed to manage an 
integrated energy system 

Control algorithm is general 
and makes it possible to 
include any kind of energy 
vector and conversion unit 

R-MPC Control strategy should be 
optimal and updated in real-time 
(e.g. MPC) 

Control strategy is designed 
with two MPC optimization 
levels 

R-MTS Control strategy should be 
designed for multiple time scales 
to also account for long-term 
objectives 

Two interacting MPC levels 
allowed for 10% increase in 
yearly incentives 

R–CF Control strategy should be 
computationally feasible for on- 
site implementation 

All algorithm computations 
take less than 20 s (most 
occurrences are shorter than 5 
s) over whole year  
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• A cogeneration internal combustion engine, namely Combined Heat 
and Power (CHP), for producing electricity and heat at different 
temperature levels. Heat is recovered from the intercooler, oil cir
cuit, cooling water circuit and flue gases. It is used to heat a water 
flow which is sent to the heating circuit;  

• An absorption chiller (ABS), fed by a fraction of the heat recovered 
from the CHP;  

• Four identical electricity-fed chillers. 

The main technical characteristics from the datasheets of these units 
are reported in Table 3. 

The energy center is connected to the power grid, so that any surplus 
electricity from the CHP can be injected into the grid, while electricity is 
purchased when demand (including the power to the electric chillers) 
exceeds production. 

4.2. Monitoring equipment and data collection 

The monitoring network and its equipment was designed and 
installed to collect all the information needed to run the plant efficiently, 
gathering data about the status of the technical equipment and the en
ergy requirements of the buildings. Regarding the real-time consump
tion and energy flows through the main distribution hospital networks, 
several measuring devices have been installed in the site in order to 
monitor the real-time data. As well as the natural gas consumption, the 
heating, cooling and electrical loads were monitored through the vari
ables and sensors listed in Tables 4–6. 

It is worth mentioning that the steam generators, placed in a dedi
cated area, have little interaction with the rest of the infrastructure. 
Indeed, they provide heat for services that cannot be delayed and, 
therefore, cannot be included in the optimal management. Dedicated 
sensors and actuators were not installed. The natural gas supplied to the 
steam generators is accounted for in the total natural gas consumption, 
but the management of these units is not involved in the optimization. 

4.3. Demand forecast 

As shown above, the MPC needs to be fed by the forecast of the 
disturbances (i.e. the external inputs from the environment that cannot 
be directly controlled) in order to perform the optimization. In this case, 
typical disturbances are energy demands and costs. The methods 
adopted for energy demand forecasting are specialized for the timeframe 
they refer to. 

In detail, the first forecast addresses yearly demands (LoTS module) 
with a daily time resolution, which helps to gain a perspective of the 
overall energy needs and, consequently, to plan the energy production 
according to the maintenance schedule. This forecast is performed 
starting from historical data of consumption (e.g. electricity and natural 
gas) and production from conversion units. 

The second forecast (ShoTS module) defines the energy demand over 
the following few days with a quarter-hour timestep. This is performed 
through an Artificial Neural Network. 

Moreover, to feed both the modules with the required economic in
formation, a daily evaluation of energy price and their forecast for the 
rest of the year is performed according to electricity and fuel market 
price trends, maintenance of critical items and plant loads. 

4.3.1. LoTS yearly forecast 
The disturbances for the LoTS module consist of the daily energy 

demand of all vectors for the whole year. As mentioned, the demand 
forecast was carried out from historical data (e.g. natural gas con
sumption) and assumptions based on state-of-the-art techniques and 
legislation. 

4.3.1.1. Heating demand. The heating demand has been historically met 
by the boilers and the CHP unit. Therefore, the total heat production can 
be considered as equivalent to the sum of their productions which, in 
turn, can be evaluated starting from the natural gas consumption. Nat
ural gas from the network and the fraction feeding the CHP unit (mng,tot 
and mng,CHP, respectively) are available data. In order to find the actual 
demand, this production has been reduced by the distribution losses 
ηdistribution and heat exchangers losses ηth,exchange (assumed as 0.98 and 

Fig. 3. Timeline of implementation and demonstration of the control prototype 
in the hospital case study. 

Table 2 
Yearly energy demands of the hospital (for the year 2021). The values are 
normalized with reference to electricity, for confidentiality.   

Heat Cold Electricity Steam 

Normalized yearly energy demand [− ] 0.96 0.31 1 0.12  

Fig. 4. View of the Sant’Anna hospital of cona (ferrara, Italy).  
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0.99, respectively, according to Ref. [32]), and by the inlet heat to the 
absorption chiller Eth,ABS and to the steam boilers ESG (assumed ac
cording to their activation). These steps are reported in Eqs. (1)–(3): 

Eth,B =
(
mng,tot − mng,CHP

)
LHV ηB ηdistribution ηth,exchange (1)  

Eth,CHP =mng,CHP LHV ηth,CHP ηdistribution ηth,exchange (2)  

Eth,tot =Eth,B + Eth,CHP − Eth,ABS − ESG (3)  

where LHV is the fuel lower heating value, ηB is the boiler nominal ef
ficiency and ηCHP is the CHP thermal efficiency. 

4.3.1.2. Cooling demand. The cooling demand is met by the electric 
chillers and the absorption chiller. In order to evaluate the production of 
the electric chillers, the electrical energy consumption profile (i.e. the 
sum of the electrical energy bought from the grid and self-consumed 
from the CHP production) of the whole hospital is analyzed. A base
load for electric appliances is identified by the average load in the period 
from September to May, when space cooling is not active. The surplus 
electrical energy in the remainder of the year (June to August) is 
assumed to be the input to the electric chillers. This input is then con
verted into cooling energy in order to estimate the electric chiller pro
duction EC,EC in Eq. (4). The absorption chiller production EC,ABS is 
instead evaluated according to its activation as in Eq. (5). 

Fig. 5. Schematic representation of the hospital thermal power station with the energy conversion units and energy vectors. Heating and cooling flows are collected 
and sent to the district heating and cooling loops toward the buildings. B: boilers. CHP: Combined Heat and Power. ABS: absorption chiller. EC: electric chillers. SG: 
steam generators. 

Table 3 
Technical parameters of the conversion units in the thermal power station. The nominal output power is normalized with respect to the CHP electrical output for 
confidentiality reasons.  

Parameter Boiler CHP plant Absorption chiller Electric chiller Steam generator 

Number of units 4 1 1 4 3 
Input Natural gas Natural gas Heat Electricity Natural Gas 
Output Heat Electricity | Heat Cold Cold Steam 
Nominal output [− ] 2.6 1 | 0.93 0.52 1.6 1.3 
Nominal efficiency [− ] 0.92 0.447 | 0.422 0.77 2 0.87 
Supply temperature [◦C] 93 93 6 6 – 
Return temperature [◦C] 73 73 12 12 – 
Supply pressure [bar] – – – – 3  

Table 4 
Sensors installed for monitoring the heating load.  

Unit Energy flow Monitored variables Sensors installed 

CHP Heat output Supply/return 
temperature and 
volumetric flow rate 

Ultrasonic flow meter (E +
H Proline Prosonic Flow 91 
W), × 2 Pt100 thermometer 
(E + H RTD omnigrad 
TST310) 

High- 
temperature 
dissipated heat 
Low- 
temperature 
dissipated heat 

Boilers 
1–4 

Heat output Supply/return 
temperature and 
volumetric flow rate 

Ultrasonic flow meter (E +
H Proline Prosonic Flow 91 
W), × 2 Pt100 thermometer 
(E + H RTD omnigrad 
TST310)  

Table 5 
Sensors installed for monitoring the cooling load.  

Unit Energy flow Monitored 
variables 

Sensors installed 

Absorption 
chiller 

Heat input Supply/return 
temperature and 
volumetric flow 
rate 

Ultrasonic flow meter (E 
+ H Proline Prosonic 
Flow 91 W), × 2 Pt100 
thermometer (E + H 
RTD omnigrad TST310) 

Cooling energy 
output 

Overall Overall cooling 
energy 
(including 
electric chillers) 

Supply/return 
temperature and 
volumetric flow 
rate 

Ultrasonic flow meter (E 
+ H Proline Prosonic 
Flow 91 W), × 2 Pt100 
thermometer (E + H 
RTD omnigrad TST310)  
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Ec,EC =EEREC⋅Eel,EC⋅ηc,distribution⋅ηc,exchange (4)  

Ec,ABS =EERABS⋅Eth,ABS⋅ηc,distribution⋅ηc,exchange (5)  

with EEREC and EERABS being the energy efficiency ratios of the electric 
and absorption chillers, respectively. They are assumed constant, simi
larly to the assumptions adopted in the previous paragraph concerning 
the thermal efficiencies. 

The total cooling demand is represented by the sum of electric and 
absorption chillers cooling production reduced by the distribution and 
heat exchangers losses, as in Eq. (6): 

Ec,tot =
(
Ec,EC +Ec,ABS

)
ηc,distribution ηc,exchange (6)  

4.3.1.3. Electrical demand. The electrical energy demand Eel is evalu
ated starting from the net energy exchanged with the power grid and 
that produced by the CHP (ECHP,el). In order to evaluate the demand 
profile, the sum of these terms is then reduced by the electrical energy 
that feeds the electric chiller previously evaluated and by the losses due 
to distribution. These steps are represented in Eqs. (7) and (8): 

Eel =
(
Egrid,bought +ECHP,el − Egrid,sold − Eel,EC

)
ηel,distribution (7)  

ECHP,el =mng,CHP LHV ηel,CHP (8)  

4.3.2. ShoTS daily forecast 
The disturbances for the ShoTS module consist of the power demand 

of all energy vectors for a prediction horizon of 48 h, sampled every 15 
min. These values are forecasted by means of a multi-output Artificial 
Neural Network with the following input features.  

• Time features (hour, day, week and derivate trigonometric functions 
of the time instant that represent the elaboration of daily and intra- 
day trends of the considered variables [33]);  

• Demand of the previous 48 h sampled every 15 min. 

The Artificial Neural Network is trained with the data collected from 
the plant after the installation of the measurement equipment described 
in Section 4.2. The full procedure for the development of this method is 
reported in Refs. [33,34]. According to the MPC concept, the forecast is 
updated and used by the ShoTS module every new algorithm run, i.e. 
every 15 min. 

4.4. Controller implementation and communication protocol 

Nowadays, efficiently running utility plants needs a real-time data 
analysis, automatic data export processes, state-of-the-art control units 
and, above all, a large amount of data. All features and attributes were 
missing in the BaU control system. 

For this reason, a new, integrated and centralized SCADA system was 
installed and tested for managing energy production and dispatchment 

to the hospital utilities. In detail, all control and data logging units were 
remoted in the control room. For this, the following tasks were carried 
out.  

• Upgrading of the existing BMS software (from SE TAC Vista to SE 
EcoStruxure Building Automation);  

• Installing new control units (SE EcoStruxure Building SmartX Server 
AS-P);  

• Reviewing and updating the control logics of the CHP and ABS;  
• Integrating the new control units in the SCADA system. 

As for the MPC implementation, it was decided to run the MPC 
separately from the BMS, in order to guarantee continuity of service by 
maintaining a physical separation between the two systems. In this way, 
the MPC runs in parallel with the BaU control logic of the hospital 
thermal power station. A dedicated computer (with a resilient power 
supply unit) to run the MPC was installed in the site and the real-time 
communication between the BMS and the MPC was set up as in Fig. 6. 
The algorithm receives the disturbance forecast (Section 4.3) and data 
regarding the actual operation of the plants from the BMS. The algo
rithm calculates the optimal set-points of the flow variables and sends 
them to the BMS, which uses them to control the equipment in the real 
system. The variables that can be actively controlled through this 
configuration are.  

• Activation and modulation of the CHP;  
• Number of active boilers (for maintaining the supply temperature of 

the district heating);  
• Activation of the ABS. 

The electric chillers are activated in cascade to maintain the supply 
temperature of the cooling loop. 

Real-time local data are transferred between BMS and MPC through 
the standard industrial protocol Modbus TCP, considering the technical 
specifications of the BMS software. In detail, the BMS is configured as a 
Modbus TCP server, sharing variables with read and write access to 
external clients. The MPC, running on the dedicated computer in the 
same network of the BMS, is the only client with authorized access. 
Additionally, a connection to the utility network was implemented, in 
order to be able to access the MPC from remote locations (e.g. for 
maintenance, debugging and supervision purposes). 

As stated above, the primary requirement for the exploitation of the 
MPC strategy is that continuity of service is guaranteed. This is para
mount for any integrated energy system, but it is even more important 
for critical systems such as hospitals. In this respect, apart from the 
physical separation between the MPC and BaU control logic, an addi
tional backup security logic was installed in the BMS. This watchdog 
control logic switches back to the BaU operation written within the BMS 
as soon as any issue of the MPC is detected (e.g. the MPC does not reach 
convergence). In this way, the energy delivery is guaranteed, even if not 
optimal. Meanwhile, the detected algorithm error can be solved 
remotely by the system operator and the MPC control can be restored. 

The MPC implementation as well as the reliability of the backup 
watchdog control logic were verified during the debugging procedure 
described in Section 4.5. 

4.5. Debugging and testing procedure 

The hardware implementation of the MPC and the setup of the 
communication was carried out with the help of the local system inte
grator, responsible for the implementation of the Modbus TCP server. In 
parallel, the dedicated computer with the client software for real-time 
data exchange and optimization was installed (Section 4.4). 

The validation of the architecture and data exchange was verified 
during the commissioning phase by the system operator and system 
integrator. In this phase, data exchange between BMS and MPC was 

Table 6 
Sensors installed for monitoring the electricity load.  

Unit Energy flow Monitored 
variables 

Sensors installed 

Power grid 
connection 

Electrical 
energy sold to 
grid 

Voltage, 
current, power 
factor 

Enel Distribuzione Actaris 

Electrical 
energy 
purchased from 
grid 

CHP Electricity 
output 

Voltage, 
current, power 
factor 

High Precision 
Multifunction Electronic 
meter (Telematica sistemi 
MT860-MID)  
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verified to ensure that all the variables were correctly configured, and 
writing access was guaranteed for the set-points identified. 

As is well-known, a key aspect was to maintain a high level of reli
ability and to guarantee continuity of service, due to its critical impor
tance for the hospital. To achieve this, the writing procedure of the new 
set-points was firstly tested offline (i.e. with the equipment locally 
disconnected from the BMS control and the algorithm running in the 
background). More in detail, the MPC controller was set up to carry out 
the real-time optimization based on the data exchanged with the BMS. 
After the first implementation, a debugging procedure was implemented 
in order to monitor the system and, when necessary, tune the parameters 
related to the physical models adopted during the optimization process. 
This was implemented through the analysis of the log data produced by 
the MPC algorithm, which were saved in local files and sent to a 
centralized database of the system operator for data analysis. 

The main issues encountered and solved during the implementation 
and debugging phase are reported in Table 7. Finally, after solving the 
derived issues, the robustness of the algorithm and of the communica
tion protocols was verified. Hence, the writing procedure of the new set- 
points was transferred online: the MPC set-points were written in the 
BMS and sent to actually control the equipment. The positive results in 
these final tests concluded the validation procedure. 

5. Results and discussion 

This section presents the experimental results obtained from the data 
collection campaigns in the hospital test site. The data collected during 
BaU operation ranges from January 2021 to February 2022, while data 

collected with the MPC are related to the period March 2022 to 
December 2022 (Fig. 3). 

Firstly, the benchmark is defined through linear regression, in order 
to prevent the comparison between different operating modes being 
affected by external conditions. Then, the BaU and MPC operation are 
compared. Finally, the overall performance of the new strategy is 
evaluated after normalizing the BaU and MPC results with respect to the 
benchmark. 

5.1. Definition of the benchmark 

The process of defining the benchmark of the thermal power station 
after the first monitoring campaign was carried out considering the test 
site characteristics and the energy plant architecture. On the one hand, 
no structural or substantial modifications were made to the energy plant 
configuration. On the other hand, to achieve accurate comparisons be
tween different periods, it is necessary to isolate the effect external 
factors have on the energy data, e.g. plant availability and weather 
conditions, which influence the hospital energy needs. 

The procedure generally adopted by the utility consists of deter
mining the benchmark of the integrated energy system independently of 
the changes in the external environment (outdoor temperature, varia
tion of heated volume, etc.). Regression analysis was introduced on the 
test site, in order to apply an unbiased comparison between different 
control strategies (in this case, BaU vs. MPC), since all the external and 
non-controllable effects have been isolated. 

The procedure to obtain this benchmark for comparison consists of 
the following steps.  

1. Identification of the benchmark energy parameters;  
2. Determination of the independent external variables to be used for 

the regression process;  
3. Elaboration of the regression mathematical model;  
4. Normalization of the benchmark energy parameters with respect to 

the related independent external variables. 

In this work, linear regression on the thermal power station 

Fig. 6. Communication between the MPC computer for the control algorithm and the existing BMS of the hospital.  

Table 7 
Most frequent operating issues of the MPC controller implemented in the real 
site and related solving action.  

Issue Cause Action 

Absence of data in 
remote database 

Issues with remote 
database 

Contact IT Support 

Gateway offline Contact local plant operators to 
check connection and reset 
gateway 

PC offline Contact local plant operators to 
check PC status and reset it 

No modbus 
communication 

Contact local plant operators to 
check ethernet cables. Eventually 
reset PC remotely 

No optimization 
results produced 

Error in data 
exchange 

Correction of data exchange format 

MPC scheduler 
stopped 

Identification of bug in MPC code 
and restart of scheduler 

Optimization results 
not correct 

MPC algorithm not 
correctly tuned 

Analysis of results and 
identification of incorrect 
parameter to be changed  

Table 8 
Acceptance criteria of the regression analysis for the definition of the benchmark 
operation.  

Parameter Description Acceptance 
criteria 

R2 Coefficient of Determination of regression >0.75 
CV RMSE Coefficient of Variation of Root Mean Square Error <0.2 
STAT T t-statistic of each independent variable >2 
MBE Mean Bias Error, i.e. average value of residuals 

between real value and predicted by model 
<0.005%  
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production and hospital energy needs was elaborated, in compliance 
with the acceptance criteria defined in Table 8. 

Considering the type of application and the test-site characteristics, 
the following assumptions were made.  

• static variations on energy consumption are not considered, as no 
major efficiency/architectural interventions were made on the test 
site;  

• variations in hospital room occupancies and heated volume were 
neglected due to their limited impact and the insufficient statistical 
accuracy of the available data; 

• the standard operation of the CHP was at a fixed point (fixed elec
tricity output), so its benchmark electricity production is only 
affected by plant availability (i.e. when the plant is under mainte
nance or is switched off for technical reasons, the availability is set to 
zero to eliminate the influence of these particular conditions on 
regression);  

• steam consumption was not considered, as the steam circuit is 
operated independently from the other energy networks. 

The external variables used for regression are the heating degree 
days HDD (calculated with a reference temperature of 20 ◦C), the 
cooling degree days CDD (calculated with a reference temperature of 
18 ◦C), and the availability of the CHP plant. The obtained linear 
regression models are reported in Eqs. (9)–(13), with ai, bi and ci being 
the regression coefficients to be determined: 

ECHP = a1⋅hCHP + b1 (9)  

HCHP = a2⋅hCHP + b2⋅HDD + c2 (10)  

NGCHP = a3⋅hCHP + b3 (11)  

NGth = a4⋅HDD + b4 (12)  

CABS = a5⋅hCHP + b5⋅CDD + c5 (13)  

where.  

• ECHP is the CHP electricity production;  
• hCHP is the CHP availability;  
• HCHP is the CHP useful heat production (including heat sent to the 

ABS);  
• NGCHP is the natural gas consumption of the CHP;  
• NGth is the natural gas consumption for heating use;  
• CABS is the cooling production of the ABS; 

The results of the benchmark analysis, applied to the monthly data 
collected from the previous year, are summarized in Table 9. 

Considering the results of the regression, the only regression model 
underperforming with respect to the thresholds identified is the ABS 
cooling production model, which is based on the CHP operating hours 
and the cooling degree days as independent variables. This lack of 
precision could be due to the fact that the ABS was manually controlled 

over the analyzed period. In other words, its activation was not directly 
managed only on the basis of the external temperatures but also on other 
hardly quantifiable factors (e.g. end of thermal season, contractual 
constraints with the hospital client, etc.). Nevertheless, due to the fact 
that the ABS will be automatically controlled by the MPC, this regression 
is assumed as the benchmark for comparison. Moreover, according to 
the generally accepted procedure for the definition of the benchmark, 
the energy saving is calculated with reference to the lower boundary of 
the variance [35]. Since the variance in the ABS regression is higher, the 
saving for this element is underestimated, providing a worst case sce
nario for comparison. 

5.2. Monitoring results 

A complete and detailed two-year dataset is available to compare the 
BaU (2021) and MPC (2022) operation. The data collected are sampled 
every 15 min and, thus, provide insights on the detailed real-time 
operation of all plants. While analyzing these data, it is possible to 
verify the conditions in which the MPC demonstrates the best capabil
ities or major criticalities, as well as to see the difference in how the two 
management strategies operate in comparable periods. Some examples 
of this investigation are described below. 

Fig. 7 illustrates the daily high-temperature and low-temperature 
dissipated heat from the CHP, as well as the heat supplied to the ABS 
in June. A comparison is reported between the two operating strategies. 
The data are normalized with respect to the maximum heat value of the 
selected period. The first few days of the month are excluded because the 
CHP was shut down, probably due to maintenance or unavailability, at 
the beginning of June 2021. While in the BaU operation the ABS is 
subject to more frequent shut-downs, the MPC manages to use the ABS 
unit to its maximum potential. This comes together with a notable 
reduction in high-temperature dissipation, most likely because more 
useful heat is recovered from the engine. 

Fig. 8 shows a similar trend in the improved management of the CHP 
and ABS. While in a few days in October 2021, the chiller was shut down 
even though the CHP was still operating (and dissipating heat), in 2022 
the MPC decided to keep it in operation. The outdoor conditions of the 
two periods were comparable. 

Therefore, it can be seen that the MPC outperforms the a priori 
control logics generally used by utilities to operate integrated energy 
systems, and provides a real-time optimal performance based on actual 
conditions. This is particularly evident in mid-seasons, when weather is 
extremely variable and difficult to predict, and in summer. 

5.3. Comparison between BaU and MPC operation 

The most relevant results that can be drawn from this test site regard 
the overall long-term performance of the MPC, as it can verify if the 
original control requirements were met. 

Table 10 reports the efficiency parameters of the CHP calculated on a 
yearly basis with the two operating strategies. It can be noted that the 
MPC is able to drive the CHP to more efficient operating ranges 
compared to the BaU operation, as both electrical and thermal efficiency 
increase by more than 1.4%. This means a higher fuel utilization factor 
and, consequently, leads to primary energy saving and lower carbon 
emissions. In addition, the requirement for high efficiency cogeneration 
(fuel utilization factor higher than 75%) is reached to a higher extent. 
This is expected to lead to higher incentives. 

These benefits are achieved thanks to an overall 33.8% reduction in 
heat dissipation from the CHP engine, as shown in Table 11. The most 
part of this reduction is realized with reference to the high-temperature 
heat, which is recovered and used in the ABS or in the district heating. 
Higher savings could be obtained if low-temperature heat were further 
recovered e.g. for domestic hot water production (currently not included 
as a separate feature). 

The operation of the ABS, with specific reference to the cooling 

Table 9 
Regression parameters of the definition of the benchmark operation.  

Parameter R2 

score 
CV 
RSME 

Stat t MBE 

CHP electricity production 0.965 0.031 16.690 0.000 
CHP heat production for heating 

use 
0.942 0.148 12.720 0.000 

CHP gas consumption 0.997 0.010 56.334 0.000 
Natural gas consumption for 

heating use 
0.801 0.211a 5.366–3.072 0.000 

ABS cooling production 0.735a 0.718a 4.863–1.202a 0.000  

a Values outside threshold (see Table 8). 
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degree days, in the two operating modes, is reported in Table 12. It can 
be noted that the MPC is more efficient in fulfilling the cooling 
requirement, as the cooling energy produced for a given amount of CDD 
is lower. In addition, the ratio between the cooling energy provided by 
the ABS and the running time increased in the new operating strategy, 
confirming that the unit operates more efficiently. Despite this, the share 
of cooling energy provided by ABS decreased if compared with the total 
cooling load. This is because, with the pandemic under control, hospitals 
are returning to their normal activities, with an increase in outpatient 
appointments and, consequently, an increase in base load. Moreover, the 
cooling degree days increased by 45%, as 2022 was on average warmer 
than 2021. Since the size of the ABS is not sufficient to cover the overall 
hospital demand, the increased load in 2022 was covered by the ABS to a 
smaller extent. However, the data demonstrates that a bigger ABS, when 
operated efficiently by the MPC, would have also increased its cooling 
share. 

Finally, the key economic and energy drivers for the operation of this 
integrated energy system are compared in Table 13. Three concomitant 
benefits were achieved: (i) a slightly lower natural gas consumption, (ii) 
a great reduction in the electricity purchased from the grid and (iii) an 
increase in the energy efficiency credits awarded to the CHP primary 
energy saving. These factors led to a lower dependency of this system on 
the power grid and to higher revenues for the system operators. 
Furthermore, the injection of electricity into the grid remained fairly 
stable. It was concentrated mainly during night hours, when the hospital 
demand was lower. This further demonstrates the capability of the MPC 
to operate the CHP in the most profitable way. 

It is also highly relevant to state that these experimental results, 
obtained though field tests in an operational (and highly critical) test 
site, are in accordance with the results obtained in the simulation phase. 
Indeed, similar trends in terms of (i) reduced withdrawal from the grid, 
(ii) reduced dissipation from the CHP and (iii) increased energy 

efficiency credits were obtained in the MiL case study (Section 3). It is 
therefore demonstrated that the methodology presented in this work is 
reliable, as it developed and demonstrated an original smart controller 
for an integrated energy system with a high level of security and 
efficiency. 

6. Conclusions 

This work presented a Model Predictive Controller (MPC) developed 
for the integrated energy system of a hospital test site in Italy. The 
controller operates with two time scales, controlling the system in real- 
time while also performing yearly scheduling. The algorithm was 
designed based on the site requirements and firstly verified in a simu
lation environment. Then, it was implemented in the real case study 
according to well-defined tasks: (i) installation of monitoring equipment 
to collect data on all energy flows (ii) setup of new hardware equipment 
(i.e. a dedicated computer); and communication protocols (i.e. open 
protocols to easily exchange data and files with the existing equipment); 
(iii) setup and debugging of the algorithm on the new hardware; (iv) 
verification of its reliability and implementation of a watchdog control 
logic for service security. Finally, data collection was carried out for two 
operating years: one year with the business-as-usual management and 
almost one year with the MPC management. 

The smart controller, implemented and tested in the operational case 
study, met all the requirements initially defined. In particular, the key 
quantitative results of this activity can be summarized as follows.  

• The MPC improved the management of the Combined Heat and 
Power unit by increasing the fuel utilization factor by 1.4% and 
reducing overall dissipation by 34%; 

Fig. 7. Comparison of the daily high-temperature (HT) and low-temperature (LT) dissipated heat and heat to the absorption chiller (ABS) in the two operating 
strategies in June. The data are normalized with respect to the maximum heat value of the selected period, for confidentiality. 
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• A higher portion of heat was recovered from the engine and fed to the 
absorption chiller, allowing this unit to be exploited to a greater 
extent (+25% compared to its running time);  

• The three main economic parameters that drive the management of 
the integrated energy system were improved: natural gas 

consumption was reduced by 0.15%, electricity purchased was 
reduced by 21.49%, and the gain from incentives was enhanced by 
1.18%.  

• Relevant information can be drawn from the investigation of the 
datasets from two years of field tests. 

It is also worth noting that the whole methodology, from the 
conceptualization of the control structure, to its simulation, to its testing 
in the operating environment, proved to be successful, as comparable 
results were obtained in the two verification phases. Most importantly, 
the reliability of the proposed control solution, as well as the backup 
control logics, were demonstrated in an extremely challenging site. It is 
well-known that hospitals provide a critical service that must not be 
subject to interruptions or other issues. Hence, demonstrating a reliable 
control solution that does not jeopardize the service and simultaneously 
guarantees optimal management can be considered a significant finding. 
This methodology and control solution may be safely extended to the 
integrated energy systems of other sites, regardless of their criticalities, 
leading to additional energy saving. 

Apart from further data collection and investigation in this test site, 
future studies will be dedicated to enhancing the long-term accuracy and 
applicability of the proposed MPC controller. For instance, alternative 
methods to forecast the energy demands over the year will be tested, e.g. 
through detailed building modeling. In addition, the performance of this 

Fig. 8. Comparison of the heat from the CHP and heat to the ABS in the two operating strategies for some days in October. The data are normalized with respect to 
the maximum heat value of the selected period, for confidentiality. 

Table 10 
Comparison of efficiency parameters of the CHP in the BaU and MPC operation.   

Electrical efficiency Thermal efficiency Fuel utilization factor 

BaU (2021) 0.432  0.347  0.779  
MPC (2022) 0.438 +1.4% 0.353 +1.7% 0.790 +1.4%  

Table 11 
Comparison of heat dissipation from the CHP in the BaU and MPC operation. The 
values are normalized with respect to the overall dissipated heat in 2021, for 
confidentiality.   

High-temperature 
dissipated heat [− ] 

Low-temperature 
dissipated heat [− ] 

Overall dissipated 
heat [− ] 

BaU (2021) 0.73  0.27  1  
MPC (2022) 0.40 − 45.2% 0.26 − 3.7% 0.66 − 34.0%  

Table 12 
Comparison of the absorption chiller operation in the BaU and MPC operation.   

% variation MPC vs. BAU 

Total cooling production/CDD − 16.6% 
ABS cooling production/ABS running time +25.0% 
ABS cooling production/Total cooling production − 13.8% 
CDD +45.6%  

Table 13 
Comparison of the economic drivers in the MPC operation with respect to the 
BaU operation.   

% variation MPC vs. BAU 

Natural gas consumption − 0.15% 
Purchase of electricity from grid − 21.49% 
Energy efficiency credits +1.18%  
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solution in case studies with short-term and long-term storage technol
ogies, as well as with other energy vectors, will be evaluated. 
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Nomenclature 

E: energy [MWh] 
C: cooling energy [MWh] 
EER: Energy Efficiency Ratio [− ] 
H: heat [MWh] 
h: plant availability [h] 
LHV: fuel lower heating value [MWh kg− 1] 
NG: natural gas consumption [kg] 
m: mass [kg] 
η: efficiency [− ] 

Subscripts 
c: cooling 
el: electricity 
ng: natural gas 
th: heating 

A. Gambarotta et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.energy.2019.05.057
https://doi.org/10.1016/j.energy.2019.05.057
https://doi.org/10.1016/j.energy.2013.10.041
https://doi.org/10.3390/en10070956
https://doi.org/10.3390/en10070956
https://doi.org/10.1016/j.segy.2022.100089
https://doi.org/10.1016/j.energy.2017.05.123
https://doi.org/10.1016/j.energy.2017.05.123
https://doi.org/10.1016/j.segy.2022.100088
https://doi.org/10.1016/j.segy.2021.100049
https://doi.org/10.1016/j.apenergy.2019.114342
https://doi.org/10.1016/j.apenergy.2019.114342
https://doi.org/10.1016/j.segy.2022.100073
https://doi.org/10.1016/j.segy.2022.100073
https://doi.org/10.1016/j.energy.2017.12.022
https://doi.org/10.1016/j.energy.2017.12.022
https://doi.org/10.1016/j.egypro.2015.12.056
https://doi.org/10.1016/j.energy.2014.02.042
https://doi.org/10.1016/j.energy.2022.123748
https://doi.org/10.1016/j.segy.2021.100017
https://doi.org/10.1016/j.segy.2021.100017
https://doi.org/10.1016/j.enbuild.2022.111963
https://doi.org/10.1016/j.egyr.2022.08.165
https://doi.org/10.1016/j.egyr.2022.08.165
https://doi.org/10.1016/j.applthermaleng.2019.114558
https://doi.org/10.1016/j.apenergy.2020.116286
https://doi.org/10.1016/j.egyr.2022.05.184
https://doi.org/10.1016/j.epsr.2022.108311
https://doi.org/10.1016/j.epsr.2022.108311
https://doi.org/10.1016/j.apenergy.2022.119797
https://doi.org/10.1016/j.apenergy.2022.119797
https://doi.org/10.1016/j.segy.2022.100079
https://doi.org/10.1016/j.segy.2022.100079
https://doi.org/10.3390/en13112835
https://doi.org/10.1016/j.apenergy.2022.119343
https://doi.org/10.1016/j.egyr.2021.09.061
https://doi.org/10.1016/j.conengprac.2022.105429
https://doi.org/10.1016/j.egypro.2018.08.189
https://doi.org/10.1016/j.energy.2020.117177
https://doi.org/10.3389/fenrg.2020.537973
https://www.distrheat.eu/
https://doi.org/10.1016/j.energy.2020.118054
https://doi.org/10.1016/j.energy.2020.118054
https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg
https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg
https://www.politesi.polimi.it/handle/10589/149592
https://www.politesi.polimi.it/handle/10589/149592
https://www.politesi.polimi.it/handle/10589/143003
https://www.nrel.gov/docs/fy02osti/31505.pdf


Smart Energy 12 (2023) 100120

13

tot: total 

Acronyms 
ABS: Absorption chiller 
B: Boiler 
CF: Computational Feasibility 
CHP: Combined Heat and Power 
CSV: Comma Separated Value 

EC: Electric chiller 
IES: Integrated Energy System 
JSON: JavaScript Object Notation 
LoTS: Long-Term Supervisory module 
MiL: Model-in-the-Loop 
MPC: Model Predictive Control 
MTS: Multiple Time Scale 
ShoTS: Short-Term Supervisory module 
SG: Steam generator 
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