
27 December 2024

University of Parma Research Repository

LSH kNN graph for diffusion on image retrieval / Magliani, F.; Prati, A.. - In: INFORMATION RETRIEVAL. -
ISSN 1386-4564. - (2021). [10.1007/s10791-020-09388-8]

Original

LSH kNN graph for diffusion on image retrieval

Publisher:

Published
DOI:10.1007/s10791-020-09388-8

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2886422 since: 2021-01-15T10:05:14Z

Springer Science and Business Media B.V.

This is the peer reviewd version of the followng article:

note finali coverpage

Noname manuscript No.
(will be inserted by the editor)

LSH kNN Graph for Diffusion on Image Retrieval

Federico Magliani · Andrea Prati

the date of receipt and acceptance should be inserted later

Abstract Experimental results demonstrated the goodness of the diffusion mecha-
nism for several computer vision tasks: image retrieval, semi-supervised and super-
vised learning, image classification. Diffusion requires the construction of a kNN
graph in order to work. As predictable, the quality of the created graph influences
the final results. Unfortunately, the larger the used dataset is, the more time the con-
struction of the kNN graph takes, since the number of edges between nodes grows
exponentially. A common and effective solution to deal with this problem is the brute-
force method, but it requires a very long computation on large datasets. This paper
proposes a technique, called LSH kNN graph, to efficiently create an approximate
kNN graph which is demonstrated to be faster than other state-of-the-art methods
(18x faster than brute force on a dataset of more than 100k images) for content-based
image retrieval, while obtaining also comparable performance in terms of accuracy.
LSH kNN graph has been tested and compared with the state-of-the-art approaches
for image retrieval on several public datasets, such as Oxford5k,ROxford5k, Paris6k,
RParis6k and Oxford105k.

Keywords Content-Based Image Retrieval · Diffusion · kNN graph

1 Introduction

Content-Based Image Retrieval (CBIR) is a research topic related to computer vision
area. The problem focuses on the search for a query image in a dataset and rank the
results based on the similarity to it. This image can be chosen or photographed by a
mobile device. This problem seems simple to solve, but there are several challenges to
be faced. The most significant ones are the robustness to orientation, scale and occlu-
sion. With the recent advent of features extracted by means of Convolutional Neural
Networks (CNN), it has been possible to obtain remarkable results, mitigating the
effect of these problems. In parallel, several new embedding strategy were proposed

IMP lab - University of Parma, Parma, Italy E-mail: federico.magliani@studenti.unipr.it

Manuscript Click here to
access/download;Manuscript;egpaper_for_review.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/inrt/download.aspx?id=59674&guid=5e715bc5-de36-4a3c-9cd5-32459be82876&scheme=1
https://www.editorialmanager.com/inrt/download.aspx?id=59674&guid=5e715bc5-de36-4a3c-9cd5-32459be82876&scheme=1
https://www.editorialmanager.com/inrt/viewRCResults.aspx?pdf=1&docID=3934&rev=0&fileID=59674&msid=aecbfca7-0821-4c7c-85e3-3f20fbc5d8fc

2 F. Magliani et al.

Fig. 1 In these three figures, two data distributions (orange and blue) are shown. In figure (a) the two
distributions are depicted and the black point represents the query (which belongs to the blue class). In
figure (b), the Euclidean distance is applied to rank the neighbours (green points) of the query, but several
false positives are detected. On the other hand, in figure (c) the ideal ranking is shown. The diffusion can
helps achieving this result, thanks to the propagation (diffusion) starting from the query image.

[26], [8], [19]. The combination of the new architecture for the feature extraction
phase and the new method for the creation of global descriptors allowed to realise
effective and efficient pipelines for CBIR problem, making feasible CBIR solutions
also in case of large-scale datasets with reasonable retrieval time [18].

A recent breakthrough on this topic was made by graph theory, such as diffusion
process, allowing to outperform the previous state of the art. In particular, the diffu-
sion mechanism can be applied for retrieval task with stunning results [13], where
the quality of the found query neighbours is better than checking the results in the
Euclidean space. This process exploits the manifold distribution of the data through
the creation of a graph, that represents the connection between dataset elements. The
graph is mathematically represented by a pairwise affinity matrix [30]. Therefore,
as also previously stated, the diffusion process requires the creation of a kNN graph
of the embeddings used to represent the dataset images. Of course, the quality of the
embeddings influences the results that can be achieved applying the diffusion process.

Once the kNN graph is created, the diffusion process works by finding (through
random walks), for each node, the best path to reach the query, exploiting the weights
of the traversed edges. The weights represent the similarity between the nodes con-
nected by the edge (the greater the weight, the more similar the two nodes are).

Unfortunately, this approach also bears with it some drawbacks: (i) the setting of
diffusion parameters is hard since they are dependent of the specific data distribu-
tion; and (ii) the time necessary to create the kNN graph can be unbearable for large
datasets.

In practice, in order to apply diffusion a kNN graph needs to be created and its
number of edges heavily influences the retrieval result. Moreover, it is hard to predict
how much connected the graph needs to be to achieve good results. Therefore, the
straightforward solution is to fully connect the nodes through the so-called brute-
force strategy. This strategy is very easy to implement, but it tends to be very slow in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 3

case of large datasets. Given a dataset of N images, the brute-force graph will have
N 2 edges, meaning that forN = 100k, the number of edges of the brute-force graph
will be equals to 10 billions.

As a consequence, different methods were proposed to solve this task in an ap-
proximate way, trying to create fastly an high quality approximate kNN graph [25],
[5], [2], [29] (see Section 2 for further details).

Our proposed method called LSH kNN graph follows the principle that not all
the connections between nodes in the graph are mandatory. It uses Locality Sensi-
tive Hashing (LSH) projections [11] to subdivide the images contained in the dataset
in many subsamples and then only the pair of images with a similarity greater than a
threshold will be maintained and connected in the final graph. This process is repeated
for each subsample and for different hash tables. The trade-off between the quality
of the graph and the creation time is an important parameter of this method. In par-
ticular, the LSH kNN graph reaches the same or better retrieval results than many
state-of-the-art algorithms on several public image datasets, but in much shorter time
compared with the other methods.

The main contributions of this paper are:

– LSH kNN graph, that is an efficient algorithm for the creation of an approximate
kNN graph. It can achieve the same or better performance, through the diffusion
application, than several state-of-the-art algorithm in less time. Moreover a com-
plexity analysis is presented in order to support the goodness of the proposed
method.

– Several code optimizations for the creation of the graph are showed in order to
reduce the computational time and the usage of memory.

– Experiments on several public image datasets and comparison with state-of-the-
art methods.

– Improvements on the quality of the graphs due to some refinement techniques
based on the neighbour propagation technique.

This paper is organised as follows. Section 2 introduces the general techniques
used in the state of the art, while Section 3 reports some background information
about ranking with diffusion. Next, Section 4 describes the proposed algorithm with a
complete complexity analysis (Section 4.4) of the proposed method. Moreover, some
refinement techniques (Section 4.5) are described and tested in order to demonstrate
how it is possible to improve the quality of the graph with no extra effort. Then, Sec-
tion 5 reports the experimental results on five public datasets: Oxford5k,ROxford5k,
Paris6k,RParis6k and Oxford105k. Finally, concluding remarks are reported.

2 Related work

Recently, several graph applications in computer vision tasks have been proposed in
the literature: diffusion for retrieval [13], unsupervised or semi-supervised training
[12,6], image classification [15] and manifold embedding [28].

Similarly to our case, all these papers use the k-Nearest Neighbour (kNN) to cre-
ate the graph. More formally, you can describe the undirected graphG withG(V,E),

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 F. Magliani et al.

where V represents the set of nodes V = {v1, v2, . . . , vn} andE represents the set of
edgesE = {e1, e2, . . . , en}. The nodes represent all the images in the dataset and the
edges represent the connections between nodes. The weight of each edge determines
how much the two images are similar: the higher the weight, the more similar the
two images are. The weights of the edges are set with the cosine similarity calculated
between the embeddings.

The problem of creating the kNN graph differs from the nearest neighbours search
task since it does not need to index all the dataset image in order to fastly retrieve
the elements similar to the query image, but it needs to create the relations between
all the similar images in the dataset [2]. For example, PQ [14] and BoI [17] are
nearest neighbours methods, but they are not suitable for this task due to data structure
adopted, not graph based. After the creation of the graph, the application of some
heuristic allows to extrapolate useful information through the graph for improving
the performance of the retrieval system or the image classifier.

Different solutions are available in the literature to efficiently create the kNN
graph. The most simple is the exact or brute-force method. The advantages of this
methods are that is simple to implement and that obtains usually the best results.
Unfortunately, it requires very long time to compute.

Alternatively, approximate kNN graph algorithms want to speed up the process,
but maintaining good performance after diffusion application. They can be subdi-
vided in two families of strategies: algorithms based on divide and conquer strategy
and techniques based on local search optimizations (e.g., NN-descent [5]). As the
name says, divide and conquer is composed by two steps: firstly, based on a certain
heuristic, the images in the dataset are divided in subsamples and then for each sub-
sample a kNN graph is created. In the end, all the created subgraphs are merged,
obtaining the final kNN graph. Naturally, the number of subdivisions influences the
final performance and the computational time of the approximate kNN graph algo-
rithm. Moreover, the heuristic used for the subdivision task is crucial for the method
and needs to be very effective and efficient. For instance, the well-known K-means
algorithm [1], while being widely and successfully used for clustering, is too slow
for this task. To solve this problem, the method proposed in this paper is faster than
K-means.

An interesting work [29] following the divide and conquer strategy exploits LSH
(Locality-sensitive hashing) to create the approximate kNN graph by using spectral
decomposition of a low-rank graph matrix. Instead, Chen et al.[2] follow the same
strategy, but applying recursive Lanczos bisection. In this case, two divide steps are
proposed: the overlap and the glue method. The difference between the two proposed
techniques is on the subsets, overlapped for the former and disjointed for the latter.
Another interesting paper from Wang et al.[27] proposes an algorithm for the cre-
ation of an approximate kNN graph based on random collections of dataset elements.
Repeating many times this process allows to theoretically cover the entire dataset.

On the other hand, the methods based on local optimizations are based on the
principle that “a neighbour of my neighbour is my neighbour”, introduced by Dong
et al.with NN-descent [5]. Starting from a random Nearest Neighbour (NN) list for
each node, the method iteratively tries to update these lists. The update process is
very simple: for a node a, the algorithm finds two neighbours (b and c) and then

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 5

tries to update the NN list of b with the distance d(a, b) and the NN list of c with
the distance d(a, c). The process is repeated until the number of updates executed
on the NN lists is less than a threshold, selected as parameter of the algorithm. A
weakness of this method is the correct setting of the initial dimension of the NN lists
and the number of updates to execute on them. In fact, if the dimension of the lists is
large or the number of updates is very high, the method will require very long time
to compute the kNN graph. Different works tried to adapt the NN-descent to their
specific application domains [21], [9], [4].

Finally, a mixed solution, called Random Pair Division, based on both divide-and-
conquer strategy and NN-descent was proposed by Sieranoja et al.[25]. The first step
is the subdivision of the dataset elements in order to speedup the subgraphs creation.
The heuristic adopted is very simple: starting from two random dataset elements, all
the elements will be assigned to one of the two sets based on the distance to the initial
random selected element. The process is repeated if the size of one set is greater than
a threshold. After that, the subgraphs are created on the elements contained in the
subsamples using the brute-force approach. In addition, the NN-descent is applied to
improve the quality of the graph and to connect also elements of different subgraphs.

3 Ranking with diffusion

The diffusion is a mechanism that allows to spread the query similarities on a graph,
created with the dataset elements, in order to catch all the neighbours elements to the
query. The diffusion application requires the presence of the affinity matrix.

The affinity matrixA is the adjacency matrix of a weighted undirected graphG. It
is symmetric (A = AT), positive (A > 0) and with zero self-similarities (diag(A) =
0). In order to apply diffusion, it is worth to calculate the Laplacian of the graph
L = D−A, whereD = diag(A1n) is the degree of the graph andA1n is the diagonal
matrix with the row-wise sum of A. Then, it is common to normalize the affinity
matrix for obtaining the transition matrix S = D−1/2AD−1/2 and the Laplacian
L = In − S where In indicates the identity matrix, that has size equals to n.

After the creation of the Laplacian and the relative normalization, Zhou et al.[30]
proposed to apply diffusion for retrieval purposes starting from the query points. They
created a vector y = (yi) ∈ Rn in this way:

yi =

{
1 if xi is a query

0 otherwise

The objective of ranking with diffusion is to find the neighbours of a query, there-
fore a ranking function f = (fi) ∈ Rn, that allows to generate a vector with the
similarity score of each image xi to the query, is created. It is worth to note that
this process needs to be repeated for each query. The diffusion mechanism can be
represented in the following way by the ranking function:

f t = αSf t−1 + (1− α)y

The ranking function defines the random walk process on the graph, while α
indicates the probability to jump on an adjacent vertex according to the distribution

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 F. Magliani et al.

S and (1 − α) indicates the probability to jump to a query point. At the beginning
of this process the ranking function is initialised with the value obtained from the
application of the Euclidean distance. Repeating many times this process allows for
each point to spread their ranking score to their neighbours in the graph. Exploiting
this principle it is possible to better capture the manifold structure of the dataset than
applying the Euclidean distance.

4 Proposed approach

LSH kNN graph adopts LSH to subdivide in subsets the global descriptors repre-
senting the images of the dataset. The number of the subsets depends to the hash
dimension used for the projection phase and the size of each set usually depends to
the dataset size because the subdivision is pretty much similar in each bucket. In the
following, first the hashing technique is introduced and then the entire algorithm is
described.

4.1 Notations and background of LSH

Locality-Sensitive Hashing (LSH) [11] is an hashing technique based on the principle
that similar points will be close also in the projected space with high probability.

The LSH function for Hamming space is a scalar projection:

h(xf) = sign(xf · p) (1)

where xf is the feature vector and p is a vector with the components randomly se-
lected from a Gaussian distribution N (0, 1), called projection function.

This process can be repeated many times (L represents the number of hash tables
used in the LSH process) in order to improve the quality of the projections, using
different Gaussian distribution.

A common LSH application for retrieval purposes can be summarised with these
three steps:

1. project all the database descriptors using different Gaussian distributions;
2. for each query, project the image descriptor using the same Gaussian distributions

adopted for the database elements;
3. search and rank in the hash table buckets the database images.

Many other hashing techniques have been proposed and implemented. For ex-
ample, the multi-probe LSH [16] tries to reduce the number of hash tables used for
the projections, exploiting the fundamental principle of LSH that similar items will
be projected in the same buckets or in near buckets with high probability. This idea
is implemented checking, during the search phase, also the buckets near the query
bucket. Sadly, the performance improvement determines, as a consequence, an in-
crease of the computational time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 7

Fig. 2 Pipeline of a basic algorithm for kNN graph construction based on LSH projections and following
the divide-and-conquer strategy.

4.2 LSH kNN graph

LSH kNN graph creates an undirected kNN graph G from a dataset
S = {s1, . . . , sN } of N images. To create the graph and connect the nodes through
edges, a similarity measure θ : S × S → R is adopted. The connection between
the nodes i and j in the graph is calculated with the similarity measure θ(si, sj) =
θ(sj , si). There are different techniques to calculate the similarity measure. For our
purpose we adopted the cosine similarity, that can be calculated with the dot product
between the global image descriptors of the dataset images. The proposed approach
follows the divide-and-conquer strategy since the first step is the split of the dataset
elements in many subsets based on LSH projections, as showed in Fig. 2. As pre-
viously reported, LSH allows to project similar elements in the same bucket in a
projected space. Exploiting this principle it is possible to created a set of buckets
B = {B1, . . . , Bm} from several hash tables. In addition, the use of more or less bits
(δ) for the projection step influences the quality of the results and the final number
of the buckets. Considering also the number of the hash tables (L) adopted for the
projection, the total number of buckets will beN = 2δ ·L = |B| ·L. We will indicate
the n elements of the i-th bucket Bi as follows: Bi = {bi1, . . . , bin}. There are no
guarantees that all the similar elements will be in the same bucket because this ap-
proach represents an approximate solution. As a consequence, a good idea is to try to
find a trade-off between the number of the buckets for each hash table (2δ), by tuning
the bits used (δ) for the projection step and the number of hash tables (L). Usually,
if the objective is to project more elements in the same bucket, a good solution is to
use a small number of buckets. It allows to reduce the time spent in the divide phase,
but, on the other hand, the conquer phase will require more time to be executed. On
the other hand, with more bits adopted for the projections, and thus more buckets for
hash tables, the divide step will be lightly slower, but the conquer one will be faster.

The conquer step provides the connection between the elements in each bucket.
During this phase, the pipeline connects the dataset elements and stores in memory
the final graph. In this case, the method adopted to solve this subtask is the brute-
force approach, so all the elements in the bucket are connected, creating a kNN graph
G = (V,E), where V = (bx1, . . . , bxn) where x = 1, . . . ,m andE is the set of edges

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 F. Magliani et al.

with weights computed with the similarity θ: E = {∀ (bxi, bxj) ∈ Bi : θ (bxi, bxj)}
where x = 1, . . . ,m. The key point here is that applying brute-force several times but
on smaller sets results at the end to be faster than applying it once but on the entire,
larger set of data. Morever, differently from other methods based on the divide-and-
conquer strategy, no final merge between all the subgraphs is required, since in our
case a single graph is created and updated with new connections. For more details on
the implementation, please check Appendix A.

4.3 Multi-probe LSH kNN graph

Fig. 3 Pipeline of multi-probe LSH kNN graph. Best viewed in colour.

In addition to the basic LSH kNN graph described in the previous section, a multi-
probe version of it is also here proposed. This method exploits the principle of multi-
probe LSH with the objective of reducing the number of hash tables used.

Multi-probe LSH [16], during the query phase, checks also buckets near the query
bucket bquery because they probably contain similar elements to the ones contained
in it. For our purpose, this idea can be exploited during the projection step. It means
that each dataset elements, after the hashing phase, it will be projected also in the
neighbours buckets, as showed in Fig. 3. The process will be lightly slower due to the
greater number of projections to be performed. In order to maintain a good trade-off
between quality of the graph and computational time, the elements will be projected
only in the 1-neighbourhood. It is worth to note that the buckets are constructed using
binary numbers, so the Hamming distance can be exploited. As a consequence, 1-
neighbourhood represents the set of buckets with Hamming distance less or equal to
1 (Hd(bxi, bxj) ≤ 1).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 9

More formally, the elements obtained with the application of the multi-probe LSH
are the followings:

Bmulti−probe = {bx1, . . . , bxn} :
Hd(bquery, bxj) ≤ 1 ∧ bxj ∈ B;x = 1, . . . ,m, j = 1, . . . , n

Similarly to the basic LSK kNN graph, the growth of the bits used for the hashing
task directly influences the number of neighbours available in each bucket in this
way:

∑n
i=0

(
log2 δ
i

)
.

Although usually the final results are better than the ones obtained by the previous
method, the total computational time needed by this approach is greater as well. A
possible solution for this problem is represented by using a percentage γ that allows
to unsupervisely decide to project or not the elements also in the 1-neighbourhood.
For example, by setting γ = 50%, only half of the elements will be projected also in
the 1-neighbourhood buckets. Empirically, it has been found that the best trade-off is
reached using γ = 50%, which will be the value used in in all our experiments.

4.4 Complexity analysis

In this section, we will briefly analyse the complexity of the proposed methods.
For the projections phase when LSH is applied, the complexity will be O(δ ·∆ ·

L · N), where N is the number of images in the dataset, δ is the number of bits used
in each projection, L is the number of hash tables and ∆ represents the dimension of
the embedding used for the representation of the input image. In the case of multi-
probe LSH, the complexity will be greater because each image is projected in more
buckets: O(δ ·∆ · L · (N · γ · L) · N).

Then, the calculation of the similarity measure of all the possible pairs of elements
contained in a bucket has a complexity ofO(n2·2δ ·L), where n represents the number
of elements found in the bucket. By hypothizing a uniform distribution of buckets,
the value of n can be approximated as: n ∼ N

2δ
.

For supporting this hypothesis, Figures 4 and 5 show the LSH distributions (for
different values of δ) on Oxford5k dataset (see Section 5). The values reported in
each graph represent the distribution of the database elements in the buckets. The
final obtained distribution resembles a sort of Gaussian.

The complexity needed for the combination of the subgraphs (conquer phase) is
negligible because all the subgrahps are directly appended on the final graph.

To conclude, the final complexity of the proposed approaches can be obtained by
summing the single components:

– for basic LSH kNN graph approach: O(δ · ∆ · L · N) + O(n2 · 2δ · L) which
can be further simplified (exploiting the approximation of n mentioned before) in
O(L·N

2

4 + L · N · δ ·∆);
– for multi-probe LSH kNN graph approach:O

(
δ ·∆ · L · (N · γ · L) · N) +O(n2 · 2δ · L

)
which can be further simplified as before and also removing lower order terms in
O(L2 · N 2 · δ ·∆ · γ).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 F. Magliani et al.

Fig. 4 Distribution of dataset images projected through LSH on Oxford5k with δ = 6 and L = 20.

Fig. 5 Distribution of dataset images projected through LSH on Oxford5k with δ = 7 and L = 20.

Therefore, it is evident that while basic LSH kNN approach is bounded O
(
L · N 2

)
,

multi-probe version is, as expected, more computationally complex and bounded
O
(
L2 · N 2

)
.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 11

Fig. 6 Example of the working of the graph refinement techniques. Some extra edges are added in order
to improve the quality of the final kNN graph. The new connections are coloured with the same colour of
the relative nodes in order to make clear the working idea of the algorithm. Best viewed in colour.

4.5 Graph refinement

Graph refinement or neighbour propagation is an important step during the kNN
graph creation task. It allows to refine the quality of the graph in order to improve
the final results. In general, the algorithm aims at adding more edges between nodes
in the graph (as shown in the Fig. 6) since, hopefully, these edges will be improve the
diffusion result. Unfortunately, these improvements require an extra effort and the
final computation time will be greater.

The most diffused graph refinement method is one-step neighbour propagation
[5]. It is an iterative process, in which the neighbours of neighbours are checked.
In other words, if a is a neighbour of b and b is a neighbours of c, then is likely
that a is a neighbour of c. This approach requires the maintenance of a kNN list of
each node. For each node, two neighbours are randomly picked and then connected
if their similarity is greater than the worst in the list, by also updating the other kNN
lists accordingly. This process continue until the number of updates on the kNN lists
surpasses a threshold value.

In this paper we propose a novel method called sorted neighbour propagation,
that represents an improvement to the previously presented technique. The kNN lists
are sorted based on the similarity obtained during the creation of the kNN graph
and then only the topN elements are evaluated. All the possible pairs of neighbours
found in these topN elements are added to the graph. Experiments in the next section
will show the performance of the proposed method on different public image datasets
compared to other state-of-the-art techniques, such as: kNN graph without graph re-
finement (as a baseline), random propagation and one-step neighbour propagation.

5 Experimental results

Previous works have evaluated the methods for creating approximate kNN graphs
by checking the number of common edges between the approximate and the exact
kNN graph. Instead, our aim is to evaluate the complete kNN graph pipelines after
the diffusion and retrieval modules. The rationale of this choice lies in our objective
to evaluate how effective (and efficient) are our proposals for the approximate kNN
graph creation in terms of retrieval accuracy when diffusion is applied.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 F. Magliani et al.

The features used in all the experiments for the creation of the kNN graphs are
R-MAC descriptors [13].

The hardware adopted for the experiments is the following: CPU Intel Core i7 @
3.40 GHz x 8, 32Gb RAM DDR4.

5.1 Datasets

There are many different image datasets for Content-Based Image Retrieval that are
used in order to evaluate the algorithms. The most used are the following:

– Oxford5k [22] is composed by 5063 images representing the buildings and the
places of Oxford (UK), subdivided in 11 classes. All the images are used as
database images and the query images are 55, which are cropped for making
more difficult the querying phase;

– ROxford5k [24] is composed by 4993 images. This dataset represents the re-
visited version of the previous one. It is composed by 70 queries, that are new
images added to the old dataset. All the images are labelled in order to test the
pipeline at 3 different retrieval difficulties: Easy, Medium and Hard;

– Paris6k [23] is composed by 6412 images representing the buildings and the
places of Paris (France), subdivided in 12 classes. All the images are used as
database images and the query images are 55, which are cropped for making
more difficult the querying phase;

– RParis6k [24] is composed by 6322 images. As before, this dataset represents
the revisited version of the previous one, with 70 additional queries and the same
three difficulties: Easy, Medium and Hard;

– Flickr1M [10] contains 1 million Flickr images under the Creative Commons
license. It is used for large scale evaluation. The images are divided in multiple
classes and are not specifically selected for the image retrieval task.

Moreover, with the addition of 100k images of Flickr1M it is possible to create
Oxford105k datasets.

5.2 Evaluation metrics

To evaluate the accuracy in the retrieval phase, mean Average Precision (mAP) is
used on all the image datasets used. The mAP is the mean of average precision that
identifies how many elements that finds are relevant to the query image. In order to
compare a query image with the database, L2 distance is employed.

5.3 The importance of diffusion for retrieval

Before starting the evaluation of the approximate kNN graph pipelines, it is worth to
better motivate our choice of using diffusion on graphs and, therefore, the need for
an efficient creation of an approximate kNN graph.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 13

Fig. 7 Comparison of results obtained using R-MAC descriptors [13] tested with different approaches on
Oxford5k, Paris6k,ROxford5k andRParis6k.

Fig. 7 shows some experiments performed on both Oxford5k, Paris6k,ROxford5k
andRParis6k datasets. In each experiment the query expansion is executed using the
top 5 elements of the query ranking, following the original approach [3]. The diffu-
sion parameters for Oxford5k and Paris6k (using global descriptors) are set after an
optimization process based on genetic algorithms [20] in this way:

– α = 0.97. It indicates the contributions to the ranking score from the neighbours.
– β = 3. It indicates the exponentiation of the affinity matrix elements.
– γ = 1. It indicates the exponentiation of the query vector elements.
– iterations = 10. It represents the maximum number of iterations necessary for

the resolution of the equation A ∗ f = y in the diffusion process through the ap-
plication of the conjugate gradient. A represents the affinity matrix of the dataset
elements, instead y identifies the query vector and f is the ranking vector.

– ks = 97. It represents the maximum number of node to cross during the random
walk process.

– k = 7. It represents the number of neighbours to find.
– truncation = 4000. It represents the best number of rows to use for diffusion.

Fig. 7 demonstrates clearly that diffusion can bring significant improvements in
the retrieval accuracy.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 F. Magliani et al.

5.4 Results on Oxford5k

Method LSH projection Graph creation mAP
LSH kNN graph 0.45 s 0.52 s 94.45%

multi-probe LSH kNN graph 0.29 s 1.54 s 94.13%
NN-descent [5]* - 55 s 85.81%

RP-div [25]* - 1.16 s 84.68%
Wang et al.[27]* - 1.5 s 92.60%

brute-force - 2.01 s 92.79%

Table 1 Comparison of different approaches of kNN graph creation tested on Oxford5k using different
type of embeddings. * indicates that the method is a C++ re-implementation.

Table 1 reports the retrieval results obtained with the diffusion on different kNN
graphs, constructed adopting several algorithms. As a result, the different values for
the LSH parameters (δ and L) produces different final retrieval results. For LSH kNN
graph approach, the best combination is δ = 6 and L = 20, instead for multi-probe
LSH kNN graph method is δ = 6 and L = 2. It is evident that LSH kNN graph
approach obtains the best trade-off between performance and computational time
needed (also considering the sum of LSH projection and graph creation) for the entire
process.

Conversely, NN-descent [5] achieves poor results. In this case, the number of
neighbours evaluated in the NN-descent process is set to 75, meaning that each kNN
list is composed by 75 elements. In addition, this approach resulted to be the slowest
one with 55 secs needed to create the kNN graph.

Also RP-div [25] obtains quite poor results, but in a fast way. This is probably
due to the nature of this method, based on the randomness of the points used for the
divide step, which speeds up the graph creation process, but does not allow to have
good retrieval accuracy. The maximum size of each set is 50, meaning that every set
larger than 50 elements is further split.

The last compared approach is the method proposed by Wang et al.[27], whose
computational time is not very high, probably because the elements are randomly
chosen. It also achieves good accuracy, although the final quality of the graph depends
too much to the random choice of the elements. In this case, the number of iterations
are set to 1000 and the elements for each set are 200.

Lastly, the basic brute-force method resulted to have a good trade-off between
accuracy and efficiency.

Table 2 reports the results obtained after the application of some graph refinement
techniques adopted on the baseline LSH kNN graph. First row shows the baseline
method with no graph refinement. Random propagation (second and third rows) ran-
domly adds some new edges in the graph (100 and 500 new edges, respectively). This
graph refinement techniques improves significantly the mAP with a limited increase
in time needed for graph creation. Similar considerations can be done for one-step
neighbour propagation, which requires some more extra time to create the graph,
while obtaining results comparable with random propagation. Our proposed method

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 15

Method TopN Graph creation mAP
LSH kNN graph - 0.11 s 78.34%

Random propagation 100 0.33 s 85.77%
Random propagation 500 1.10 s 90.73%

One-step neighbour propagation [5] 100 0.45 s 87.23%
One-step neighbour propagation [5] 500 1.78 s 89.84%

Sorted neighbour propagation 100 10.66 s 91.66%

Table 2 Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
for Oxford5k.

(last row) obtains the best precision in retrieval, but at a much higher cost in terms of
computational time, that is related to the sort operation executed in order to connect
only interesting and useful nodes in the kNN graph. Please note that in this case we
used δ = 6 and L = 2 (instead of δ = 6 and L = 20 of the previous Table), resulting
in different graph creation time for our approach.

5.5 Results onROxford5k

Method LSH proj. Graph creation Easy Medium Hard
LSH kNN graph 0.48 s 0.52 s 90.51% 76.64% 54.26%

multi-probe LSH kNN graph 0.27 s 0.73 s 90.62% 74.96% 49.77%
NN-descent [5] * - 86 s 78.08% 65.36% 39.62%

RP-div [25] * - 1.13 s 85.03% 70.66% 45.79%
Wang et al.[27]* - 1.13 s 89.04% 74.28% 50.15%

brute-force - 1.3 s 89.51% 76.55% 53.10%

Table 3 Comparison of different approaches of kNN graph creation tested onROxford5k using different
type of embeddings. * indicates that the method is a C++ re-implementation.

We made the same experiments also for ROxford5k dataset. Table 3 reports the
retrieval results and the computational time. The parameters of all the approaches are
kept unchanged wrt the previous dataset, except for Wang et al.[27], in which the
number of iterations is increased to 400 and the elements of each set are 200. As
mentioned before, in this case three different mAP values are shown accounting for
the three different difficulties.

The proposed approaches (first two rows) exhibit the best trade-off between accu-
racy and efficiency for the all the three cases, with comparable (even slightly better)
results wrt brute-force. The other approaches confirm they generally-poor perfor-
mance when both the measures (time and accuracy) are considered.

Table 4 reports the results for graph refinement techniques. The quality of the
graph obtained with the proposed sorted neighbour propagation method outperforms
the other methods in all the three cases, but still suffers from a higher computational
time. It is still worth remembering (as for the previous dataset) that this experiment
has been conducted with δ = 6 and L = 2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 F. Magliani et al.

Method TopN Graph creation Easy Medium Hard
LSH kNN graph - 0.09 s 80.46% 64.94% 39.50%

Random propagation 100 0.33 s 83.75% 68.42% 39.39%
Random propagation 500 1.06 s 88.43% 73.33% 47.50%

One-step neighbour propagation [5] 100 0.42 s 83.73% 68.32% 41.47%
One-step neighbour propagation [5] 500 1.71 s 89.28% 74.08% 50.07%

Sorted neighbour propagation 100 10.72 s 89.68% 74.95% 50.50%

Table 4 Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
forROxford5k.

5.6 Results on Paris6k

Method LSH projection Graph creation mAP
LSH kNN graph 1 s 0.80 s 97.32%

multi LSH kNN graph 0.35 s 2.28 s 97.01%
NN-descent [5] * - 60.10 s 94.44%

RP-div [25] * - 3.63 s 96.65%
Wang et al.[27]* - 1.95 s 96.85%

brute-force - 2.61 s 96.93%

Table 5 Comparison of different approaches of kNN graph creation tested on Paris6k. * indicates that the
method is a C++ re-implementation.

Similar results and conclusions are obtained for Paris6k dataset. In fact, Table
5 shows that the proposed methods (especially basic LSH kNN graph) achieved the
best results in terms of mAP in less time compared to the time needed by the brute-
force approach. The configurations of each algorithm are the same of the previous
datasets. Moreover, Table 6, comparing graph refinement techniques, also leads to
similar considerations as before, where the proposed method (last row) gets the best
accuracy in all the cases, but with higher computational cost.

Method TopN Graph creation mAP
LSH kNN graph - 0.2 s 92.80%

Random propagation 100 0.45 s 83.85%
Random propagation 500 1.42 s 94.70%

One-step neighbour propagation [5] 100 0.66 s 85.01%
One-step neighbour propagation [5] 500 2.43 s 94.70%

Sorted neighbour propagation 100 13.38 s 97.27%

Table 6 Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
for Paris6k.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 17

5.7 Results onRParis6k

Method LSH proj. Graph creation Easy Medium Hard
LSH kNN graph 0.60 s 0.66 s 95.09% 92.00% 83.05%

multi LSH kNN graph 0.38 s 0.92 s 94.46% 88.49% 74.08%
NN-descent [5] * - 104 s 94.16% 89.50% 80.78%

RP-div [25] * - 1.23 s 77.02% 67.80% 55.70%
Wang et al.[27]* - 1.43 s 93.09% 85.48% 70.15%

brute-force - 1.56 s 94.86% 91.13% 82.78%

Table 7 Comparison of different approaches of kNN graph creation tested on RParis6k using different
type of embeddings. * indicates that the method is a C++ re-implementation.

Table 7 presents the results obtained and the computational time on RParis6k
dataset. The performance are similar to the ones obtained on ROxford5k, with our
approach outperforming brute force. The proposed approach is slightly faster than
brute-force.

Same conclusions of the previous datasets can be drawn for graph refinement
techniques for this dataset (Table 8).

Method TopN Graph creation Easy Medium Hard
LSH kNN graph - 0.12 s 89.24% 81.30% 63.16%

Random propagation 100 0.37 s 92.91% 86.93% 71.94%
Random propagation 500 1.41 s 94.36% 89.26% 75.52%

One-step neighbour propagation [5] 100 0.56 s 92.70% 86.79% 71.69%
One-step neighbour propagation [5] 500 2.24 s 94.77% 89.30% 75.85%

Sorted neighbour propagation 100 10.72 s 94.90% 89.70% 76.60%

Table 8 Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
forRParis6k.

5.8 Results on Oxford105k

Method LSH projection Graph creation mAP
LSH kNN graph 23 s 77 s 94.20%

multi-probe LSH kNN graph 5 s 420 s 93.85%
Wang et al.[27]* - 150 s 91.70%

brute-force - 10560 s 93.05%

Table 9 Comparison of different approaches of kNN graph creation tested on Oxford105k. * indicates
that the method is a C++ re-implementation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 F. Magliani et al.

Finally, this section reports the results on a larger dataset, Oxford105k. Unfortu-
nately, in this case graph refinement techniques can not be tested due to our limited
hardware resources. Moreover, we have conducted tests for RP-div [25] and NN-
descent [5] since they already demonstrated their limited performance on smaller
datasets.

Therefore, Table 9 presents the result of the experiments executed on Oxford105k.
The growth of the dataset size influences the graph creation time, but it is worth noting
how our approaches scale better than brute-force, by keeping the total computational
time at 100 seconds and still achieving better accuracy than brute force.

6 Conclusions

In this paper we presented an algorithm called LSH kNN graph for the creation of an
approximate kNN graph exploiting LSH projections. The proposed method follows
the divide-and-conquer strategy: the dataset elements are subdivided through the use
of an unsupervised hashing function and then in each subset a subgraph is created
using the brute-force approach. The proposed approach obtains the same or better
results than other state-of-the-art methods, but in less time. Regarding the memory
footprint, the implementation with sparse matrices combined with other code imple-
mentations (see Appendix A) have allowed to achieve very good results with limited
memory requirements.

Moreover, multi-probe LSH kNN graph algorithm is proposed based on the prin-
ciple of multi-probe LSH. In this case, the elements are projected also in the 1-
neighbourhood buckets, allowing to reduce the number of hash tables needed, while
almost preserving the overall accuracy.

To support the goodness of the proposed algorithms, a complexity analysis is also
presented. Finally, a new graph refinement technique is introduced in order to boost
the quality of the final graph with the addition to the graph of new useful connections
between nodes. Compared with other graph refinemtn techniques, the proposed sorted
neighbour propagation achieves the best result, but with an extra time effort.

As a future work, we are implementing a distribute version of these approaches
with the objective of executing them on large-scale datasets.

Acknowledgment

This is work is partially funded by Regione Emilia Romagna under the “Piano trien-
nale alte competenze per la ricerca, il trasferimento tecnologico e l’imprenditorialità”.

Appendix A Implementation details of LSH kNN graph approach

The proposed method uses LSH projections for the creation of the approximate kNN graph. The main
advantages of LSH are the simplicity to use and the speed of the method. For example, apply LSH on
100k images in C++ needs only 10 seconds. It is worth to note that the variation of the values of the LSH
parameters can change considerably the final performance. For both the two parameters (δ and L), in order
to find the best combination, it is suggestable to execute several experiments.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 19

The projection algorithm works as follows. For each bit we executed the dot product between the im-
age descriptor and the corresponding projection vector. If the results is positive, the value of the projected
bucket is increased by a power of two. For example, considering a hash table composed by 8 buckets
(δ = 3) and the first dot product negative, the second and the third positive, the element will be projected
in the sixth bucket, because 6 = (20) · 0 + (21) · 1 + (22) · 1. This process will be executed for each
hash table and for all the image descriptors.

Two implementation variants of our LSH kNN graph are proposed. From now, the kNN graph will
be represented by the affinity matrix A, that represents the weight edges between all the nodes. This
abstraction can help for the implementation of the algorithms.

A =

a11 a12 a13 . . . a1N
a21 a22 a23 . . . a2N

...
...

...
. . .

...
aN1 aN2 aN3 . . . aNN

Furthermore, not all the similarities are useful for the diffusion process, suggesting to remove or avoid

to insert edges with weight less than a threshold (th), without jeopardising the final retrieval performance.
From our experiments, this threshold can be set to 0.3.

procedure LSH KNN GRAPH
th← 0.3
for aij ∈ A do
aij ← 0.0

end
for Bx ∈ B do

for bix ∈ Bx do
for biy ∈ Bx do

if θ(bix, biy) ≥ th then
aij ← θ(bix, biy)

end
end

end
end

end procedure
The above algorithm summarizes the procedure for filling the A affinity matrix. At the beginning

each element of the matrix is set to 0.0 and then if the similarity measure between the nodes is greater
than a threshold, this measure becomes: aij = θ(dj , di), where di and dj represent two images of the
dataset, that are projected in the same bucket for LSH kNN graph or in the same or 1-neighbour bucket for
multi-probe LSH kNN graph approach.

Unfortunately, it is impossible to apply this approach on large datasets, because pre-allocating the
entire dense matrix depends to the available RAM memory and it will hardly possible to execute on datasets
of size greater of 100k images. Therefore, for this case, instead of working on a dense matrix, a sparse
matrix is used.

Sparse matrices can be used to reduce the computational time and still obtain good results also on
large datasets, because the affinity matrices typically contain a lot of zeros. For instance, on Oxford5k
dataset the approximate kNN graph has only the 0.7% of the edges of the brute-force kNN graph.

Moreover, considering that the matrix is symmetric, only the upper or lower values of the matrix are
needed. Therefore, the previous condition adopted in the procedure of LSH kNN graph can be changed in
this way:

aij =

{
θ(di, dj) if j ≥ i ∧ θ(di, dj) ≥ th
0 otherwise

If the column index is not greater than row index, the rows and the columns are swapped due to the
symmetric properties of the affinity matrix.

Two different types of sparse matrix has been tested: Compressed Row Storage (CRS) format and
Coordinate (COO) format [7]. The CRS sparse matrix is composed by three vectors: values (containing
the values of the dense matrix different from zero); column indexes (containing the column indexes of the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 F. Magliani et al.

elements contained in the values vector); and row pointers (containing the locations of the values vector
that indicate the beginning of a new row). Instead, the COO sparse matrix is composed by three vectors: a
vector representing the non-zero elements (the values), the row and the column coordinate of each value
contained in the values vector. The second solution is simpler than the first to implement, but it requires
more space on disk.

However, using hash tables, it happens that the same edge weight is inserted multiple times. Therefore,
every time a new value is inserted in a CRS matrix, checking whether the value is already in the matrix
might be a possible solution. Unfortunately, this tends to be a time consuming process. Conversely, using a
COO matrix, all the values (including repeated ones) are inserted, but a sorting is performed and duplicates
are removed. Applying once the sorting and removing the duplicates is faster than performingN ·L times
the search, given that sorting has a O(N log2N) complexity which is lower than the O(N) complexity
of the search.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proceedings of the
18th annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035. Society for Industrial
and Applied Mathematics (2007)

2. Chen, J., Fang, H.r., Saad, Y.: Fast approximate kNN graph construction for high dimensional data
via recursive lanczos bisection. Journal of Machine Learning Research 10(Sep), 1989–2012 (2009)

3. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with
a generative feature model for object retrieval. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

4. Debatty, T., Michiardi, P., Thonnard, O., Mees, W.: Building k-nn graphs from large text data. In:
IEEE International Conference on Big Data, pp. 573–578. IEEE (2014)

5. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity
measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586.
ACM (2011)

6. Douze, M., Szlam, A., Hariharan, B., Jégou, H.: Low-shot learning with large-scale diffusion. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3349–3358
(2018)

7. Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU press (2012)
8. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for

image retrieval. International Journal of Computer Vision 124(2), 237–254 (2017)
9. Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of K-NN graphs for image databases

through vector sparsification. In: Proceedings of International Conference on Multimedia Retrieval,
p. 89. ACM (2014)

10. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: Proceedings of the 1st ACM inter-
national conference on Multimedia Information Retrieval, pp. 39–43. ACM (2008)

11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensional-
ity. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp. 604–613.
ACM (1998)

12. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Mining on manifolds: Metric learning without labels. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7642–7651
(2018)

13. Iscen, A., Tolias, G., Avrithis, Y.S., Furon, T., Chum, O.: Efficient diffusion on region manifolds:
Recovering small objects with compact CNN representations. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)

14. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 33(1), 117–128 (2011)

15. Li, D., Hung, W.C., Huang, J.B., Wang, S., Ahuja, N., Yang, M.H.: Unsupervised visual representation
learning by graph-based consistent constraints. In: European Conference on Computer Vision, pp.
678–694. Springer (2016)

16. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-
dimensional similarity search. In: Proceedings of the 33rd international conference on Very Large
Data Bases, pp. 950–961. VLDB Endowment (2007)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

LSH kNN Graph for Diffusion on Image Retrieval 21

17. Magliani, F., Fontanini, T., Prati, A.: Efficient nearest neighbors search for large-scale landmark recog-
nition. International Symposium on Visual Computing (2018)

18. Magliani, F., Fontanini, T., Prati, A.: Landmark recognition: From small-scale to large-scale retrieval.
In: Recent Advances in Computer Vision, pp. 237–259. Springer (2019)

19. Magliani, F., Prati, A.: An accurate retrieval through R-MAC+ descriptors for landmark recognition.
In: Proceedings of the 12th International Conference on Distributed Smart Cameras, p. 6. ACM (2018)

20. Magliani, F., Sani, L., Cagnoni, S., Prati, A.: Genetic algorithms for the optimization of diffusion
parameters in content-based image retrieval. In: Proceedings of the 13th International Conference on
Distributed Smart Cameras, p. 14. ACM (2019)

21. Park, Y., Park, S., Lee, S.g., Jung, W.: Scalable k-nearest neighbor graph construction based on greedy
filtering. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 227–228.
ACM (2013)

22. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies
and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2007)

23. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular
object retrieval in large scale image databases. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

24. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting oxford and paris: Large-scale
image retrieval benchmarking. In: CVPR (2018)

25. Sieranoja, S., Fränti, P.: Fast random pair divisive construction of knn graph using generic distance
measures. In: Proceedings of the 2018 International Conference on Big Data and Computing, pp.
95–98. ACM (2018)

26. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activa-
tions. International Conference on Learning Representations (2016)

27. Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., Li, S.: Scalable k-nn graph construction for visual
descriptors. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1113.
IEEE (2012)

28. Xu, J., Wang, C., Qi, C., Shi, C., Xiao, B.: Iterative manifold embedding layer learned by incomplete
data for large-scale image retrieval. IEEE Transactions on Multimedia (2018)

29. Zhang, Y.M., Huang, K., Geng, G., Liu, C.L.: Fast kNN graph construction with locality sensi-
tive hashing. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 660–674. Springer (2013)

30. Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.: Ranking on data manifolds. In:
Advances in Neural Information Processing Systems, pp. 169–176 (2004)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

