
Citation: Leonardi, F.; Simonazzi, B.;

Martini, F.M.; D’Angelo, P.; Foresti, R.;

Botti, M. Synthetic and Natural

Biomaterials in Veterinary Medicine

and Ophthalmology: A Review of

Clinical Cases and Experimental

Studies. Vet. Sci. 2024, 11, 368.

https://doi.org/10.3390/

vetsci11080368

Academic Editor: Fabrizio Vitale

Received: 25 June 2024

Revised: 8 August 2024

Accepted: 10 August 2024

Published: 12 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

veterinary
sciences

Review

Synthetic and Natural Biomaterials in Veterinary Medicine and
Ophthalmology: A Review of Clinical Cases and
Experimental Studies
Fabio Leonardi 1 , Barbara Simonazzi 1,*, Filippo Maria Martini 1, Pasquale D’Angelo 2 , Ruben Foresti 2,3,4

and Maddalena Botti 1,2

1 Department of Veterinary Science, University of Parma, 43126 Parma, Italy; fabio.leonardi@unipr.it (F.L.);
filippomaria.martini@unipr.it (F.M.M.); maddalena.botti@unipr.it (M.B.)

2 CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism,
43126 Parma, Italy; pasquale.dangelo@imem.cnr.it (P.D.); ruben.foresti@unipr.it (R.F.)

3 Department of Medicine and Surgery, University of Parma, 43123 Parma, Italy
4 CERT, Center of Excellence for Toxicological Research, 43123 Parma, Italy
* Correspondence: barbara.simonazzi@unipr.it; Tel.: +39-0521032781

Simple Summary: Three-dimensional printing technology is a method of creating a three-dimensional
object layer by layer using a computer-generated design. This method has enabled the production
of custom models of organs or organ parts, leading to the emergence of “personalized medicine”.
The materials used in 3D printing include plastic, metal, and polymers. This review discusses the
current state and future prospects of six biomaterials used in veterinary medicine and ophthalmology.
Polycaprolactone is suitable for replacing hard tissue defects and is well tolerated in the eye, making
it useful for ocular drug delivery devices. Pluronic is used for bone tissue engineering applications
and could also be employed for drug delivery in ophthalmology. Silk is used for composite osteogenic
scaffolds and vascular grafts, and it may be tested for creating protective lenses for the eye. Collagen
is used to produce bioengineered corneas to improve the treatment of corneal ulcers. Alginate is
used in cardiac and orthopedic procedures and is also employed in various ocular delivery systems
for corneal repair. Hyaluronic acid is commonly used as a lubricant and can serve as a regenerative
scaffold during the corneal healing process.

Abstract: In recent years, there has been a growing interest in 3D printing technology within the
field of bioengineering. This technology offers the ability to create devices with intricate macro- and
micro-geometries, as well as specific models. It has particularly gained attention for its potential in
personalized medicine, allowing for the production of organ or tissue models tailored to individual
patient needs. Further, 3D printing has opened up possibilities to manufacture structures that can
substitute, complement, or enhance damaged or dysfunctional organic parts. To apply 3D printing
in the medical field, researchers have studied various materials known as biomaterials, each with
distinct chemical and physical characteristics. These materials fall into two main categories: hard
and soft materials. Each biomaterial needs to possess specific characteristics that are compatible
with biological systems, ensuring long-term stability and biocompatibility. In this paper, we aim to
review some of the materials used in the biomedical field, with a particular focus on those utilized in
veterinary medicine and ophthalmology. We will discuss the significant findings from recent scientific
research, focusing on the biocompatibility, structure, applicability, and in vitro and in vivo biological
characteristics of two hard and four soft materials. Additionally, we will present the current state and
prospects of veterinary ophthalmology.

Keywords: biomaterials; soft material; hard material; veterinary medicine; ophthalmology; systematic
review; personalized medicine
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1. Introduction

Three-dimensional (3D) printing technology can be used to produce biological tissues
and organs through a process called bioprinting, which involves printing biochemical
material and living cells to create three-dimensional biological structures. This technology
is the result of interdisciplinary studies in the fields of biology, biomaterials, mechanical
engineering, and 3D bioprinting. The ultimate goal is to be able to create custom tissues
and organs by laying down suitable biomaterials layer by layer. This could allow for the
production of organ models tailored to individual patient needs, potentially leading to
personalized medicine.

The materials used in 3D printing can be categorized as hard or soft. Hard materials
include thermoplastic polymers, ceramics, and metals, while soft materials include hydro-
gels and hydrophilic polymers. Soft materials are capable of absorbing large amounts of
water and can promote the formation of new tissues due to their permeability to nutrients.

This review aims to evaluate two hard and four soft substances, considering their
characteristics and previous uses, particularly in veterinary medicine, to determine their
suitability for 3D-printed protective lenses or for enhancing existing lenses with micro- or
nano-chambers for controlled and programmed drug release [1,2].

2. Hard Materials
2.1. Polycaprolactone

PCL (ε-caprolactone) is a synthetic polyester polymer that has garnered considerable
attention due to its great potential in biomedical applications. Among synthetic polymers,
PCL stands out as one of the easiest to process and manipulate into various shapes and
sizes thanks to its low melting temperature and superior viscoelastic properties. It boasts
excellent mechanical properties, such as rubberiness, making it easy to modulate, and
degrades slowly over several months to years [3]. PCL also exhibits good biocompatibility
and bioactivity and has been approved by the Food and Drug Administration (FDA) as
non-toxic, allowing for its use in various human applications, including sutures, micro-
and nano-devices for drug delivery, and adhesion barriers [4,5].

PCL has found extensive use as a scaffold in tissue engineering for bone, cartilage,
tendon and ligament, blood vessels, and skin reconstruction (Figure 1). Its characteristics
have made it the ideal material for the fabrication of scaffolds aimed at regenerating
hard tissues, such as the femurs of goats [6], repair of partial sternal defects [7], scapula
cortical bone removal [8], and mandible defects in dogs [9]. Studies have shown that PCL
demonstrates good bone regeneration performance in dog models [10].

PCL has also gained interest in ophthalmology for the development of ocular implants
and drug delivery systems (Figure 1). Bernards et al. showed that micro- and nano-
engineered PCL can retain its structural conformation and integrity when placed in the
eye, marking an important development in the field [11]. Irani et al. demonstrated that
PCL is a versatile material. It has been successfully used for drug delivery and in in vitro
studies, including those carried out on corneal endothelial cells of bovine [12,13] and
humans [14–17]. These studies have documented the remarkable potential of PCL in
the field of tissue engineering. In rat eyes, PCL has shown the ability to be loaded with
growth factors and promote the regeneration and growth of ocular epithelial cells. It can
also remain attached to the cornea, suggesting its potential use in the treatment of ocular
surface disease [18]. In rabbits, PCL drug delivery devices containing hypotensive [19] or
antimetabolite [20] agents are biocompatible and efficiently distribute the drug in ocular
tissues [11]. Furthermore, in dogs, PCL custom-made prostheses and ocular implants
developed using 3D-printing technology have yielded positive results. The artificial eye
was aesthetically pleasing, and its use has not led to significant complications.
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Figure 1. Schematic illustration summarizing common uses and in vivo experiments in veterinary
medicine involving PCL (created by BioRender.com).

2.2. Pluronic

Pluronics are an important class of biomedical polymers that undergo a reversible
gel–sol transition in aqueous solutions at physiological temperature and pH [21,22]. This
transition is influenced by the molecular weight and concentration of each polymeric
constituent. Pluronics are commonly used in tissue engineering, although they have the
drawback of degrading quickly in vivo. To address this, they are often cross-linked with
other substances such as α-hydroxy or amino acids to modify their chemical structure.

In terms of applications, pluronics are known to inhibit surface-tissue adhesion for
many cell types [22]. They have been successfully used in scaffolding applications involving
in vitro hematopoietic stem cells and lung tissue [23]. Additionally, various studies showed
that pluronics can serve as a potential drug delivery system [24–26] and have applications
in rabbit ophthalmology [27] (Figure 2).
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by the FDA for drug delivery applications in recent years [28]. It has good properties: it is
non-toxic, biocompatible, and biodegradable; it has a reversible mechanism of gelation [29]
and is thermosensitive. This property enables it to hold encapsulated cells in its structure
and to promote initial cell adhesion inside the defect site [30,31]. Moreover, pluronic F-127
can enhance cell attachment, collagen formation, and angiogenesis [32,33].

Additionally, in vitro studies have documented that pluronic F-127 hydrogel is a good
substance for tissue engineering [34], as it can be used for the immobilization of dental
mesenchymal cells and the healing of cartilage or bone tissues in pigs [35] (Figure 2).

Unfortunately, to our knowledge, pluronic has not been specifically used in the oph-
thalmic field. However, its biocompatibility, ease of preparation, mechanical stability,
antibacterial effect, and ability to incorporate different substances with pharmacological
activity and promote their release [36] make it a matrix that should also be investigated for
ophthalmological drug delivery use.

3. Soft Materials
3.1. Silk

Silk is a biopolymer consisting of two distinct proteins, fibroin and sericin. In Bombyx
mori cocoons, fibroin makes up about 70 to 80 wt.% and is commonly used in the textile
industry and medicine after degumming [37]. The high mechanical strength of fibroin is due
to the antiparallel alignment of β-sheets in its protein structure, as well as its hydrophilic
and hydrophobic blocks in a semi-crystalline polymer matrix, self-cooling ability, and lack
of inflammatory responses in humans [38]. Sericin is also used in biomedical systems for
its high moisture, oxidation resistance, and protection against UV radiation [39]. Both
silk proteins have been utilized to enhance the physical properties and biocompatibility
of various materials in different ways and forms (e.g., in vivo modification, regeneration,
or post-treatment).

Silk fibers (SFs) are employed to create various dimensional systems, such as films,
nano- or micro-spheres, or electrospun fibers [40]. This is feasible because silk possesses
high mechanical strength, controllable degradation, manufacturing flexibility, and good
biocompatibility [41,42]. Consequently, it is primarily used for biological applications,
such as medical sutures, tissue regeneration [43], drug delivery systems, and for designing
biosensors and wearable electronics [44–46] (Figure 3).
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SF has been studied for the production of various biomaterials for wound healing,
such as films, nanofibrous matrices, and 3D porous scaffolds. SF has been used alone or
combined with other biomaterials, like polyethylene glycol, keratin, and collagen. It has
also been bio-functionalized for wound repair, stabilization of molecules, maintenance of
bioactivity, and drug delivery systems [47,48]. SF has excellent properties as a drug carrier,
enabling delayed release in therapeutic protocols.
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The excellent biomodulating properties of SF make it a great substrate for bone tissue
engineering applications. In vivo studies showed SF osteogenic potential in rats [49]. SF
scaffolds have been successfully used for repairing bony defects, such as canine mandibular
border defects [50]. Composite scaffolds with osteogenic potential and the ability to mimic
the natural bone environment were created by combining SF with other biomaterials like
hyaluronic acid. SF scaffolds can be produced in different forms as follows: injectable and
printable gels, porous sponges, and electrospun 2D and 3D constructs.

SF has also been tested in the vascular field. Since the implantation of artificial SF
vascular grafts in the femoral arteries of dogs, the high patency and remodeling ability
of these SF grafts have been documented [51], which could be applied in small-diameter
(<6 mm) vessels. The implantation of SF vascular grafts in the abdominal aorta of dogs has
shown rapid endothelialization and a tendency to form thin luminal layers [52] (Figure 3).

While not extensively tested in the ophthalmic field like pluronics, SF’s versatility and
biocompatibility with both hard and soft tissues make it suitable for use in this field for the
creation of protective lenses for veterinary use or the functionalization of existing lenses.

3.2. Collagen

Collagen is a key component of the extracellular matrix found in various connective
tissues, such as bone, cartilage, cornea, veins, arteries, and skin. It helps maintain tissue
integrity [53], provides transparency to the cornea and crystalline lens of the eye, and is
primarily composed of collagen type I and collagen type IV [54]. Collagen is widely used
in corneal bioengineering due to its safety, flexibility, biocompatibility, biodegradability,
and low antigenicity. It can form a transparent colloidal solution, and collagen-based
nanoparticles are used for topical drug release. However, a drawback of collagen is its lack
of mechanical toughness and elasticity, but research has focused on addressing this through
collagen cross-linking [55].

The biocompatibility of human collagen type IV has been demonstrated in dogs since
the 1980s with intracorneal implants [56], and animal-derived collagen has been utilized
for scaffold fabrication and biocompatibility evaluation [53].

Collagen has been used for shields, lenses, hydrogels, and keratoplasty. Collagen
shields have been used for ocular surface protection in humans and rabbits in the case of
corneal wounds [57]. It has been demonstrated that the collagen shield is a useful drug
reservoir because it can prolong the contact time between the cornea and the substance
and promote drug delivery to the eye. Many studies showed that collagen shields could be
easily used to deliver antibiotics, antivirals, analgesics, and immuno-suppressive drugs
to the eye. Collagen shields were effective in delivering tobramycin, fluoroquinolones,
cyclosporine, and eplerenone to the eyes of rabbits [58–62]. In a mouse model, collagen
discs effectively released and reduced viral replication [63].

Several studies in animal models showed that cross-linking collagen used for corneal
lens transplantation can significantly enhance corneal biological and mechanical properties,
increasing corneal resistance to tension [64,65]. Recently, the antibiotic release capacity of
anionic collagen/polyvinyl alcohol membranes was found to be superior to soft contact
lenses and collagen shields. These findings suggest that collagen/polyvinyl alcohol mem-
branes would improve the treatment of corneal lesions in domestic animals, increasing
patient welfare [66].

Collagen hydrogels are considered a promising method for corneal wound healing.
These hydrogels can support cell growth, facilitate gas exchange, release nutrients and
drugs, and remove waste products [67]. In guinea pigs, collagen was safely used for
implanting gel into the cornea [68]. In a rabbit experimental model, type I collagen hydrogel
with azide and dibenzocyclooctyne successfully promoted corneal re-epithelization [69]. A
collagen-based hydrogel loaded with a neuro-regenerative drug effectively replaced a large
corneal defect in rabbits, also promoting nerve regeneration [70]. Additionally, cross-linked
collagen gel can be used to produce 3D structures ideal for corneal cell growth [55].
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Bioengineered corneas should closely resemble natural corneal structures. In a rabbit
model, stabilized recombinant human collagen-phosphorylcholine implants promoted
corneal cell and nerve repopulation in cases of corneal damage caused by alkali exposure.
It has been demonstrated that enzyme-resistant biosynthetic substitutes for allogeneic
tissue may be a valid alternative for cases requiring treatment by keratoplasty [71]. An
acellular non-cross-linked collagen-based scaffold was transparent, non-immunogenic, and
biocompatible for anterior lamellar keratoplasty in a rabbit model [72] (Figure 4).

Atelocollagen, a type of collagen with low antigenicity, has previously been used for
treating skin and mucous membrane diseases. In dogs, atelocollagen has been used as a
scaffold for keratocyte proliferation, promoting re-epithelization and accelerating corneal
wound healing without rejection and inflammation [73].
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3.3. Alginate

Alginate is a polysaccharide composed of β-D-mannuronic acid (M block) and α-
L-glucuronic acid (G block) blocks. Alginate with a high M block is more flexible and
elastic but also more immunogenic [74]. Commercially available alginate is obtained by
treating the cell walls of brown algae (class Phaeophyceae) with sodium hydroxide. The
molecular weight of available alginate varies from 32,000 to 400,000 g/mol. Alginate with
high molecular weight shows better physical and biological properties. Alginate has several
advantages: it is non-toxic, biodegradable, transparent, low immunogenic, inexpensive,
and rapidly gelling [74]. Alginate is an ideal drug carrier due to its mucoadhesiveness and
penetration properties [75].

Alginate is an interesting biomaterial useful for regenerative medicine because it pro-
motes cell growth and exhibits significant cross-link ability and biocompatibility. Alginate
can be used with other biological components to promote cellular growth and adhesion [74].
Unfortunately, alginate hydrogels dissolve uncontrollably, release alginate strands, and are un-
able to endure heavy loads due to their poor mechanical strength and high swelling rate [76].
Furthermore, alginate with high molecular weight is slowly metabolized by mammals, but
the sodium periodate oxidation of alginate allows it to degrade in a controlled manner [77].

Alginate is usually combined with various biomaterials to improve biomechanical
properties for producing tissue-like devices. Alginate constructs combined with gelatin,
cellulose, silk, and hyaluronic acid have been successfully used for 3D-printed multilayered
structures for long-term culture [74].

Alginate has been used in various cell delivery-based approaches for corneal repair.
Oxidized alginate gels have served as useful corneal wound healing bandages. In situ,
alginate/chitosan hydrogel has been employed as a limbal stem cell transplanting scaffold
for corneal reconstruction following serious corneal alkali burn wounds in rabbits [78].
Another in situ forming composite non-toxic, histocompatible, and rapidly biodegradable
hydrogel based on sodium alginate dialdehyde and chitosan was able to reconstruct
the engineered corneal endothelium in rabbits [79]. Alginate has been recently used to

https://doi.org/10.3390/ma15051971
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produce ion-activated bioadhesive hydrogel composed of natural corneal extracellular
matrix. Alginate enabled ion-activated hydrogel desirable transparency, biocompatibility,
and robust adhesion. This transparent hydrogel, combined with a soft contact lens, rapidly
restored normal corneal curvature, allowed for fast corneal re-epithelization, and promoted
nerve regeneration [80].

Alginate may be employed as an ocular delivery system, either alone or in combina-
tion with other biomaterials, thanks to its mucoadhesiveness, penetration enhancer, and
gelification properties, which allow for predictable drug release [74]. Alginate-based multi-
layers are widely used to control drug release from ophthalmic lenses in humans [81,82].
In rats, thiolated chitosan prepared with sodium alginate nanoparticles delivered large
amounts of drugs into the cornea [83]. In rats and mice, alginate-gelatin hydrogel-loaded
nanoceria was effective in preventing choroidal neovascularization, neurodegeneration,
and protecting the retina from oxidative damage [84].

Numerous studies have explored the use of alginate as a drug delivery system in rab-
bits. It has been observed that ophthalmic alginate gels and films increased the ocular miotic
response compared to pilocarpine drops [85]. Two experimental designs optimized an oph-
thalmic in situ gelling method to deliver moxifloxacin for treating various ocular infections,
ensuring drug release for up to 12 h without local side effects in rabbits [86–88]. Further-
more, a multilayered sodium alginate-chitosan hydrogel encapsulated timolol maleate and
levofloxacin, serving as a drug delivery system for the treatment of experimentally induced
glaucoma in rabbits [89]. Alginate has also been used as a drug delivery system to treat
bacterial keratitis. For instance, alginate coated with polycaprolactone/polyethylene glycol
fibrous inserts increased the adhesion of the besifloxacin complex [90].

Notably, alginate administered orally could be a useful treatment for certain oph-
thalmic diseases. For instance, alginate oligosaccharide, administered by gastrogavage for
four weeks, prevented experimentally induced cataracts in C57BL/6J mice by reducing
oxidative damage [91].

In addition to its medical applications, alginate can also be used for the storage and
transport of various cellular types (e.g., human corneal epithelial cells) [92].

Alginate has been experimentally utilized in animals as a biomaterial for cardiosurgery,
orthopedic procedures, and the treatment of endocrine disorders. Sodium alginate was
impregnated into a porous polyester vascular graft, which was successfully implanted in
the aorta of mongrel dogs [93]. In dogs, alginate has been employed for mesenchymal stem
cells and osteoblast cultures for use in the repair of bone defects [94]. Additionally, alginate
combined with poly-L-lactic acid has been used to produce a specific porous scaffold for
the repair of osteochondral defects in the canine vertebrae. This system exhibited good
osteointegration combined with new bone tissue formation and no inflammatory side
effects [95] (Figure 5). Furthermore, chitosan-alginate capsules were found to be safe and
biocompatible when used for xenogeneic and allogeneic islet transplantations in a canine
model of diabetes [96].
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3.4. Hyaluronic Acid

Hyaluronic acid (HA) is a natural non-sulfated polyanionic polysaccharide found in
the extracellular matrix of various tissues [97]. It possesses biodegradable, biocompatible,
atoxic, viscoelastic, and bioadhesive properties, with a molecular weight ranging from
1000 to 10,000,000 Da. HA plays a crucial role in cell attachment, migration, differentiation,
development, and angiogenesis. It can regulate intracellular signaling and cell behaviors
through interaction with specific cellular receptors [98]. Clinically, HA can be used for
tissue regeneration and cell therapies. It can be used as tissue fillers, drug carriers, or tissue
engineering scaffolds in medical specialties, such as wound healing, cartilage tissue repair,
and ophthalmology (Figure 6).
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Due to its viscoelastic and hydrophilic properties, HA is commonly used as a lubricant
in artificial tears for treating dry eyes and accelerating healing after surgery or trauma by
binding with corneal epithelial cell CD44 receptors. Furthermore, HA reduces inflammatory
mediators and improves the protection of cells from oxidative damage [75,99]. HA hydrogel
reduces inflammation and can be used as a regenerative scaffold to accelerate wound and
corneal healing [100]. In corneal injury, HA served as a component of a tissue filler material
promoting corneal epithelial cell growth without hyperplasia and stromal myofibroblast
formation in a rabbit model [101]. Additionally, studies showed that HA aids in the healing
and quality of corneal lesions, as well as being a successful physical barrier in the therapy of
corneal epitheliopathies in rabbits, dogs, cats, and horses [102–105]. HA/chitosan/gelatin
hydrogel has been shown to promote rapid corneal re-epithelization in a rabbit model
of alkali-induced corneal damage [106]. Furthermore, the recovery of normal corneal
endothelium has been demonstrated after the transplantation of HA cell-loaded hydrogels
to rabbits with corneal endothelium dysfunction [107].

In ophthalmic surgery, HA is employed in cornea tissue engineering due to its bio-
logical stability, biodegradability, and permeability of nutrients. However, its low stability
may pose drawbacks in cornea tissue engineering [75]. HA can establish and maintain
comfortable conditions to promote healing of the postsurgical area, minimize the risk of
adhesions, decrease oxidative damage, and normalize intraocular pressure [108]. Studies
have also shown that HA-based microcarriers enhance corneal stromal regeneration in
a rabbit model of corneal alkali burn injury, achieving corneal healing after intracorneal
injection of keratocytes/functionalized HA-based oxidized microcarriers [109].

Moreover, HA is utilized as a stem cell culturing system, and it enhances stem cell
proliferation. Nanofibers of HA scaffolds are used to support or grow mesenchymal stem
cells directly on them. The introduction of different cross-linking networks has also allowed
HA gels to be more conducive to stem cell differentiation [108].

Numerous studies have focused on the use of hyaluronic acid (HA) scaffolds for
corneal healing, particularly as cell delivery vehicles. Porcine stem cells loaded into the HA
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hydrogel vehicle showed promising differentiation, adhesion, and proliferation abilities.
Additionally, HA hydrogel loaded with dopamine demonstrated improved adhesiveness
and increased cell viability [110]. In in vivo studies on rabbits, the cornea implant surface
was enhanced with different molecular weights of HA, leading to a significant increase in
the number of keratocytes [75].

It has been demonstrated that biocompatible HA hydrogels with large microporosities
can be effectively used as scaffold systems for the treatment of various endothelial corneal
dysfunctions because they allow for nutrient permeation [109]. An in vivo study reported
that implanting endothelium cells/HA devices in the anterior chamber was clinically
suitable for treating corneal wounds but might cause some inflammatory side effects [111].
Highly oxidized cell/HA systems successfully restored the physiological collagenous
structure after 4 weeks in a rabbit model. It is well known that oxidation promotes cell
proliferation and adhesion, facilitating a more rapid restoration of physiological tissue
conditions. Furthermore, HA microgels may be useful systems for bioactive delivery,
injectable fillers, and 3D bioprinting [109].

Drug delivery through soft contact lenses (SCLs) is a feasible method. HA is safely
used in the structure of silicone SCL without affecting the optical properties. HA promotes
physiologic blinking, increases drug residence time on ocular tissue by reducing tear
outflow, and prevents protein adhesion to the SCL surface. An in vivo study in a rabbit
model with dry eye syndrome demonstrated that SCL released HA into the rabbit eyes for
2 weeks, promoting fast healing [112]. Poly (2-hydroxyethyl methacrylate)/β-cyclodextrin-
HA hydrogel has proven to be useful as an SCL material for conjunctivitis treatment in
rabbits. These SCLs showed good oxygen permeability and flexibility, reduced the adhesion
of Staphylococcus aureus, and enhanced drug delivery [113].

SCL constructed with HA and loaded with ciprofloxacin and dexamethasone released
an adequate amount of antibiotic [114]. The soaking technique and direct entrapment were
tested to load HA in SCLs. In an in vivo study in rabbits, direct entrapment was superior
to the soaking method in terms of HA quantitative release and residence times [115].

HA can be cross-linked or conjugated with various biomaterials for controlled-release
formulations, and it can effectively encapsulate many drugs, even at the nanoscale [116].
Some ionic complexes between HA and various drugs have been shown to prolong ocular
residence time. The advantageous rheological and mucoadhesive properties of HA loaded
with 0.5% timolol prolonged the drug’s residence time, preventing its removal due to blink-
ing in normotensive rabbits [97]. Moreover, HA has been used in producing long-lasting
ciprofloxacin and vancomycin release systems for postoperative therapy in ophthalmic
surgery [117]. It was also combined with β-cyclodextrin to develop a delivery system
loaded with corneal epithelial cells and dexamethasone [118]. Its carrier capacity has been
demonstrated when conjugated with gold; in fact, HA increased the mobility of the gold
nanoparticles and favored their binding to HA receptors in various cells of the porcine
eye [119]. HA has been used to fabricate pliable eye bandages containing biodegradable
microneedles for targeted ophthalmic medication administration in rats [120].

4. Conclusions and Future Perspectives

The interest in biomaterials among researchers is continuously increasing. Many
studies focus on therapeutic solutions for human beings, but research in veterinary medicine
also aims to improve animal welfare.

This review summarizes the previous applications of various biomaterials in experimen-
tal, pre-clinical, and clinical studies, particularly in veterinary medicine and ophthalmology.

Some biomaterials, such as collagen and hyaluronic acid, are basic structural compo-
nents of most tissues and play an essential role in maintaining the biological and structural
integrity of the tissue architecture. Most biomaterials are easy to handle and could be used
in tissue engineering. To encourage the clinical application of these systems, it is necessary
to optimize production to provide an adequate imitation of biological functions. Therefore,
natural and synthetic biomaterials should ensure a favorable environment for the cells.
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The biomaterials examined in this review may be used in various medical areas,
including ophthalmology. They can be employed in the form of gels, scaffolds, and 3D
constructs and can be safely used as a growth substrate for many cells and as stroma
substitutes [121–124]. The greatest interest is directed towards devices that can be used as
drug or cell delivery systems.

Topical administration in the eye is usually based on ophthalmic drops, which require
frequent instillation and cause discomfort for the patient. Important goals of future research
could be to design biocompatible and well-tolerated SCLs specifically for drug delivery
and to identify the most effective biomaterial for this purpose. SCLs are a more natural
technique to administer ophthalmic drugs than eye drops, as they are near the cornea [125].
SCLs consist of hydrogel able to absorb a fixed volume of an aqueous vehicle, including
drugs and nanoparticles inside a polymerizable monomer solution able to manage the
related release and reduce side effects due to systemic absorption.

Therapeutic SCLs for drug delivery may overcome the main drawbacks of traditional
eye drops, such as low drug bioavailability, low duration of action of the drug, low patient
welfare, frequent drug administration, and systemic toxicity. Moreover, the drug released
by the SCLs remains in the tear film for at least 30 min, allowing the drug to achieve
therapeutic concentration in most of the cornea, demonstrating that the bioavailability
increases to about 50% with SCLs [126].
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