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Abstract
A representation theorem proven by G. Debreu in 1960, although

somehow neglected by the literature, implies several deep and unexplored
consequences both for Economics and for Decision Theory. This paper
focuses on some of them. In particular, possible decompositions of state-
dependent utilities à la Debreu (which may equivalently be seen as "utility-
dependent probabilities") are analyzed, showing that Debreu�s represen-
tation is based upon a "joint" probability/utility function. It is illustrated
how Debreu�s Theorem can provide a neat geometrical interpretation of
Castagnoli and LiCalzi�s "benchmarking" representation of preferences.
(Conditional) Certainty Equivalents are de�ned and studied, and possible
implications for attempting representation of incomplete preferences are
discussed.

Keywords: Debreu�s Theorem; Representation of preferences; Sure
Thing principle; Representation of preferences; State-dependent utility;
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1 Introduction

In 1960, Gerard Debreu (1960) proved a very deep theorem about representation
of preferences among random variables. His key axiom was the so-called Sure
Thing Principle, originally introduced by Savage (1951), which asks for a pref-
erence to completely neglect possible common parts between two alternatives
(see also Fishburn, 2018). With topological methods, G. Debreu proved that a
preference satis�es the Sure Thing Principle if and only if it can be represented
by means of a (utility) functional which turns out to be additively decomposable
with respect to the �states of the world�, i.e., the elementary events in the state
space.
Unlike the classical results about representation of preferences, such as von

Neumann and Morgenstern (1944), Savage (1951), Schmeidler (1986), Gilboa
and Schmeidler (1989), and many others, Debreu�s representation does not ex-
plicitly identify a probability measure. This absence makes Debreu�s work look
�inadequate�in some sense, and it may explain why his result is scarcely used
both in Economics and in Decision Theory. Indeed, only a few papers in the
literature are related to Debreu�s Theorem: the �rst signi�cant reference ap-
pears in Mas-Colell (1990). An extension of Debreu�s Theorem was given by
Chew and Wakker (1996) and Wakker and Zank (1999), while the �rst signi�-
cant applications to Decision Theory were proposed by Nau (2003, 2006). More
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recently, a full extension to a generic state space was obtained by Castagnoli and
LiCalzi (2006), with consequences explored by Castagnoli et al. (2016), and an
investigation about intertemporal preferences inspired by Debreu�s utility was
presented in Maggis and Maran (2021).
However, the consequences of Debreu�s Theorem have not been fully ex-

plored. The present paper aims at investigating some of them. We analyse
the relationship between Debreu�s functional and the classical expected utility,
we show how Debreu�s Theorem can provide a neat geometric interpretation
of Castagnoli and LiCalzi�s �benchmarking� representation of preferences and
we de�ne and study the concept of Certainty Equivalent for Debreu�s utility.
Finally, we provide a �rst investigation on the case of incomplete preferences.
In Section 2, we present Debreu�s Theorem. In Section 3, we discuss the

meaning of the representation functional; in particular, we show how Debreu�s
representation is based upon a �joint�probability/utility function. Section 4 is
dedicated to the connection between Debreu�s Theorem and the �benchmarking�
representation à la Castagnoli - LiCalzi, jointly with some geometric considera-
tions. Section 5 is devoted to Certainty Equivalent (also �conditional�to some
particular event) for Debreu�s functionals. Finally, Section 6 hosts an analysis
about possible relationships between Debreu�s Theorem and incomplete prefer-
ences. Conclusions, and outlines for further research, are gathered in Section 7.

2 Debreu�s Theorem and �rst considerations

As usual, a random variable is a function X : 
 ! R de�ned on a set 
 of
�states of the world�, usually called the state space, with suitable measurability
conditions. For the purpose of this paper, random variables can be assumed
to represent random money results. We shall follow the original setting by De-
breu (1960), by supposing the state space to be a �nite set 
 = f!1; !2; : : : ; !mg.
In such a case, every random variable X : 
 ! R can be naturally identi�ed
with the column vector [x1 x2 � � � xm]T 2 Rm, with xi := X(!i) for every
i = 1; 2; : : : ;m. The �niteness hypothesis allows us to deal more intuitively
with the objects involved in this paper, but it is important to underline that the
same line of reasoning exposed by Castagnoli and LiCalzi (2006) extends all of
the results to the fully general case. We suppose some set X � Rm of random
variables de�ned on 
 to be given.
Given a subset A � 
, we use the notation IA to denote the indicator

function of the subset A, i.e., the random variable that takes value 1 on the
elements of A and 0 on the elements of Ac := 
nA. In the case when A = f!ig
is a singleton, we write I!i instead of If!ig. If x; y 2 X are random variables and
A � 
, we indicate with xAy the random variable that takes the same values of
x on A and of y on Ac : in symbols, xAy = x � IA+ y � IAc , where ���denotes the
pointwise product of functions. For the sake of simplicity, we suppose that the
set X be closed under such an operator, i.e., that xAy 2 X for every x; y 2 X
and every A � 
. We also suppose that 0 2 X , with 0 the null (degenerate)
random variable.
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De�nition 1. A binary relation < on X is called a preference if it is:

� complete, i.e., for every x; y 2 X , either x < y or y < x;

� re�exive, i.e., x < x for every x 2 X ;

� transitive, i.e., if x; y; z 2 X are such that x < y and y < z, then x < z.

Note that re�exivity is an immediate consequence of completeness.
The relation x < y is read as �x is (weakly) preferred to y�. In the case

when x; y 2 X are such that both x < y and y < x, it is said that x and y are
indi¤erent to the decision maker, and the notation x � y is used; �nally, x � y
indicates the case when x < y and x � y.
The state !i 2 
 is called inessential (with respect to the preference <) if

x � I!i � y � I!i for every x; y 2 X . Intuitively, this means that the decision
makers do not value the amount that the random variables take on !i, that is
to say, that they deem the state !i to have null probability. The state !i is
called essential if it is not inessential, i.e., if there are two random variables
x; y 2 X such that x � I!i � y � I!i .
The key hypothesis to Debreu�s Theorem is the so-called Sure Thing Prin-

ciple (originally introduced by Savage, 1951, as �Axiom P2�): it states that,
whenever x; y 2 X and A � 
 are such that xAz < yAz for some z 2 X , then
xAw < yAw for every w 2 X . The Sure Thing Principle requires the decision
makers to neglect the �common parts�of two random variables when compar-
ing them: since xAz and yAz coincide outside of A (where they both take the
same values as z), only the values they take on A matter to the decision makers,
and therefore their preferences do not change if the �common�part of the two
random variables is modi�ed in any possible way.
The Sure Thing Principle might resemble the classical Independence Axiom

of von Neumann and Morgenstern (1944), but such a resemblance is smaller than
it might appear. The Independence Axiom deals with distribution functions
of the lotteries and with their probabilistic mixtures, whereas the Sure Thing
Principle deals with the pointwise functional de�nition of random variables.
We purposefully used the di¤erent terms �lottery�and �random variable�. In
the classical setting based on lotteries (i.e., on probability laws), an �hidden
axiom� is accepted, according to which two random variables which share the
same law must be considered indi¤erent to the decision maker (because, as a
matter of fact, they are indistinguishable by the model). This seems too much
of a restriction in several decision problems, such as, for instance, insurance
problems, where a decision maker is quite naturally interested in the actual
events where the policy is triggered and not only on their probability, or such
as �nancial models, where it is quite di¤erent to get a 1; 000$ dividend in a
scenario when all of the stocks in the market yield high returns than it is to
get it on a �black Friday�. Debreu�s setting allows to overcome such a possibly
undesired restriction.
Besides the Sure Thing Principle, two more hypotheses are involved in De-

breu�s Theorem. The preference < is required to be continuous with respect
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to the Euclidean norm on Rm, in the sense that if a sequence (xk)k2N in X is
given such that xk ! x 2 X and if y 2 X is such that xk < y for every k 2 N,
then x < y as well. Finally, the preference < has to be monotonic with respect
to the pointwise partial order on Rm: if x = y (meaning that xi > yi for every
i = 1; 2; : : : ;m), then x < y. We are now ready to state the following

Theorem 1 (Debreu). Let X be a set of random variables on the �nite state
space 
 = f!1; !2; : : : ; !mg (m > 3) and < a continuous and monotonic pref-
erence on X such that there exist at least three essential states of the world.
The preference < agrees with the Sure Thing Principle if, and only if, it is

represented by an additively decomposable real valued function F : X ! R, i.e.,
such that

F (y) = F

 
mX
i=1

yiI!i

!
=

mX
i=1

ui(yi)

with u1; u2; : : : ; um : R ! R increasing1 real valued functions which are unique
up to additive constants and a common increasing linear transformation.

Proof. See Debreu (1960).

Remarks 2. (i) The case when there is a single essential state of the world
is irrelevant, because it corresponds to absence of uncertainty. The case when
there are only two essential states is indeed quite complicated. In such a case,
according to Karni and Safra (1998), Debreu�s Theorem still holds, provided
that a very technical requirement, called the Hexagon Condition, is satis�ed
(see also Köbberling, 2003).
(ii) Since additive constants on the uis do not matter in the representation of

<, it is always possible to take ui(0) = 0 for every i = 1; 2; : : : ;m. In particular,
if !i is inessential, then ui � 0.

From now on, we shall assume without loss of generality that ui(0) = 0 for
every i = 1; 2; : : : ;m. This way, Debreu�s representations of a preference become
unique up to a common increasing linear transformation only.

Example 1. Let 
 = f1; 2; 3; 4; 5; 6g: it can for instance represent the set of the
possible results of the roll of a die. A random variable X on 
 can be naturally
identi�ed with the column vector x = [x1 x2 x3 x4 x5 x6]

T where xi is the
value associated to the outcome !i = i, i = 1; 2; : : : ; 6. Assume that there exists
a preference < with Debreu�s representation F (y) =

P6
i=1 ui(yi) where the six

utility functions are ui(yi) = iyi, i = 1; 2; : : : ; 6. Then

F (y) =

6X
i=1

iyi

1Here and in what follows, by "increasing function" we mean "strictly increasing function".

5



It is obvious that if y = x, then
P6

i=1 iyi >
P6

i=1 ixi: Hence y < x, that is, the
preference is monotonic. It can be easily shown that it is continuous as well.
Moreover, if there exist A � 
 and a random variable z such that yAz < xAz
for some z, then X

i2A
iyi +

X
i2Ac

izi >
X
i2A

ixi +
X
i2Ac

izi

which implies that yAw < xAw for all w 2 X , namely the preference < agrees
with the Sure Thing Principle.

3 Debreu�s Theorem and expected utility

For every i = 1; 2; : : : ;m, the value ui(yi) represents the utility of getting the
amount yi in the state !i. We stress out that such a utility depends not only
on the amount yi at stake, but also on the state !i in which such an amount
is obtained. In order to emphasise such a feature, Debreu�s decomposition can
be written as F (y) =

Pm
i=1 u(yi;!i), with the function u : R � 
 ! R called a

state-dependent utility.
The main di¤erence between Debreu�s representation and the classical ex-

pected utility one lies in the fact that there is no natural way to decompose the
state-dependent utility u(yi;!i) into the product u(yi)p(!i) of a utility u(yi)
and a probability p(!i). But this does not mean that no decomposition is pos-
sible, but rather than almost every decomposition can be, even if not all of
them are meaningful in order to compare two random variables.
Take indeed any probability p on 
 such that p(!i) > 0 for every essential

state !i. It is of course possible to write

F (y) =
mX
i=1

u(yi;!i) =
mX
i=1

u(yi;!i)

p(!i)
� p(!i)

(where the fraction is conventionally set equal to zero on inessential states),
and this amounts to decompose the state-dependent utility u(yi;!i) into the
product of the probability p(!i) and the ratio

u(yi;!i)
p(!i)

= up(yi;!i), which can
be interpreted as a utility that depends on the given probability p. With this
decomposition, y < x if and only if E[up(y)] > E[up(x)].
In a similar way, take any increasing (utility) function v : R ! R such that

v(0) = 0 and v(k) 6= 0 for every k 6= 0. We can write

F (y) =
mX
i=1

u(yi;!i) =
mX
i=1

v(yi) �
u(yi;!i)

v(yi)

(where, again, the fraction is conventionally set equal to zero if yi = 0: Note
that the fraction is always nonnegative, given the monotonicity of v and of
the uis.). Since utility functions can be arbitrarily multiplied by a positive
constant, it is possible to scale v in such a way that

Pm
i=1

u(yi;!i)
v(yi)

= 1, and then
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the ratio u(yi;!i)
v(yi)

can be interpreted as a probability which depends on the given
utility function v; hence on the random variable. Note that, if v is not linear,
the normalization condition can give di¤erent probabilities and, consequently,
di¤erent utilities for di¤erent random variables.
Such a lack of a unique �strong�decomposition is probably the main reason

for the lack of popularity su¤ered by Debreu�s Theorem. But we observe that
such a strong decomposition is not �natural� at all, and that indeed in most
applications it results either out of sheer luck or even out of brute force. Indeed,
in several models, it is perfectly sensible for the utility of an outcome to depend
on the scenario which yields it (see also Montesano, 2021).

Example 2. Consider again the preference introduced in Example 1. The six
separate utility functions u1; u2; : : : ; u6 in the Debreu�s representation can be
rewritten through the single state-dependent utility u(yi;!i) = !iyi. Assuming
the die to be fair, we take p(i) = 1=6 for every i = !i 2 
, and

F (y) =
6X
i=1

iyi =
6X
i=1

!iyi
1=6

� 1
6
=

6X
i=1

6u(yi;!i) �
1

6

thus seeing the Debreu�s decomposition of F (y) as the expected value of the new
utility function 6u(yi; i) with respect to the uniform probability on 
. Given
the random variable x, we have that

y < x () F (y) > F (x) () E [6u(y)] > E [6u(x)] :
The equivalence between the Debreu�s representation of the preference and

the expected utility representation still holds if we take a di¤erent probability.
Take, for instance, ep such that ep(i) = i

21 . Then F (y) > F (x) if and only
if E[eu(y)] > E[eu(x)] where the expectation is computed with respect to the
probability ep and eu(yi;!i) = 21ui(yi)=i.
On the other hand, consider now the (linear) utility function v(x) = ax;

a > 0: from the condition
mX
i=1

u(yi; i)

ayi
= 1

we obtain a = 21, p(i) = i=21 for every i and again F (y) = E [v(y)]. The same
holds for every random variable of X :
However, if we consider a non linear v, not only we obtain di¤erent values

for a, but, if we consider di¤erent random variables, also for the probabilities
and for the consequent utilities. Take, for instance, v(x) = a(1� e�0:01x), x1 =
[1 1 1 1 1 0]

T, and x2 = [1 1 1 1 0 1]
T. From the normalization condition,

we �nd two di¤erent values for a:

a(x1) =
15

1� e�0:01 a(x2) =
16

1� e�0:01

which give di¤erent probabilities and utilities functions depending on x1 and
x2:

px1(i) =
i

15
for i = i = 1; 2; : : : ; 5 px1(6) = 0
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px2(i) =
i

16
for i = i = 1; 2; 3; 4; 6 px2(5) = 0

and:

v
x1
(x) =

15

1� e�0:01
�
1� e�0:01x

�
v
x2
(x) =

16

1� e�0:01
�
1� e�0:01x

�
Of course, the proposed interpretation of the Debreu�s functional, as an ex-

pected value with respect to a probability depending on a given utility function,
is to be intended as a formal possibility of a traditional reading, but it cannot
always be exploited for a comparison between random variables. The essence
of the �utility�of Debreu is, in some way, oblique to the classical one (or with
more general ambitions): preferences among random variables have to be read
directly on F .

4 Debreu�s Theorem and benchmarking

Debreu�s result admits an interesting geometric interpretation.
Let y = [y1 y2 � � � ym]T be a random variable on 
 = f!1; !2; : : : ; !mg;

suppose that y = 0. The (truncated) hypograph of y is de�ned as

hypo(y) :=
m[
i=1

f!ig � [0; yi] � 
� R :

in other words, it is the �histogram�formed by m rectangles, each of them yi
high and associated to the �basis point�!i: In the case when y is not positive,
the de�nition can be extended by taking into consideration the interval [yi; 0]
whenever yi < 0, although the name �hypograph�is no longer fully appropriate
for the set that obtains. A better way, indeed, would be to decompose the
random variable y as the sum y+ � y� of its positive and negative parts, and
to deal separately with the two parts.
Starting from a paper by Chateauneuf (1999), Castagnoli and Favero (2010)

pointed out that the expected utility functional is nothing but a measure � on

�R+ (or on 
�R, in the general, nonpositive, case) coming from the product
of the probability p on 
 and the Lebesgue-Stiltjes measure �u on R de�ned by
the utility function u:

E [u(y)] =
mX
i=1

u(yi) � p(!i) =
mX
i=1

�
p (f!ig) �

Z yi

0

du(y)
�
= [p
 �u](hypoy)

Such a measure � = p 
 �u is additive with respect to the states of the world,
but not with respect to the values taken by the random variables.
It is immediate to realise that Debreu�s Theorem is nothing but the most

general case of such a representation: the preference �<�can be represented by
a measure � on 
� R, which is still additive with respect to the elements of 
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but, unlike what happens in the expected utility case, need not be a product
measure (see also Castagnoli et al., 2016).
Secondly, let y 2 X be a positive random variable (for a generic y 2 X ,

the positive and negative parts are separately considered). On the half-line of
nonnegative real numbers R+ = fx 2 R : x > 0g consider the identity function
q(s) = s (any injective function q might be used as well): it is possible to see q
as a real-valued, positive random variable de�ned on the state space R+ (that
is, on a state space which does not coincide with 
).
The hypograph of y can be rewritten as

hypo(y) = ((!; s) 2 
� R+ : y(!) > q(s)) � 
� R

indeed, the pair (!i; s) belongs to the above set if and only if y(!i) = yi is
greater than or equal to q(s) = s, i.e., if and only if s 2 [0; yi]. The representing
function F = � (hypo(�)) thus becomes

F (y) = �
�
f(!; s) : y(!) > q(s)g

�
= �fy = qg

In other words, it represents the measure of the set of the states of the world such
that the random variable y is greater than the random variable q or, brie�y, the
measure of the event such that y �outperforms�q. Note that, if � is normalised
(this is possible under very reasonable assumptions, such as, for instance, the
fact that all of the random variables in X take their values in a bounded interval
[a; b] � R), such a measure becomes the probability that y outperforms q.
The interpretation is quite fruitful (see, for instance, Bordley and LiCalzi,

2000, Della Vigna and LiCalzi, 2001, and Castagnoli and LiCalzi, 2006): the
decision makers have a �reference� random variable q of their choice (de�ned
on a state space which is generally not 
) and �rank� the random variables
in X depending on the probability to yield a �better result� than q. Roughly
speaking, the choice of the reference function q essentially corresponds to the
choice of the �scale�on the value axis of the hypograph. For instance, taking
q(s) = es � 1 corresponds to �drawing�the �histograms�that make hypo(y) in
a quasi-logarithmic scale. Indeed, y(!) > q(s) amounts to saying es� 1 6 y(!),
that is s 6 ln

�
y(!) + 1

�
: in other words, instead of the hypograph de�ned at

the beginning of this section, the set

hypo0(y) :=
m[
i=1

f!ig �
�
0; ln(yi + 1)

�
� 
� R

is considered.
Thus � turns out to be a product measure if and only if y and q are sto-

chastically independent of each other. In such a case, indeed, all of the pairs of
events f! 2 
 : y(!) = tg and fs 2 R+ : t > sg are independent and, therefore,

� ((!; s) : y(!) > q(s)) =
X
t2R+

�1 (f! : y(!) = tg) �2 (fs : t > sg)

9



(the sum is actually a �nite one, because 
 is �nite and therefore the set fy = tg
is not empty only for �nitely many t 2 R+). Note that, if � is normalised, this is
also the case for the marginals �1 and �2, which turn then out to be probabilities
on 
 and R+ respectively; in such a case, moreover, �2fs : t > sg is nothing but
the cumulative distribution function Q(t) of q evaluated at t. This way,

� ((!; s) : y > q) =
X
t2R+

pfy = tg Q(t) = Ep [Q(y)]

and we come back to the expected utility representation, with the interesting
interpretation (still due to Castagnoli and LiCalzi, 2006) that the utility function
Q is the cumulative distribution function of the decision maker�s benchmark: for
instance, the linear utility function v(x) = x�a

b�a on the interval [a; b] corresponds
to a uniform random benchmark, and the utility function v(x) = 1 � e0:01x on
R+ corresponds to an exponential random benchmark.
Such an independence can be read straightaway from Debreu�s Theorem:

indeed, Debreu�s representation coincides with the classical expected utility if
and only if u(yi; !i) can be decomposed into the product u(yi)p(!i), which is
the same as asking that the dependence of u on the state only amounts to
multiplication by the probability of the state itself. Decision makers do not
care at all on the particular state !i onto which the outcome yi is attached, and
their evaluation of the pair (!i; yi) simply consists in the probability of the state
!i multiplied by the utility u(yi) evaluated according to a single, given utility
function u independent of the state. Shortly, we recover the same conclusion
that decision makers act according to the classical expected (state-independent)
utility criterion if and only if their preferences are independent of the states of
the world.

5 (Conditional) Certainty Equivalents

The certainty equivalent of a random variable y 2 X is classically de�ned to be
a constant C(y) 2 R such that

C(y) � y :

The decision maker is indi¤erent between getting the random variable y or the
certain amount C(y). The certainty equivalent can be equivalently de�ned in
terms of the representation functional as the constant C(y) 2 R such that

F
�
[C(y) C(y) � � � C(y)]T

�
= F (y) :

Of course, since the certainty equivalent depends on the preference and not on
its representation à la Debreu, it will be the same for any u1; : : : ; um which
satisfy Theorem 1 in Debreu (1960).

Given a (deterministic) amount k 2 R on a subset A � 
, we introduce the
notation

u(k;A) := F (kIA) =
X
!i2A

u(k;!i)
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to indicate the utility of the certain amount k �restricted� to the event A. In
particular,

u(k; 
) =
mX
i=1

u(k;!i) = F
�
[k k � � � k]T

�
is the utility of the degenerate random variable (certain amount) k.
This way, for every A � 
, a real function uA : R ! R is de�ned by the

position uA(k) := u(k;A). We remark that the monotonicity of the preference
< ensures that all of the uAs are increasing functions; moreover, it is straight-
forward to prove that, if < is continuous, then the uAs are continuous as well.
The equality which de�nes the certainty equivalent can be written as

u
 (C(y)) = F (y)

and the existence of the certainty equivalent is ensured if u
 is continuous (see,
for instance, Kreps (1988)). A direct de�nition of the certainty equivalent may
be given by means of the generalised inverse of u
 de�ned as u 
 (k) = infxfx 2
R : u
(x) > kg (see, for instance, Embrechts and Hofert, 2010):

C(y) := u 
 (F (y)) = u
 

 (�(hypo(y)) :

The geometric interpretation of the certainty equivalent is immediate: C(y) is
a �height�such that the �rectangular histogram�whose bars are all C(y) high
has exactly the same measure � as the �histogram�individuated by the original
random variable y.

We introduce the following:

De�nition 2. The certainty equivalent of y 2 X conditional to the event A � 

is the constant CA(y) 2 R such thatX

!i2A
u(CA(y);!i) = uA (CA(y)) = F (yIA) =

X
!i2A

u(yi;!i):

The decision maker is indi¤erent, in the case that the event A prevails,
between receiving the amount CA(y) in every !i 2 A or the original random
variable y (taking value yi in !i). The conditional certainty equivalent can again
be de�ned directly by

CA(y) := u
 
A (F (y � IA)) = u A (�(hypo(y � IA))

Geometrically, CA(y) is the height such that the �rectangle�with �basis�A
has exactly the same measure � as the �histogram�with the heights yi associated
to each !i 2 A.

The conditional certainty equivalent is monotonic, that is CA(x) 6 CA(y)
if xIA 5 yIA and is obviously non negative for non-negative random variables.
Three other interesting properties for conditional certainty equivalents can be

11



derived. In order to prove them, we �rst introduce the following notation: let
A = fA1; A2; : : : ; Ang (n < m) be a partition of 
 (i.e., Ai \Aj = ? whenever
i 6= j and

Sn
j=1Aj = 
), and de�ne the certainty equivalent of y conditional to

the partition A as the random variable yjA

yjA :=
nX
j=1

CAj
(y)IAj

:

Roughly speaking, yjA is obtained by �replacing� the values taken by y with
the conditional certainty equivalent �block by block� on each element of the
partition A.

Proposition 3. The conditional certainty equivalent satis�es the following prop-
erties:

(i) Associative property: F (yjA) = F (y), namely yjA � y.

(ii) Compatibility property over di¤erent events: if A;B � 
 are disjoint
events (i.e., such that A\B = ?) and if CA(y) = CB(y), then CA[B(y) =
CA(y) = CB(y) .

(iii) Additivity property: If x; y 2 X are such that xi � yi = 0 for all i, then
uA(CA(x + y)) = uA(CA(x)) + uA(CA(y)) for all A � 
. Moreover, if
the utility functions in the representation of F are linear, CA(x + y) =
CA(x) + CA(y) for all A � 
.

Proof. (i) Since for every j = 1; 2; : : : ; n the de�nition of conditional certainty
equivalent ensures that

P
!i2Aj

u
�
CAj (y);!i

�
=
P

!i2Aj
u(yi;!i), it is

immediate to conclude that

F (yjA) =
mX
i=1

u(yjA;!i) =
nX
j=1

X
!i2Aj

u(CAj
(y);!i) =

=

nX
j=1

X
!i2Aj

u(yi;!i) =

mX
i=1

u(yi;!i) = F (y) :

(ii) Denote CA(y) = CB(y) = c. The following chain of equalities hold:

uA[B(CA[B(y)) =
X

!i2A[B
u(yi;!i) =

X
!i2A

u(yi;!i) +
X
!i2B

u(yi;!i) =

=
X
!i2A

u(CA(y);!i) +
X
!i2B

u(CB(y);!i) =

=
X

!i2A[B
u(c;!i) :

12



(iii) Since there is no !i 2 
 such that both xi and yi are simultaneously
nonzero (and ui(0) = 0 for all i), we can write

uA(CA(x+ y)) =
X
!i2A

u(xi + yi;!i) =

=
X

!i2A:xi 6=0
u(xi;!i) +

X
!i2A:yi 6=0

u(yi;!i) =

=
X
!i2A

u(xi;!i) +
X
!i2A

u(yi;!i) =

=
X
!i2A

u(CA(x);!i) +
X
!i2A

u(CA(y);!i) =

= uA(CA(x)) + uA(CA(y)) :

It is then immediate that, if the uis are linear, CA(x+y) = CA(x)+CA(y)
as well.

Remarks 4. (i) The associative property states that the decision maker does
not change the evaluation of y if all of the values that y takes on a given event
A � 
 are replaced with the certainty equivalent CA(y) conditional to that
event. In such a case, we can derive a �conditional decomposition�of F as

F (yjA) =
nX
j=1

uAj

�
CAj

(y)
�
=

nX
j=1

u(CAj
(y);Aj)

that is, a decomposition by means of � event-dependent�utility functions rather
than of state-dependent ones. Moreover, since y � yjA; we can rewrite the above
decomposition as

u
(C(y)) =
nX
j=1

uAj

�
CAj

(y)
�
:

(ii) The compatibility property formalises the fact that if a decision maker
is indi¤erent between receiving an amount k or the original random variable y
in case that the event A prevails, and the same amount is considered equivalent
to y in case that some other event B, alternative to A, prevails, then k is the
certainty equivalent of y if either A or B occurs. If the two events are not
disjoint, it is straightforward to show that the certainty equivalent on A [B is
the same as on the single events if it is the same if both A and B occur, namely
CA[B(y) = CA(y) = CB(y) if and only if CA\B(y) = CA(y) = CB(y) as well.

(iii) The additivity property states that if a random variable can be split
into the sum of two (or more) orthogonal random variables, then F is additively
decomposable with respect to the certainty equivalents of the addenda of the
sum of the random variables. Furthermore, the certainty equivalent is additively
decomposable as well if F (or equivalently the Debreu�s functions ui) is linear.

Proposition 3 highlights some important properties of the conditional cer-
tainty equivalent, that allow the decision maker to exploit the knowledge that
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some event will prevail to evaluate a random amount according to her/his prefer-
ences. This reminds the notion of conditional expectation, where the knowledge
that some event has occurred is exploited to calculate the expectation of a ran-
dom variable. The two concepts are indeed strictly connected and share many
similarities, starting from the de�nition of conditional certainty equivalent, that
resembles the de�nition of the conditional expected value of a random variable
with respect to a given algebra, where the functional F replaces the expecta-
tion2 . Both the conditional certainty equivalent and the conditional expected
value have the standard properties of monotonicity and non-negativity. In �-
nite sets, algebrae and partitions are in one-to-one correspondence (see also
Section 6), and the conditional expected value of a random variable simply
turns out to be its �piecewise constant� approximation obtained by replacing
its values with the conditional expected values on the minimal events of the
given partition, namely E[yjA] =

Pn
j=1 cAj

(y) where cAj
(y) = E[yjAj ]. The

conditional certainty equivalent behaves exactly in the same way in �nite state
spaces, as the associative property shows. Moreover, if A0 is a less �ne parti-
tion less than A (that is the algebra generated by A0 is a subset of the algebra
generated by A), the conditional certainty equivalent of yjA with respect to
the partition A0 coincides with yjA0, mimicking the law of iterated expectation.
The compatibility property resembles another property of the conditional ex-
pectation: if a random variable has the same conditional expectation on two
(or more) disjoint events (E[yjA] = E[yjB] where A and B are disjoint), then
it has the same conditional expectation on the union of these events, namely
E[yjA [ B] = E[yjA] = E[yjB]. Lastly, though the certainty equivalent, unlike
the conditional expectation, is not a linear operator, the additivity property
is reminiscent of the property of conditional expectation according to which,
given a function u such that u(0) = 0, and two random variables x, y such that
x(!) � y(!) = 0 for all ! 2 
, E [u(x+ y) j A] = E [u(x) j A] +E [u(y) j A] for all
A � 
.
We illustrate the concept of conditional certainty equivalent and the prop-

erties stated in Proposition 3 by means of some examples.

Example 3. Consider again the same setting of the previous examples. Let
y = [100 200 300 400 500 600]T; then F (y) = 9; 100.

1. The certainty equivalent C(y) of y is such that

9;100 = F (y) = u
(C(y)) =
mX
i=1

u(C(y); i) = 21C(y) ;

which gives C(y) = 433:3.

2. Consider the subset A = f1; 2g � 
: For the deterministic amount k =
150, it is

u(150;A) = u(150; 1) + u(150; 2) = u1(150) + u2(150) = 450 ;

2For sake of the reader, we recall that the expected value y 2 X conditional to the event
A � 
 , E[yjA], is the constant cA(y) 2 R such that E[yIA] = E[cA(y)IA].

14



conversely, the certainty equivalent CA(y) conditional to A is such that

450 = uA(CA(y)) =
X
i2A

u(CA(y); i) = 3CA(y) ;

which gives CA(y) = 150.

3. As for the associative property, consider the partition A = fA1; A2; A3g
of 
 with A1 = f1g, A2 = f2; 3g, A3 = f4; 5; 6g. It is straightforward that

CA1(y) = 100 ; CA2(y) = 260 ; CA3(y) = 513:3

and therefore the conditional random variable yjA turns out to be

yjA =[100 260 260 513:3 513:3 513:3]T :

Note that:

F (yjA) = 100 + (2 + 3) � 260 + (4 + 5 + 6) � 513:3 = 9;100 = F (y) ;

which precisely shows that yjA � y.
Moreover, let A0 = fA1 [A3; A2g. Then:

CA1[A3(y) = CA1[A3(yjA) = 487:5 ; CA2(y) = CA2(yjA) = 260 ;

namely (yjA)jA0 = yjA0.

4. Let us now look at the compatibility property. Consider the random
variable z = [2 2 5 17 �10 12]T and the subsets A = f1; 2g, B = f5; 6g,
F = f1; 5; 6g, and G = f1; 4; 5g of 
. It is

A \B = ? : CA(z) = CB(z) = 2 = CA[B(z) ;

A \ F 6= ? : CA(z) = CF (z) = 2; CA[F (z) = 2 = CA\F (z) ;

F \G 6= ? : CF (z) = CG(z) = 2; CF[G = 5:75 6= �8 = CF\G :

5. Finally, for the additivity property, consider the random variables r =
[20 0 4 0 10 0]T and s = [0 5 0 2 0 4]T with disjoint support: it is

CB(r) = 4:54; CB(s) = 2:18 ;

uB(CB(r + s)) = 74 = 50 + 24 = uB(CB(r)) + uB(CB(s)) ;

CB(r + s) = 6:72 = CB(r) + CB(s) :

Lastly, consider the non linear ui(yi) =
p
yi, i = 1; 2; : : : ; 6. It is:

CB(r) = 2:5; CB(s) = 1 ;

uB(CB(r + s)) =
p
10 + 2 = uB(CB(r)) + uB(CB(s)) ;

CB(r + s) =
p
10 + 3:5 6= 3:5 = CB(r) + CB(s) :
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6 Debreu�s Theorem and incomplete preferences

An incomplete preference < is a re�exive and transitive binary relation on X
(see, among others, Karni and Zhou, 2021).

Proposition 5. If the (incomplete) preference < is monotonic, then there exists
at least a maximal algebra A of 
 such that the restriction of < to the A-
measurable random variables is complete.

Proof. Start by noticing that, if < is complete when restricted to a algebra,
it maintains completeness when restricted to coarser algebrae: therefore, it is
sensible and natural to look for a maximal one. Note, furthermore, that < is
of course complete if restricted to the trivial algebra f?;
g: in such a case,
indeed, the only measurable random variables are the degenerate (i.e., con-
stant) ones, and completeness follows from the monotonicity of <. Therefore,
at least one maximal algebra with the required property is bound to exist. (A
straightforward application of Zorn�s Lemma ensures that the thesis holds even
for non-�nite state spaces.)

Remark 6. In this section, we use for denoting algebrae the same symbol A
used to indicate partitions in Section 5. This is due to the fact that, being 
 a
�nite set, algebrae on 
 and partitions of 
 are in one-to-one correspondence.
Namely, the minimal nonempty elements of an algebra A on 
 turn out to form
a partition of 
; conversely, given a partition fA1; A2; : : : ; Ang, the 2n possible
(disjoint) unions of the n �parts� turn out to make an algebra on 
 (whose
minimal elements are exactly A1; A2; : : : ; An).
Furthermore, the conditional decomposition yjA de�ned above with respect

to a partition A is, as a random variable, measurable with respect to the algebra
generated by A. It is therefore perfectly sensible to use the same notation
yjA also for the case when A is an algebra, by simply considering the sets
A1; A2; : : : ; An involved in the de�nition of yjA to be the nonempty minimal
sets of the algebra A.

Let us �x a maximal A such that the monotonic preference < is complete
when restricted to A-measurable random variables, and recall that a random
variable x 2 X is A-measurable if and only if (it takes constant values over the
minimal events of A, i.e., if and only if) it can be written as x =

Pn
j=1 xjIAj

,
with fA1; A2; : : : ; Ang the unique partition generating A. If < is continuous
and agrees with the Sure Thing Principle, Debreu�s Theorem ensures that it
can be represented by a function F which can be written, according to the
�conditional�representation seen in Section 5, as

F (x) =
nX
j=1

u(xj ;Aj):

Consider any y 2 X , and de�ne the two subsets of X

Y � := fz 2 X : z is A-measurable, z = yg
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Y� := fz 2 X : z is A-measurable, z 5 yg
We could say that the elements of Y � and Y� super - and sub-replicate y

respectively. Since 
 is �nite, both sets Y � and Y� are not empty (because
y only takes �nitely many values and such sets contain at least the constant
random variables equal, respectively, to the maximum and to the minimum
value taken by y). Therefore, we can de�ne

F �(y) := inf
z
fF (z) : z 2 Y �g ; F�(y) := sup

z
fF (z) : z 2 Y�g :

Moreover for every y� 2 Y � and every y� 2 Y� it is y� = y�, so that it is always
F (y�) > F (y�) and, therefore, F �(y) > F�(y). Roughly speaking, then, F �(y)
and F�(y) are an upper and a lower measure for y, deduced from the �com-
plete�restriction of <. These measures associate to every y 2 Rm the interval
[F�(y); F

�(y)], which of course collapses into a singleton if y is A-measurable.
Since 
 is �nite, F �(y) and F�(y) are in fact attained (hence they are respec-

tively a minimum and a maximum). We can indeed de�ne y� =
Pn

j=1 y
�
j IAj

and y� =
Pn

j=1 y�jIAj
where

y�j = max
!i2Aj

yi y�j = min
!i2Aj

yi:

It is clear that y� 2 Y � and z = y� for all z 2 Y �. Similarly, y� 2 Y� and z 5 y�
for all z 2 Y�. As a result, F �(y) = F (y�) and F�(y) = F (y�).
Such measures provide a criterion to �extend� the preference < by setting

x <0 y whenever F�(x) > F �(y). Suppose indeed that F�(x) > F �(y): then,
there exist x� 2 X� and y� 2 Y � such that x = x� < y� = y, which makes
natural to derive that x should be preferred to y: x <0 y implies x < y.
Note that the de�nition of F � and F� can be applied to in�nite state spaces

as well, although in such a case the inf and sup no longer need to be a min and
a max. Setting x <0 y whenever F�(x) > F �(y) remains a good de�nition, as it
is immediate to realise by applying the properties of the inf and the sup.

Remark 7. This criterion can be formulated also in terms of certainty equiva-
lent. Let indeed:

C�(y) = inf
z
fC(z) : z 2 Y �g = C(y�); C�(y) = sup

z
fC(z) : z 2 Y�g = C(y�):

In some sense, decision makers cannot decide between getting y or any of the
certain amounts in the interval [C�(y); C�(y)]. However, they prefer x to y if
C�(x) > C�(y).

We used inverted commas when stating that <0 extends < because, although
it is clear that the de�nition above may actually make possible for the deci-
sion maker to choose among random variables that were not comparable in the
original preference <, the new preference <0 obtained this way might not be
compatible with the original one. For such a compatibility to hold, it should be
F�(x) > F �(y) whenever x < y, but unfortunately this is not the case, as the
following example shows.
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Example 4. On R3, de�ne the preference

x < y ()
�
x1 + x2 > y1 + y2
x1 + x3 > y1 + y3

:

Such a preference is plainly monotonic and re�exive; its de�nition makes quite
patent that it is continuous as well. Since [1 0 0]T , [0 1 0]T and [0 0 1]T are
all � [0 0 0]T , all of the states in 
 are essential.

It is straightforward to realise that < agrees with the Sure Thing Principle.
Let us start with an example: if A = f!1; !3g, then xAz = [x1 z2 x3]

T and
yAz = [y1 z2 y3]

T : therefore, xAz < yAz if and only if(
x1 + z2 > y1 + z2
x1 + x3 > y1 + y3

()
(
x1 > y1
x1 + x3 > y1 + y3

and it is plain to see that, in such a case, xAw < yAw for every w 2 R3.
It should be now evident that, whatever A � 
 is, a comparable situation
arises: the components relative to the states !i =2 A simply �cancel out� of
the inequalities that de�ne < and, therefore, do not matter in determining the
preference among the resulting random variables.

The preference< is not complete: for instance, x = [1 0 1]T and y = [1 1 0]T
are not comparable, because x1 + x2 = 1 6 2 = y1 + y2 and x1 + x3 = 2 >
1 = y1 + y3. However, < becomes complete if restricted to random variables
measurable with respect to A1 =

�
?; f!1g; f!2; !3g;


	
, because when x2 = x3

and y2 = y3 the two inequalities above become a single one.
Consider now

x = [1 �4 4]T : x1 + x2 = �3 ; x1 + x3 = 5 ;

y = [4 �3 2]T : y1 + y2 = 1 ; y1 + y3 = 6 :

It is y � x. The A1-measurable �upper and lower approximations�of x and
y, respectively, are:

x� = [1 �4 �4]T ; x� = [1 4 4]T ;

y� = [4 �3 �3]T ; y� = [4 2 2]T

and x� � y� (because 1 + 4 = 5 > 1 = 4� 3), so it cannot be F�(y) > F �(x):
Indeed, it is not di¢ cult to see that the complete preference on A1 is

represented by the function F (x) = x1 + x2 where x = [x1 x2 x2]
T, and the

certainty equivalent for such random variable is C(x) = x1+x2
2 , hence F�(y) = 1,

F �(x) = 5, C�(y) = 1=2, and C�(x) = 5=2.
Note that A1 is indeed the unique nontrivial algebra on 
 which makes the

preference complete upon restriction. The only two other nontrivial algebrae
of 
 are indeed A2 =

�
?; f!1; !3g; f!2g;


	
and A3 =

�
?; f!1; !2g; f!3g;


	
.

The two random variables x00 = [2 0 2]T and y00 = [1 5 1]T are A2-measurable
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and they are not comparable with respect to <, because x001 + x002 = 2 < 6 =
y001 + y

00
2 , but x

00
1 + x

00
3 = 4 > 2 = y001 + y

00
3 . Analogously, x

000 = [2 2 0]T and
y000 = [1 1 5]T are A3-measurable and x0001 + x0002 = 4 > 2 = y0001 + y0002 , but
x0001 + x

000
3 = 2 < 6 = y

000
1 + y

000
3 .

Remark 8. In the classical identi�cation of an algebra of 
 with a certain
state of information of the decision makers, completeness of < with respect to
A amounts to saying that decision makers can choose among random variables
which are �compatible� with respect to their state of information, but they
cannot make a choice between random variables that require more information
to be fully �understood�.
In such a situation, decision makers can nevertheless give a minimal and a

maximal evaluation of the undecidable random variables with a kind of �worst
case/best case�approach, and of course they can safely assume that y is better
than x whenever the worst case of y is better than the best case of x.
Finally, note that the maximal algebra A need not be unique and that,

in principle, the extensions of < built upon the restrictions to two di¤erent
maximal algebrae cannot be guaranteed to be compatible with each other. In
such a case, a more restrictive �extension�of the preference might be de�ned,
by saying that y is preferred to x if the worst cases of y according to the two (or
more) maximal algebrae turn all to be better than the best cases of x according
to the two (or more) maximal algebrae.

7 Conclusions

The present paper examined some consequences of a theorem by G. Debreu,
based upon the Sure Thing Principle.
The result proved by Debreu is that a complete, monotonic and continuous

preference satis�es the Sure Thing Principle if and only if it can be represented
by a real-valued functional, which turns out to be additively decomposable with
respect to the �states of the world�. Thus the functional turns out to be a state-
dependent utility. We highlight that Debreu�s representation induces a (joint)
measure on the product space 
 � R, thus simultaneously evaluating events
and values taken by the random variables. If the probability measure on 
 is
assigned, it is always possible to pretend the joint measure to be the product of
such a probability by a state-dependent utility function. On the other hand, it is
also possible to assign the other �marginal measure�, that is, the utility function
on R, thus looking at Debreu�s representation as an expected utility with respect
to an �utility-dependent probability�. Moreover, Debreu�s representation can be
read as the probability of outperforming a given benchmark that, this time, need
not be stochastically independent of the random variables under consideration.
More precisely, the benchmark turns out to be independent from the random
variables if and only if the measure induced by the Debreu�s representation is a
product measure.,
Furthermore, the statewise decomposability of Debreu�s representation can

be exploited to introduce, in quite a natural way, the concept of a conditional
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certainty equivalent with respect to an event A � 
, de�ned to be the constant
amount that, if A prevails, the decision maker deems equally desirable as the
random variable. Suitable properties hold.
Section 6 discusses possible connections between Debreu�s Theorem and in-

complete preferences. Given any incomplete preference <, there has to be at
least a maximal algebra A on 
 such that < is complete over A-measurable
random variables and, therefore, such a restriction can be represented by means
of a Debreu�s functional. Given a random variable y in the original space, it
is then reasonable to take into consideration its upper and lower A-measurable
approximations and to de�ne an �upper�and �lower�measure of y as the the
values taken on such approximations by the Debreu�s representation of the com-
plete restriction of <. Such a de�nition, of course, induces a new preference,
call it <0; by setting x <0 y whenever the lower measure of x is greater than the
upper measure of y; unfortunately, while x <0 y implies that x < y, the opposite
implication does not hold. The problem of �nding an extended representation
for incomplete preferences remains therefore open and stimulating.
Further research could take again into consideration all of the possible (�-

)algebrae which make < complete by restriction, and then to �paste together�
the resulting representations, to be seen as �projections�à la Rumbos (2001).
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