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A B S T R A C T 

The paper's main goal is to accomplish a high accuracy of yaw/heading by Machine Learning approach 

when the motion range of vehicle/device calibration is limited.  The nonlinear Random Forest (RF) 

Regression with proper training has a high potential to deal with the magnetometer uncertainty before 

calibration and during iron distortion cases. The proposed solution solely requires the magnetometer without 

other sensor's support. A Pan Tilt Unit-C46 (PTU-C46) with high precise positioning was used as a reference 

heading value to label the corresponding magnetic features in the learning model. The proposed approach 

helps yaw estimation to be carried out under harsh conditions, which resolve many difficulties in orientation 

tracking since the magnetometer is susceptible to hard iron and soft iron in the environment. In addition, 

many mechanical devices work only within the specific range and waste their dynamic motion around two 

axes or more just for calibration. Thus, the research focuses on the level rotation calibration around Z-axis 

within the restricted range of motion for practical application. The experiment was carried out using a low-

cost platform equipped with Micro-Electro-Mechanical System (MEMS) sensors as gyroscope, 

accelerometer, and magnetometer. The 9 Degree of Freedom (DoF) Madgwick was implemented into the 

Microcontroller to compare with the proposed model. The sensor fusion can track the yaw value after the 

level calibration despite various error conduction. The RF model accomplishes a superior result with more 

stability and more minor error. Under iron disturbance or calibration absence, the ML model still maintains 

the good tracking command with maximum Mean Square Error of about 0.3o, while the Madgwick is 

unsuccessful in heading measurement due to huge error in these circumstances.  

 

 

1. Introduction 

Nowadays, yaw/heading determination has played a key 
element in wide range of applications such as localization, 
position detection, and orientation tracking [1],[2]. The 
Micro-electro-mechanical-system inertial measurement units’ 
sensors (MEMS-IMUs) [3],[4] have been utilized to detect 
heading popularly due to its small-size, high flexibility, and 
low cost, which are suitable in robotic control, automation [5], 
[6], etc.  

Among Euler angles (roll, pitch and yaw) [7], [8] yaw is 
considered as the most challenging parameter to measure 
because the accelerometer is failed to give the yaw 
information when the sensor frame is aligned with the Earth 
frame. The Z-axis acceleration does not change its reading 

value when the sensor rotates to the right or left. The 
gyroscope conducts significant drift components during the 
integration process. On the other hand, GPS works less 
effectively in the indoor environment that becomes the 
problem for indoor applications. Environmental problems like 
Ionosphere’s delay because of the distance and delay in time 
caused the low accuracy in result [9]. Thus, the magnetometer 
is an indispensable sensor to bring the true heading value by 
measuring the strength of the Earth’s magnetic field vector in 
body coordinates. However, the iron distortion usually 
interferes the magnetometer performance. Hard iron from the 
magnetized material or external magnet moves the magnetic 
sphere away from original center coordinate. Soft iron from 
metallic material such as nickel battery deforms the magnetic 
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field's shape, which results in the wrong value in data 
acquisition.  

The magnetometer calibration is required to remove the 
bias and offset the measured data [10]. The most common 
method is to rotate the sensor following figure 8 shape or 
surrounding the axes to collect the maximum and minimum 
value of Mx, My, and Mz, which are the magnetic field of the 
X-axis, Y-axis, and Z-axis. After noisy data calculation, they 
will be used to correct the magnetic sphere position as well as 
its form scale [11], [12]. This method is quite effective and 
already employed in many real applications. Nevertheless, it 
is difficult for the entire rotation motion to occur since the 
platform is attached to a vehicle or machine arm with limited 
spin capability. There are various types of calibration to 
enhance the signal quality. A real-time approach for compass 
calibration using an extended Kalman filter and an unscented 
filter. This approach converts the magnetometer-body and 
geomagnetic reference vectors into an attitude-independent 
observation using scalar checking [13]. However, the 
common drawback of this kind of calibration method is that 
the algorithm will diverge or fail while large amounts of noise 
or blunders deteriorate the measurements. This issue prohibits 
compass calibration from many practical applications. 

 A particle swarm optimization system is used to calibrate 
the magnetometer, as it depends on a more accurate nonlinear 
model and does not need to consider the initial estimation 
parameters [14], [15]. This algorithm has the disadvantage of 
high computational cost, which is difficult to implement. 

One method that can guarantee high precision and be used 
by many industrial companies is Madgwick- 9 Degree of 
Freedom (DOF) [16]. This sensor fusion filter uses the 
acceleration and magnetic data to correct the drift of angular 
velocity. With the quaternion propagation and gradient 
descent algorithm, the Madgwick filter achieves high 
reliability and has been considered one of the most popular 
techniques for heading evaluation. However, its accuracy still 
requires the good calibration of the magnetometer to 
compensate for gyroscope drift and the absence of information 
of acceleration on yaw spin.  

Generally, all calibration solutions involve rotation around 
two or more axes which is challenging to attain. It is limited 
by the range of movement of vehicles or mechanical device.  
A paper proposes an integrated magnetometer and gyroscope 
calibration method with level rotation to support a cubature 
Kalman filter for calibration parameters estimate [17]. This 
method only needs level rotation for real-time calibration, but 
it still needs gyroscope support with complicated 
mathematics. Moreover, it is not guaranteed that it can handle 
the sudden interference after level rotation calibration. 

The artificial intelligent approach has high potential for the 
concerned problem. A neural network was proposed to work 
on the nonlinear relationship between the compass heading 
and the proper heading, then converted the compass heading 
into the correct heading [18]. This technique minimizes the 
calibration motion and shows the potential in the heading 
correction during the magnetic disturbance. However, the 
input of the neural networks is only compass heading, putting 
a high burden on the training data and the network 
construction complexity. There is only one input parameter, 
and the model is vulnerable to the new disturbance. Moreover, 
training neural networks needs a lot of training data for 
orientation tracking, much more than that required for regular 

machine learning algorithms. In addition, complicated 
compotation is required to run variations of stochastic gradient 
descent over hundreds of epochs on multiple mini batches. 

Another article uses the Back Propagation neural network 
algorithm with the genetic algorithm as the compensation 
current control algorithm, based on a three-axis external coil 
magnetic field [19]. This technique shows the improvement in 
accuracy and effect for strong magnetic interference 
compensation. Nevertheless, this hardware compensation 
methods requires the additional hardware part: three-Axis 
Solenoid Coil with concerned parameters coil radius, coil 
thickness, coil height and number of turns for the construction 
of a coil compensation model and analysis the magnetic field 
characteristics of different coils.  

     Meanwhile, the necessity of an approach for magnetometer 
heading measurement has become critical that can solve the 
iron distortion problem directly without addition hardware 
with less complexity. Therefore, this paper proposes the 
Machine Learning (ML) models [20] with nonlinear 
regression algorithm as heading evaluation. Machine learning 
supports predictions using less computation cost, at the same 
time, makes it imperative to replicate manufacturing practices 
based on pattern recognition from the data [21], [22], [23]. The 
strong point of the model is listed below:  

• Only magnetometer is required. 

• It can work in 3 stages independently: without 
calibration, calibrated magnetometer and iron 
disturbance.  

• In the calibration case, it only demands the vertical 
level rotation within the device's operating range.  

The ML model contains 5 features: 3 axes magnetic fields, 
the sphere radius, and the ratio between Mx and My. Among 
the regression algorithms, the Random Forest (RF) regression 
[24],[25] is selected with the highest score accuracy, based on 
multiple decision trees to output the most effective heading 
angle. Each decision tree generates its own prediction by 
comparing the features of the acquired value with the data of 
trained nodes. Each node separates the input data to more 
specific range. After multiple comparisons, the decision tree 
provides a prediction. The same progress occurs with other 
trees. Eventually, the last result comes from the average 
prediction of all decision trees in the forest.   This technique 
can avoid variation and solve unexpected noise well because 
each decision tree can act as an analyst. The RF knows how to 
match the input data to the actual heading angle with the most 
relevant features and proper training data.  

The paper focusses on general distortion such as magnet 
and nickel cadmium battery. Other specific types of distortion 
will be discussed in the future work.  

    A Pan Tilt Unit-C46 (PTU-C46) [26] with high accurate 
positioning was used as a reference heading for training data. 
Here, the level rotation around Z-axis (the upward vertical to 
the Earth frame) is proceeded by the PTU-C rotation from 
right to left and vice versa, as illustrated in Figure 1. The RF 
model is compared with the 9 DOF Madgwick filter to verify 
each technique's pros and cons in terms of error and signal 
behavior before-after calibration-iron interference.  

     The paper is organized as follows: the first part is about an 
analysis of magnetic field behavior in 3 stages of calibration 
in the restrained rotation range, then a brief description of the 



Madgwick filter. After this part, the ML model and detail 
structure of the RF model will be analyzed. Finally, 
experimental results and signal analysis will be shown at the 
end of the paper.  

 

Figure 1 PTU-C and mounted platform 

 

 

 
2.     Magnetic field behavior 

The examined angle is in the range of -150o to 150o
 due to 

the PTU-C rotation limit and also for research purpose, which 
is about the performance verification when the necessary 
range use of heading value is not fully 360o, only a smaller 
range like 90o, 300o, etc. In these cases, it will be optimal if 
the calibration motion just needs to occur at the same usage 
range and still provides effective measurement. The 
calibration was carried out by the PTU-C rotation of the Z axis 

 

 

 

 

 

 

 

 

 

 

 

 

from -150o to 150o, so the curve is not full circle, as shown in 
Figure 3. Figure 3 demonstrates the shape change of the Mx 
and My in 2D coordinate via three stages: before calibration - 
after calibration – during iron distortion. Ideally, the sphere 
must be centered around zero with a round shape. 
Nevertheless, the external interference moves the sphere away 
from the center or bend/attenuate the magnetic field due to 
hard iron and soft iron. In this case, the metallic material 
causes non-uniform of the geomagnetic field as no calibration 
subplot. After the calibration, the sphere has a round shape, 
centered around 0,0 coordinate.   

Although after magnetometer calibration, if a new iron 
distortion such as strong magnet, the battery appears closely 
to the sensor, the sphere is still pushed away from the center 
point with the significant deformation.  Regularly, the heading 
calculation is only carried out at the 2nd stage after the 
magnetometer calibration. The main task of the ML model is 
to effectively provide the heading value at the 1st and 3rd 
situations also.    

 

Figure 3 Magnetic field behavior in 3 stages  

3.     MADGIWCK-SENSOR FUSION FILTER 

The Madgwick filter is an attitude and heading reference 
system (AHRS) algorithm, which is described clearly in [27] 
and [28]. It uses the measured acceleration and magnetic field 
to correct for gyroscopic drift. Figure 2 shows the block 
diagram of the Madgwick filter, which includes two main 
processes for the rigid body's orientation computation. In the 
first stage, a correction algorithm aligns the gyroscope 
measurements. The quaternion propagation is applied to the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
angular velocity to minimize the bias and the drift error.Then, 
the accelerometer and magnetometer measurements are fused 
together using an adjustable parameter, β, via the gradient 
descent algorithm to remove the noise in the gyroscope 
quaternion. Eventually, the yaw value is calculated by the 
fusion of the accelerometer, gyroscope, and magnetometer 
every update step based on the quaternion [29], [30].  

 

 

 

 

Figure 2 Madgwick filter diagram 

 

 

 



4. MACHINE LEARNING MODEL ANALYSIS 

 
4.1. ML features and output 

    Ideally, the total intensity of Earth’s magnetic field, 

measured by an ideal magnetometer should be a constant, so 

the sphere radius is supposed to have a fixed value. 

Practically, even after the calibration, the magnetic radius still 

has variation. Moreover, the fundamental heading calculation 

is based on the one unique arc tangent value from two 

variables Mx and My, as described in [31]. Thus, together with 

magnetic field, two of these parameters are added into the ML 

model as detail features in order to enhance the specification 

during training process. 

 
Rad = √    ( 𝑀𝑥 − 𝑋0)2   +  ( 𝑀𝑦 − 𝑌0)2  + ( 𝑀𝑧 − 𝑍0)2           (1) 

 

Ratio =
𝑀𝑥

𝑀𝑦
               (2) 

 

Where Rad is sphere radius. X0, Y0, Z0 are center points 

with zero value.  

The PTU-C plays the role of angle reference, labeled to the 

ML heading in the training model. 

Numerous instances are fed into the ML model. The data 

types are listed as below:  

• Mx, My, Mz, Rad, ratio  as inputs and corresponding 

heading angle as output 

• The Z-level calibrated mx, my, mz ,R, ratio as inputs 

and corresponding heading angle as output  

• With the same parameters, the distorted data when 

the strong magnet interruption presence after the Z-

axis calibration.  

 

Table 1 shows 5 features and 1 output as heading value.  
Table 1ML Inputs and output 

Inputs Output 

Mx My Mz Rad Ratio Yaw 

 
4.2. ML model evaluation 

The ML regression is a powerful tool to predict the 
continuous output variable in term of real value. The first 
critical stage is to select the most appropriate model for the 
concerned case by validating all the potential models via R2 
score (R squared), which indicates the fit accuracy of a set of 
predictions to the actual values. The value of R2 will be 
between 0 and 1, 0 being no fit and 1 being a perfect fit. 

To avoid overfitting, the ML algorithms must be evaluated 
on data that is not used to train the algorithm. For this case, 
more than 5000 instances are fed into the model. Cross-
validation is utilized to estimate the performance of each ML 
algorithm with more minor variance than a single train-test set 
to split. This method splits the dataset into k-parts. Each part 
of the data is called a fold. The algorithm is trained on k - 1 
folds with one held back and tested on the held back fold. This 
is repeated so that each fold of the dataset is given a chance to 
be the held back test set. After running cross-validation, the 
result is accomplished with k different performance scores, 
summarized by using a mean and a standard deviation. The 
choice of k should allow the size of each test partition to be 

large enough reasonably and enough repetitions of the test 
evaluation of the algorithm to provide a fair estimate of the 
algorithm’s performance on unseen data. 10-fold cross-
validation were selected for the magnetic field and heading 
estimate.  

 

Figure 4 ML Algorithm Comparison 

The relationship between the magnetic field and the 
heading angle is nonlinear which needs the nonlinear ML 
algorithms such as K-Nearest Neighbors (KNN), Random 
Forest (RF), and Support Vector Regression (SVR). Other 
linear ML Algorithms have the low capability to proceed with 
the data, especially during the iron distortion situation, as 
demonstrated in Figure 4. 

    As reported in Table 2, only KNN and RF algorithms have 

the highest score while other algorithms have low scores. The 

SVR has negative score, which means that this model fits the 

data poorly for this case. Fundamentally, KNN works based 

on finding the closest similar points via Euclidean distance. 

To predict a point, the k number of the closest point to the 

concerned point are taken into account and then track points 

by majority vote of its k neighbors. A lower number of 

neighbors can reduce the bias but causes higher variance 

because the system will model more noisy data. Here, the 

KNN number of neighbors is set as 3 to compromise the bias 

and variance in the model. In this case, KNN has the 

disadvantage with high dimensions because it becomes 

difficult for the algorithm to calculate the distance in each 

dimension. 

    RF is suitable for large data training. It predicts the result 

by averaging the numerous decision trees, so the model has 

high efficiency if it gains enough tree estimators. Another 

advantage of the RF model is to avoid the overfit issue from 

CART (Classification and Regression Trees), which 

generates the final outcome via a single decision tree only. 

After cross-validation test, KNN and RF models receive 20 

percentages of the data, which are not included in cross-

validation test for verification.  And the collected score of 

KNN and RF for tested part are 0.72 and 0.96 respectively. 

The performance of these two algorithms will be compared 

further in the experimental part 

  

 

 

 

 

 

 



 

 

 
Table 2 Score accuracy for ML models 

ML algorithm R2 score Mean R2 score Std 

LR 0.15 0.08 

RIDGE 0.15 0.08 

LASSO 0.11 0.04 

ELN 0.04 0.04 

KNN 0.79 0.12 

RF 0.93 0.07 

SVR -0.01 0.06 

 
 

5. Random Forest Regression 

 
                    Figure 5 RF structure [32] 

   The most potential algorithm is RF which is the main  

model in this project and will be described in detail here. At 

this point, 80% of the total data are used for RF training and 

20% left are employed for testing process.  RF  changes the 

algorithm for the way that the sub-trees are learned so that the 

resulting predictions from all of the subtrees have less 

correlation by using bootstrap method. In each bootstrap 

training set, about one-third of the instances are enter each 

decision tree [33].  

    RF is an ensemble of decision trees that includes 3 main 

features for data processing: 

 

• Every single tree is constructed of a different sample 

of rows. At each node, a different sample of features 

is selected for splitting to the following stages. 

• Each of the trees provides its prediction.  

• These predictions are averaged to supply the last 

decision value by the trees in the forest. 

 

    There are some core parameters that impact the RF 

performance: 

• Number of estimators represents the number of trees 

in the forest. Typically, a higher number of trees 

leads to better data learning, but many trees can slow 

down the training process. To improve the training 

speed, this model engine is allowed to use no limit 

of processors. Here, 100 tree estimators are selected.  

• The minimum number of samples required to be at 

a leaf node. A split point at any depth will only be 

considered if it leaves at least this minimum training 

samples in each of the left and right branches.  

• The depth of each tree in the forest. The deeper the 

tree generates more splits and captures more 

information about the data, but more processing 

time consumption.    

    As shown in Figure 6, the rise of the decision tree 

number improves the R2 score of the RF model. After 

100 estimators, the score does not vary significantly in 

both training and test data. About the leaf minimum 

sample, 1 is a good value that simultaneously maintains 

the high score at training and testing evaluation. Finally, 

the trend of the maximum depth reaches saturation at 12 

in the test part. Based on the analysis, the selected 

parameters are 100 estimators, 1 leaf minimum sample 

and 12 maximum depths.  

   Figure 7  shows the processing steps in a decision tree. 

Due to the resolution concern, the visualization only 

contains 3 depths for clear observation. The inner 

working of a Decision Tree operates following if-else 

conditions. The top node splits into left (True) and right 

nodes (False) , which are decision nodes. These nodes 

then split into their respective right and left nodes. At the 

end of the leaf node, the average observation that occurs 

within that area is computed. Most bottom nodes are 

referred to as leaves or terminal nodes. The value in the 

leaves is usually the mean of the observations occurring 

within that specific region. For instance, in the rightmost 

leaf node below, 250 is the angle value from the average 

of the 3 samples with zero MSE value.  

    For example, under the iron distortion condition, the 

acquired data has the Radius = 55000, My = 200, Ratio 

= 0.31. This data will enter the root node and the first 

answer is False because Radius > 53313.779, so it will 

move to the right. At this node, My <266.405, so it goes 

down to the left as True condition. At the 3rd node, its 

ratio > 0.24, so it comes to the right side as False case 

and take the final angle of -100o. In this decision tree, this 

value has high accuracy because the MSE of this node is 

zero, but other values require more nodes to attain the 

more precise prediction. 

     

    



               Figure 6 Trend of RF accuracy respect to hypermeter 

 
 

Figure 7 A decision visualization with depth maximum of 3 

 

 

 
6. Experimental setup 

6.1.  Test bench 

The experimental sensors are the MPU-9250 [34], which 
is a 9-axis Motion Tracking device that combines a 3-axis 
gyroscope, 3-axis accelerometer, 3-axis magnetometer. The 
accelerometer works in the range of ± 2g; the gyroscope range 
is ± 245 o/s, full magnetic scale is ± 48 gauss. After the Low-
pass filter, the output sample rate is about 92 Hz. The 
accelerometer and gyroscope are used only for the sensor 
fusion Madgwick. In this case, the fixed, parent coordinate 
system used is North-East-Down (NED) as the reference 
frame. In the NED reference frame, the X-axis points north, 
the Y-axis points east, and the Z-axis points downward. 

The IMU acquisition and sensor fusion has been 
implemented into Arduino UNO [35] by Arduino Integrated 
Development Environment (IDE).  The sensor is connected to 
the MCU development via an Inter-Integrated Circuit (I2C) 
communication line. A Pan-Tilt Uni Controller (PTU-C46) 
with resolution 0.051o preposition provides fast and accurate 
positioning of cameras that was manipulated to verify the 
algorithm performance. The sensor platform was assembled 
on PTU-C for tracking this device's orientation. The test bench 
was built up and mounted on the laboratory table. All the 
acquisition data were sent to the host computer for signal 
analysis via USB cable from the MCU-board. ML models 
were designed by Python environment based on scikit-learn 
[36], which are a powerful and easy-to-use free, open-source 
Python library for ML development and evaluation. The 



magnetic value acquisitions enter the ML model as real-time 
input; then, yaw angles are detected practically. 

 

Figure 8 Test bench for experiment. 

1. Sensor MPU-9250 

2. Arduino Uno 

3. PTU‐C46 Pan Tilt Unit  

4. PTU-C Controller 

5. Computer  

To test the iron distortion case, a strong magnet and a 
nickel cadmium battery were approached the sensor to 
evaluate the ML model performance in the interference 
circumstance.  

 

Figure 9 Strong magnet and battery for interference test 

6.2.  ML model validation 

    This part describes the validation of the ML and Dl model 
based on the training and test sets. The models were operated 
by a PC processor: Intel(R) Core (TM) i7-10850H CPU @ 
2.70GHz. 

    With the rotation of PTU-C46, the magnetic field and the 
corresponding heading value were acquired to be the input 
data. From -150o to 150o with resolution of 25o, about 31 
samples are attained for each reference angle. This process is 
applied to 3 cases: no calibration- after calibration and iron 
distortion case. To verify the output performance, the 10% of 
data is used as validation set to evaluate the trained model, and 
the rest of 10% data to test the final model. The validation data 
infuses new data into the model which  hasn’t evaluated 

before. Validation data provides the first test against unseen 
data, to evaluate how well the model makes predictions based 
on the new data. After the model is built, testing data once 
again validates that it can make accurate predictions 

    As reported in Table 3, the KNN require less time of model 
operation, while RF accomplishes the advantages of smaller 
error in both validation and test set.  

Table 3 Model validation 

Parameters KNN RF 

Data Number 5580 

Lunch time (s) 2.05 4.35 

Validation MSE (o) 1.95 0.24 

Test MSE (o) 1.98 0.21 

 
7. Experimental analysis 

    To validate the operation of the described models, the result 
analysis is divided into 3 major parts: 

• The verification between KNN and RF models to 
select the best algorithm for ML operation. 

• The comparison between the ML model and 
Madgwick system without calibration and after the 
magnetometer calibration.  

• The impact of iron distortion on the tracking 
capability of both operating systems. 

7.1. ML algorithm comparison 

The purpose of the 1st part is to characterize KNN and RF 
since both accomplish good R2 scores, as described early.  

After the magnetometer calibration, the rotation process 
was carried out from -150o to 150o continuously. This test also 
contains the sensor fusion Madgwick to observe its behavior 
during dynamic motion. As shown in Figure 10, the RF and 
Sensor Fusion Madgwick can achieve the desired points 
surround -150o and 150o in the proper trend without any 
strange spikes. The detail variation when the sensor finishes 
its motion and rests in a stationary angle will be analyzed in 
detail at the 3rd test.  

The KNN algorithm failed to predict the goal at the end of 
the spinning period. Many sudden spikes appear, which pull 
down the KNN outputs from the right tracking way. This issue 
occurs because KNN does not work well with large dataset.  
The distance calculation between the new point and each 
existing points is huge which degrades the performance of the 
algorithm, especially when there are the mechanical vibrations 
in the real-time operation. Consequently, this algorithm is 
failed to provide the proper value in the dataset range from 
130o to 150o.  

 Table 4 reports the evaluation metrics from the mentioned 
regression models: mean absolute error (MAE) and mean 
square error (MSE). As the evaluated data, the RF model 
accomplishes smaller error than the KNN model, so the RF 
fits the best magnetic field and yaw relationship. Therefore, 
the RF will be used to compare with the Sensor fusion filter. 



 

Figure 10 Yaw test after calibration 

Table 4 ML model error 

ML model MAE (o) MSE (o) 

KNN 3.58 6.98 

RF 0.21 0.30 

 

 
7.2. Yaw value without magnetometer calibration 

In this test, PTU-C was controlled to move in stair-step of 
250. All the step angles were acquired to verify the yaw 
estimation from the Sensor fusion and RF model.   

Theoretically, the yaw parameter cannot be detected due 
to the external interferences that cause the significant issue to 
magnetic measurement. As shown in Figure 11, the 
Madgwick filter is not able to track the yaw value 
appropriately, even with the support of the accelerometer and 
gyroscope. It still conducts the different value when the device 
moves and stays at new angle, but the precision is highly 
incoherent to the reference data. On the other hand, the RF 
model still haves good command of tracking the yaw value 
because it already trained the data in the no-calibrated case 
with the PTU-C angle as coherent yaw data with the MSE is 
about 0.19o.  

 

Figure 11 Yaw measurement without magnetic calibration 

7.3. Sensor fusion vs RF algorithm 

After the magnetomer calibration, the yaw is detected by 
the 9DoF sensor fusion via Madgwick algorithm, which is 

compared with the RF to observe their tracking efficiency. 
The PTU-C spins from -150o to 150o

 with differential step 30o.  
About 100 samples are extracted from each indicated angle for 
the MSE validation  

Figure 12 shows the data at static case of -60o and 1500.  
The sensor fusion generates considerable variation around the 
indicated angles which is understandable because the sensor 
is mounted on the metallic device PTU_C and the calibration 
rotation is only on the Z-level frame. The ML model 
demonstrates a better result with narrow variation. There are 
the samples which predicts exact the same value as reference 
that shows the well-being processing operation. Moreover, the 
RF also has good stability since the standard deviation (Std) is 
small as shown in Table 5. The MSE of the Madgwick filter 
needs to be minimized by more rotation around two or more 
axes during calibration. Otherwise, the yaw evaluation is less 
precise as reported data. About this point, the RF model 
successfully accomplishes inferior error with balanced 
execution.  

 

Figure 12 Static test ant negative and positive case 

Table 5 Error evaluation for RF and Madgwick filter 

    Yaw 
Reference 

(o) 

RF Model (o) Sensor Fusion (o) 

MSE Std MSE Std 

-150 0.19 0.04 2.10 1.47 

-120 0.18 0.09 0.72 0.62 

-90 0.18 0.04 4.01 1.13 

-60 0.17 0.07 4.22 0.95 

-30 0.23 0.10 1.37 1.04 

 0 0.15 0.09 1.86 0.86 

30 0.27 0.04 1.51 0.85 

60 0.21 0.05 0.88 0.94 

90 0.15 0.04 1.27 1.03 

120 0.10 0.08 3.45 0.99 

150 0.25 0.07 2.70 0.87 

 

 

 

 



7.4. Iron distortion test 

The iron distortion is generated by a strong magnet and a 
nickel-cadmium battery, like Figure 9. Consequently, the 
interference pushes the Sensor Fusion yaw away from the 
original value, leading to a significant error in the acquisition 
period, as shown in Figure 14. 

Figure 13 visualizes the yaw comportment in the RF 
model and Madgwick filter. The RF model still tracks the 
appropriate angle, while the sensor fusion cannot detect the 
correct value anymore due to the substantial interference. This 
feature shows the ML model over the traditional method. With 
multi-case training, the ML model can learn how to predict the 
results like they are supposed to be. 

A decision tree produces the last decision via a series of 
questions to the data. Each question narrows our possible 
values via the lowest MSE in each subset until the model is 
precise enough to make a single prediction. Hence, after 
training with the distortion environment, the RF model adapts 
very well to the current situation with low error, as indicated 
in Table 6. The maximum MSE is only about 0.28o at 50o, 
which is a good result during the iron distortion.  

 

Figure 13 Yaw measurement during iron interference 

 
Figure 14 MSE on the angle variation during iron distortion 

 

 

 

Table 6 MSE during iron distortion 

Yaw Reference 

(o) 

Sensor Fusion MSE 

(o) 

         RF 

MSE (o) 

-150 59.69 0.10 

-125 97.22 0.14 

-100 136.75 0.20 

-75 -148.49 0.11 

-50 -99.59 0.25 

-25 -42.56 0.27 

0 6.44 0.11 

25 64.05 0.18 

50 115.92 0.28 

75 157.52 0.25 

100 -144.86 0.12 

125 -98.9 0.10 

150 -51.61 0.18 

 

  

 

    Another test was carried out for RF model to verify its 

performance at random dynamic motion. In this test, the 

device rotates from -1500 to 1500 and stops at a random point 

for various seconds during the iron distortion.  Like previous 

analysis, the RF model follows the rotation trend of the device 

properly with an average MSE of approximately 0.24o, as 

illustrated in   Figure 15.  

 
Figure 15 RF performance during distortion 

 

8. CONCLUSION 

    The paper described a practical ML approach for 

yaw/heading estimate that relief the calibration burden in 

magnetometer calibration. The RF model was selected 

among ML algorithms due to its superior accuracy compared 



to the others. Furthermore, the RF model was compared with 

the 9DOF- Madgwick and demonstrated its pros.  

     In calibrated case, the sensor fusion technique generates 

bigger MSE due to the restraint of motion calibration. Thanks 

to training knowledge, the new approach is able to predict the 

proper value without magnetometer calibration and during 

iron interference. Meanwhile, the traditional sensor fusion 

conducts unacceptable error under these harsh conditions. To 

deal with more kinds of distorted material, more data are 

required to guarantee its execution.   

     The proposed method opens a new way for heading 

measurement, which is highly effective in the case of limited 

device motion. Hence, this technique potentially becomes a 

promising key in orientation with less complicated but 

effective processes. In the future, the work will be extended 

with more tests against various types of iron distortion to 

verify the model efficiency and its comportment.  
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