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ABSTRACT 

District Heating Networks (DHNs) are composed of numerous pipes that can be threatened by faults that affect DHN operation and 

management. Thus, reliable diagnostic methodologies are essential to identify DHN health state and hinder DHN malfunctioning and 

performance deterioration. To this purpose, a novel diagnostic approach that couples a DHN simulation model with an optimization 

algorithm for detecting and identifying both thermal and hydraulic faults, i.e., water leakages, anomalous heat and pressure losses, is 

presented in this paper. In the current paper, the novel diagnostic approach is challenged at evaluating the health state of the DHN of the 

campus of the University of Parma, where different faults are artificially implanted, by using a digital twin of the DHN. The faulty 

datasets account for both single and multiple faults, as well as different fault types and causes.  

The novel diagnostic approach proves to correctly detect and identify all simulated faults, by also correctly estimating their magnitude 

even in the most challenging scenarios.  

 

NOMENCLATURE  

c Specific heat capacity [J∙kg-1∙K-1] 

D Diameter [m] 

f Friction factor [-] 

L Length [m] 

p Pressure [Pa] 

Q Flow rate [kg s-1] 

Re Reynolds number [-] 

T Temperature [K] 

x Health index [-] 

β Concentrated pressure losses [-] 

ε Roughness [mm] 

λ Thermal conductivity [W∙m-1∙K-1] 

ρ Density [kg m-3] 

 



Superscripts 

* Healthy condition 

meas measured 

 

Subscripts 

c casing 

down downstream 

ext external 

g ground 

in entering 

ins insulation 

int internal 

L leakage 

out leaving 

PP power plant 

Q flow rate 

r return pipeline 

s supply pipeline 

up upstream 

 

Acronyms 

DHN District Heating Network 

EU End-user 

OF Objective Function 

 

1. INTRODUCTION 

Problem statement and literature survey. Decarbonization of the heating sector is an effective strategy to reduce greenhouse 

emissions worldwide. This purpose can be achieved by exploiting District Heating Networks (DHNs) that meet end users’ thermal 

energy demand by means of a heat carrier, e.g., water, which can be heated by fossil-free heat supplies (e.g., waste or surplus heat). 

Heated water subsequently flows to utilities [1] within a distribution system composed of insulated underground pipes [2]. Recent studies 

have investigated the benefits of coupling DHNs with additional energy systems. For example, Mateu-Royo et al. [3] documented the 

benefits of integrating high temperature heat pumps within DHNs. In [3], a DHN was used as a heat sink, by achieving significant 

performance and environmental improvements. Similarly, Balic et al. [4] coupled a combined heat and power plant with a DHN that 

acted as a dynamical thermal energy storage. Tveit et al. [5] presented a mixed integer nonlinear programming model employed to 

analyze the long-term operation of combined heat power plants in a DHN, by also considering a long-term thermal energy storage. Pardo 

García et al. [6] studied a district heating configuration in which photovoltaic thermal hybrid solar collectors acted as a micro-plant that 



produced heat for a DHN. Ghilardi et al. [7] optimized the operation of a multi-energy system integrated with a DHN. Capone et al. [8] 

developed a novel approach to optimize the operation of a complex multi-energy system that also included a DHN.  

The efficiency of the whole system relies on the reliability of the DHN, which can be compromised by the disruption of DHN 

components, e.g., sensors, pumps, equipment or heat exchangers [9, 10]. Thus, some studies, e.g., [9, 11, 12], developed novel diagnostic 

methodologies to identify and classify these faults. For example, Guelpa and Verda [11] proposed a diagnostic approach to automatically 

detect fouling in the heat exchangers located in DHN substations. The same goal was also tackled by Kim et al. [12], which used a 

virtual-sensor-assisted automation system suitable for buildings. Finally, Wang et al. [13] exploited a Support Vector Machine classifier 

to identify different types of faults. 

Faults can also affect the DHN distribution system [1] which can be compromised by several malfunctions that are generally caused 

by both thermal and mechanical aging [14-16], as well as lack of maintenance and professional installations [16]. Therefore, reliable 

diagnostic methodologies are crucial to accurately evaluate the DHN health state and, if necessary, detect and identify incipient faults. 

Such a piece of information is extremely useful to enhance DHN performance, operation and management [17]. 

Pipes of DHNs are mainly affected by hydraulic faults (water leakages and increased pressure losses) and thermal faults (i.e., 

anomalous heat losses) [18]. Such faults reduce DHN heating quality, increase energy consumption as well as economic losses [15].  

In DHNs, water leakage is the most common fault that causes approximately 33 % of DHN failures [19, 20]. According to Hallberg 

et al. [21], leakages are usually caused by both internal and external pipe corrosion. Internal corrosion is caused by poor water quality 

[1], which gradually reduces the pipe internal diameter up to its perforation. Instead, external corrosion occurs when pipes are exposed 

to aggressive environmental conditions due to defects in the casing. Pipe failures can also occur when welded joints weaken due to 

pores, in which cracks arise. In addition, leaks can also occur because of mechanical fractures and impacts due to temperature expansion, 

soil load and traffic load [21]. Furthermore, stress corrosion cracking and aging of pipe material [22] can also lead to pipe failures.  

DHNs can be affected by anomalous pressure losses, which are provoked by the decrease of pipe internal diameter and increase of 

the pipe roughness. Pipe faults strictly depend on water quality. In fact, when water is oversaturated with calcium carbonate, fouling or 

corrosion with oxidation deposition occur within the pipe, thus leading to blockage. Fouling is the deposit of particles on the pipe internal 

wall, which starts as a small increase in roughness. The deposit may grow over time and eventually block a considerable portion of the 

pipe cross-sectional area. The same effects occur in the presence of corrosion due to oxygen dissolved in the water [23]. The consequent 

changes in pipe properties lead to a significant increase of pressure losses.  

Dramatic consequences of pipe fouling were discussed by Walki et al. [24], which documented that 50.8 mm deposits of magnesium 

hydroxide were found in pipes with a 203.2 mm internal dimeter.  

Finally, anomalous heat losses are usually caused by the degradation of pipe insulation. DHN pipes are composed of two insulation 

layers, i.e., pipe internal insulation and pipe external casing, that are usually made of rock wool and polyethylene [25], respectively. 

Each pipe insulation layer deteriorates over time because, during operating conditions, pipes are affected by temperature variations due 

to fluctuations in customer demands, pipe-soil interactions or atmospheric conditions. The resulting mechanical and thermal loads often 

lead to damage and ageing [26]. In such conditions, the performance of the pipe insulation layer decreases, leading to a local increase 

in the thermal conductivity and, thus, higher thermal energy losses [19]. Consequences of insulation deterioration may also be dramatic, 

as experienced in a Swedish DHN, where 10 % of thermal energy was lost because of insulation failures [14].  

Faults of the insulation layers affect thermal heat losses in different ways. Faults that impact the external casing are extremely 

dangerous because moisture enters the pipe, by leading to two negative consequences. First, moisture dampens pipe insulation, by 



increasing its thermal conductivity λ [21]. As a consequence, pipe thermal resistance decreases, by increasing heat losses, accordingly. 

For example, if the moisture content is equal to 13.6 %, the thermal conductivity of the rock wool is up to four times higher than its 

value at dry condition [27]. Secondly, moisture corrodes pipes [21], which weaken and, subsequently, break.  

As outlined in the literature, only few studies addressed the development of accurate methodologies for fault detection in DHNs. 

Leakages in DHNs are currently detected by monitoring the ground moisture level [21]. However, DHN diagnosis may provide 

misleading results due to the influence of groundwater and rainwater [21]. Leakages may also be detected by observing the make-up 

flow rate [15, 28] that, at healthy conditions, is usually lower than 1 % of the total flow rate [15]. Thus, a fault may occur when the rate 

of the lost water is higher than 1 % of the total flow rate [15]. In addition, the pressure gradient method may be a viable physics-based 

diagnostic approach since it exploits the propagation of pressure waves within the DHN [28] to detect the actual point at which leakage 

takes place [29]. Kaliatka and Valincius [30] developed a general methodology aimed at identifying pipe break location, by considering 

pressure decrease and propagation. Alternatively, leakages may be detected by means of data-driven models, which can be quite easily 

developed, but their reliability strictly depends on data availability and quality [29]. For instance, both machine learning approaches 

(e.g., the least-squares support vector machine classifier) and artificial intelligence tools (e.g., multi-layer perceptron neural network, 

convolutional neural network) [15, 18] can be used. According to Zhou et al. [29], data-driven modeling approaches also comprise the 

resistance and impedance methods, which detect the failure point by monitoring the voltage or the pulse signal between two signal wires 

inserted within pipe insulation [29].  

Finally, the “unmanned airborne infrared thermography” method is a viable alternative to both physics-based and data-driven 

approaches, since pipe failure is detected by using thermal images that reveal the increase in the ground temperature due to hot water 

leaks [29] by means of handheld thermal cameras. However, fault detection may be challenged when a fault occurs in large-scale and 

complex DHNs, especially when they are placed in areas that are difficult to access. To this purpose, Zhong et al. [31] presented a 

saliency analysis method for detecting water leakages, by using remotely sensed infrared imagery, visible imagery and geographic 

information systems data.  

For evaluating pipe pressure losses, Kane and Rolle [32] developed a novel diagnostic approach that grouped several substations, 

i.e., end-users, and pipes into clusters.  

Anomalous heat losses can be detected by means of both data-driven models and physics-based approaches. For example, Chicherin 

et al. [33] exploited a data-driven approach to investigate the relationship between different states of pipe insulation and heat losses. 

Instead, a non-destructive method was developed by Lidén et al. [34] for assessing the thermal conductivity of the insulation of an aged 

pipe. To this purpose, drainage valve measurements were coupled with a numerical model that calculated the temperature decline during 

DHN shutdown. Instead, the model proposed by Fang and Lahdelma [35] detected faults affecting DHNs by calculating mass flow rates, 

temperatures and heat losses. Instead, Wang et al. [17] detected heat losses by exploiting a genetic algorithm that compared the measured 

and calculated DHN variables, i.e., flow rate, pressure and temperature.  

Paper’s novelty and contribution. The current paper is aimed at developing a novel diagnostic approach that evaluates DHN 

health state by detecting and identifying faults that affect DHN pipes. Detection allows the localization of the faulty pipe, while 

identification aims at assessing fault type and magnitude. The novel diagnostic approach is validated by using several datasets generated 

by a digital twin of the DHN of the campus of the University of Parma, which is used as the case study. In fact, the common practice 

consists of preliminarily testing a novel approach by means of simulated data. 

With respect to state-of-the-art literature, the novelty of this paper can be summarized as follows:  



• development of a novel diagnostic approach that provides the “health indices” for all DHN pipes, by allowing an effective 

evaluation of DHN health state; 

• combined detection and identification of three fault types, i.e., water leakages, anomalous heat losses and anomalous 

pressure losses. This multiple capability represents a novelty since the common practice consists of detecting faults one by 

one. In addition, the detection of anomalous pressure losses has been usually neglected in the literature;  

• detection and identification of both single and multiple faults. In the current paper, a single fault occurs when only one 

pipe is faulty and the fault cause is unique. Conversely, a multiple fault accounts for multiple causes. It has to be highlighted 

that multiple faults have been rarely investigated in the literature;  

• validation of the proposed diagnostic approach by considering different and heterogenous faulty scenarios. In fact, the 

diagnostic approach is checked against both single and multiple faults, by accounting for different fault types, causes and 

magnitudes.  

The paper is structured as follows. First, the diagnostic approach is developed, by highlighting its basics and defining pipe health 

indices (Section 2). The case study is described (Section 3), together with the digital twin of the DHN and the considered faulty datasets; 

the diagnosis of the faulty datasets is subsequently reported (Section 4), as well as a thorough discussion about methodology capability 

and paper’s achievements. Finally, the Conclusions are drawn (Section 5).  

 

2. DIAGNOSTIC APPROACH 

To evaluate the health state of a DHN, this paper adapts the theoretical approach developed by Bettocchi and Spina [36] and 

subsequently successfully employed for gas turbine diagnostics in [37, 38, 39].  

The novel diagnostic approach is aimed at detecting and identifying water leakages, anomalous heat losses and anomalous pressure 

losses that affect DHN pipes. To this purpose, the novel diagnostic approach labels each pipe of the DHN by means of three health 

indices, i.e., xQ, xRth and xRp, that comprehensively assess the health state of the pipe. The health index xQ refers to leakages along pipes, 

while xRth and xRp identify anomalous heat and pressure losses, respectively. Thus, a health index is equal to one at healthy conditions, 

whereas it is lower than one when a fault occurs; the lower the health index, the more severe the fault.  

As depicted in Fig. 1, the diagnosis of the DHN is performed by developing a DHN model that calculates mass flow rate, temperature 

and pressure in all pipes.  
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Figure 1 – Scheme of the diagnostic approach  

 

To this purpose, an optimization algorithm adjusts all health indices until the objective function converges.  

It has to be observed that the diagnostic approach allows DHN diagnosis under steady-state condition and thus it is independent of 

system operating condition. In addition, since the diagnostic approach exploits balances, the diagnosis of the system holds independently 

of DHN layout, number of power plants and end-users.  

The DHN model, its inputs and the outputs are briefly described in the following; additional information about the DHN model is 

reported in Manservigi et al. [40].  

DHN model. The DHN model is aimed at calculating the flow rate of each pipe, as well as the temperature and pressure at each 

node. In this paper, it is assumed that four different node types can be encountered, i.e., the thermal power plant, splitting junction nodes, 

mixing junction nodes and end-user (EU) nodes. The heat transfer fluid (i.e., water) is warmed in the thermal power station and 

distributed by means of the supply pipeline. Thanks to splitting junction nodes, warm water is split into several branching pipelines 

towards end-user nodes, which correspond to the heat exchangers of the building substations. Then, return water flows exiting the 

various substations are mixed within mixing junction nodes and led back to the thermal power station through the main return pipeline.  

The mass flow rate (Q) flowing through each pipe is calculated by accounting for the contribution of each Q that enters and leaves 

a node. To this purpose, a set of Nn equations as the one reported in Eq. (1) is solved.  

 

∑ 𝑥𝑄Q
in

- ∑ Q
out

 - ∑ Q
EU

 = 0 (1) 

 

In Eq. (1), xQ∙Qin is the actual flow rate entering a node, while Qout and QEU are the flow rates that leave that node and subsequently 

flow towards a splitting (or mixing) junction or an end-user node, respectively.  

In the supply pipeline, the temperature of each node is calculated by using the thermal power balance solved under steady-state 

conditions and by assuming that the specific heat c is constant (see Eq. (2)). The temperature of each node is calculated by considering 

three thermal power contributions along the entire pipe length, as shown in Fig. 2. 

 

 

Figure 2 – Thermal power contributions considered for calculating the temperature of DHN nodes. 

 

The first contribution corresponds to the thermal power that enters a pipe, which depends on the temperature of the upstream node 

Tup of the pipe under analysis. The thermal power that leaves the pipe is the second term of Eq. (2), which depends on the temperature 

of the downstream node Tdown. Finally, thermal power losses include both the thermal losses caused by the water leakages as well as the 

dissipations through pipe walls. The thermal power lost due to water leakages depends on the amount of water that leaks, i.e. (1- xQ)∙Q. 
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In this paper, such a term depends on both Tup and Tdown. Finally, thermal dissipations through pipe walls are calculated by considering 

the ground temperature Tg and the thermal resistance Rth.  

 

 cQTup- cxQQTdown - c(1 - xQ)Q (
Tup + Tdown

2
)  - 

1

Rth

(
Tup + Tdown

2
 - Tg) =0 (2) 

 

As in [41], thermal resistance Rth accounts for internal convection and conduction of each pipe layer, i.e., steel pipe, insulation and 

external casing (Eq. (3)).  

 

 Rth= xRth [
1

πLDint,pkconv,int

+
1

2πLλp

ln (
Dext

Dint

) +
1

2πLλins

ln (
Dins

Dext

) +
1

2πLλc

ln (
Dc

Dins

)] (3) 

 

To calculate the heat transfer coefficient, i.e. kconv,int, the Nusselt number and the friction factor are calculated by using the 

temperature of the upstream node.  

In the supply pipelines, the temperature of each node of the DHN is calculated starting by the pipe that is fed by the power plant, 

of which the temperature is usually known. Thus, Eq. (2) allows the calculation of the only unknown variable, i.e., Tdown, and the 

temperature of the remaining nodes is sequentially calculated.  

In the return pipeline, the temperature of each end-user node TEU is calculated by subtracting the temperature drop (∆T) caused by 

the heat exchanger from the temperature of the end-user node in the supply pipeline.  

Instead, the temperature of both mixing junction nodes and thermal power plant are calculated by assuming adiabatic mixing.  

Finally, the pressure of each node is calculated by considering the entire pipe length, by solving a set of NP equations as the one 

reported in Eq. (4)  

 

- p
up

 + p
down

 + ∆p =0 (4) 

 

With respect to the flow rate direction, the variables pup and pdown represent the pressure at the upstream and downstream node of a 

pipe, respectively. Pressure loss through a pipe, i.e., ∆p, is calculated as in Eq. (5):  

 

∆p= RpQ2 (5) 

 

The coefficient Rp accounts for both concentrated and distributed pressure losses, which depend on the pipe internal diameter Dint, 

the length of the pipe L, the coefficient of concentrated losses β, the fluid density and the friction factor as follows 

 

Rp = 
1

xRp

[
8

ρ(T̅)π2Dint
4

(f(T̅)
L

Dint

+ β)] (6) 

 



As in [41], both fluid density and friction factor depend on the mean temperature between the upstream and downstream nodes of 

each pipe under analysis.  

 

Inputs, outputs and objective function. The inputs of the diagnostic approach are distinguished between independent and 

dependent variables, which are used in different ways.  

The independent variables feed the DHN model to calculate the mass flow rates, temperatures and pressures. To this aim, some 

end-user measurements have to be provided, as the flow rate entering each end-user heat exchanger QEU and the water pressure and 

temperature drops through the heat exchangers (see Table 1).  

 

Table 1 – Inputs and outputs of the diagnostic approach 

 Description Variables 

Inputs 

Independent variables 

End-user measurements Q
EU,i

meas, ∆TEU,i
meas, ∆p

EU,i

meas i = 1, … NEU 

Power plant measurements p
PP,i,s
meas , TPP,i,s

meas , p
PP,i,r
meas  i = 1, … NPP 

Pipe characteristics 
Li, Dint,i, Dext,i, Dins,i, Dc,i, βi,  

λP,i, λins,i, λc,i, εi 
i = 1, … NP 

Ground temperature Tg  

Dependent variables 

End-user measurements TEU,i,s
meas , TEU,i,r

meas , p
EU,i,s
meas , p

EU,i,r
meas  i = 1, … NEU 

Power plant measurements Q
PP,i,s

meas , Q
PP,i,r

meas , TPP,i,r
meas  i = 1, … NPP 

Outputs 

Predicted health indices 

Leakages  xQ,i,s, xQ,i,r i = 1, … NP 

Thermal losses xRth,i,s, xRth,i,r, i = 1, … NP 

Pressure losses xRp,i,s, xRp,i,r i = 1, … NP 

Predicted DHN variables 

Calculated dependent variables  Qi, Ti, pi i = 1, … Nn 

 

In addition, the pressure at the power plant has to be known, both in the supply and return pipelines, as well as the temperature at 

the power plant in the supply pipeline.  

Temperature and pressure of each node are influenced by pipe characteristics. Thus, both geometrical (e.g., D) and thermal (i.e., λ) 

characteristics of each layer of the pipe (pipe wall, insulation and external casing) have to be provided. Finally, as highlighted in Eq. (2), 

the ground temperature Tg is required to evaluate heat losses.  

The dependent variables (Table 1) feed the objective function Fob reported in Eq. (7) that compares the measured physical quantities 

to the same values calculated by the DHN model. To this purpose, temperature and pressure of each end-user, as well as themass flow 

rate and temperature of the power plant, have to be known.  
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 (7) 

 

In this paper, it is assumed that: 

• each power plant of the DHN is equipped with one flow rate meter, one temperature sensor and one pressure sensor, in 

both the supply and return pipelines (see Fig. 3(a)); 

• each end-user, in the supply pipeline, is equipped with one flow rate meter, one temperature sensor and pressure sensor, 

which have to be installed upstream of the by-pass valve (see Fig. 3(b)), while in the return pipeline, one temperature 

sensor and one pressure sensor are installed downstream of the by-pass valve (see Fig. 3(b)).  

 

 

Figure 3 – Sensors (location, number and type) required to apply the diagnostic approach 

 

 

The outputs of the diagnostic approach are the six health indices of each pipe, i.e., xQ,s, xRth,s, xRp,s, xQ,r, xRth,r, xRp,r, in both the supply 

and return pipelines, as well as all the calculated DHN variables (i.e., mass flow rate, temperature and pressure). These values are 

obtained by using an optimization algorithm that minimizes the objective function by updating the health indices until the Fob converges.  

 

3. CASE STUDY 

District heating network. The proposed diagnostic approach is checked to detect and identify faults hypothetically affecting the 

DHN of the campus of the University of Parma (Italy). The DHN has four main branches, supplied by five natural gas boilers. The 

simulated portion of the system is the “Nuova Sud” branch of the network (Fig. 4), which distributes heat to twelve connected end-users, 

i.e., departments, laboratories, classrooms and cafeterias [42]. 

 

Power plant

Supply pipeline Return pipeline

(a)

Supply pipeline Return pipeline

(b)

End-user



 

Figure 4 – Scheme of the considered portion of the DHN of the campus of the University of Parma  

 

The heat transfer fluid (i.e., water) is warmed in the thermal power plant and distributed by means of the main supply pipeline 

towards the building substation heat exchangers. The water mass flow rate entering each user substation (end-user) can be recirculated 

by means of a three-port valve, in order to regulate the heat supplied to the building and keep indoor comfort requirements. Then, the 

return water flows from the various substations and is led back to the thermal power station through the main return pipeline. 

By considering both the supply and return pipelines, the DHN includes forty-six pipes in total and is approximately 4 km long. 

Fig. 4 depicts the supply pipeline of the considered DHN. In addition, forty-eight nodes in total are considered, corresponding to one 

thermal power plant, eleven splitting and mixing junction nodes and twelve end-user nodes, for both the supply and the return pipeline.  

Since the DHN of the campus of the University of Parma comprises one power plant and twelve end-users, as shown in Fig. 4, 

sixty-six measurement devices, i.e., fourteen flow meters, twenty-six temperature sensors and twenty-six pressure sensors, are required 

to be installed as in Fig. 3(a) and (b).  

Given that (i) the health state of each pipe is described by means of three health indices, (ii) the DHN diagnosis is performed on 

both the supply and return pipelines and (iii) both the supply and return pipelines include twenty-three pipes, 138 health indices in total 

have to be predicted by the diagnostic methodology. 

Digital twin of the DHN. To check and validate the diagnostic model developed in this paper, end-user, power plant measurements 

and the ground temperature (see Fig. 1 and Table 1) were generated by means of the model developed in [41]. As demonstrated in [42], 

such a model provides a detailed and feasible representation of the behavior of the DHN of the campus of the University of Parma. Thus, 

the model can be used as a digital twin of the DHN investigated in this paper. The exploitation of such a digital twin relies on the fact 

that the validation of a diagnostic tool is generally hindered by the lack of both complex experimental laboratory-scale setups and large-

scale labeled datasets (i.e., both the fault and its time of occurrence must be known) [43].  
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The digital twin was built by means of a dedicated library, developed in the MATLAB®/Simulink® environment, that simulates 

energy conversion devices, distribution systems and end-users. The model considers both the hydraulic and thermal domains to describe 

the evolution of the main thermodynamic parameters of the heat transfer fluid in each section of the network. To this purpose, the 

conservation equations of mass, momentum and energy in differential form are used. Such a high level of detail allows accurate 

monitoring of mass flow rates, temperatures and pressures throughout the system with a user-defined time granularity.  

In the model developed in [41], the distribution system comprises pipelines and junction nodes. The pipe model can be discretized 

in the axial direction by assembling in sequence several pipe segments, including both thermal and fluid dynamics of water. On the other 

hand, junction node models allow mixing/splitting flows from/to several different pipe segments, to represent branching pipelines and 

collectors. The junction dynamic model calculates the local temperature and pressure based on inlet and outlet flows by means of energy 

balance and continuity equations. The end-user block includes a heat exchanger representing the heat transfer between the distribution 

water and the building itself.  

The inputs of the model can be provided by experimental measurements or building simulation software. The model calculates all 

DHN variables as well as the ground temperature variations for a given geographical area.  

Further details about model structure and equations are reported in [41].  

Implanted faults. The digital twin was employed to generate twenty-three datasets, each of them comprising ten consecutive days 

of operation, to mimic DHN operation under both transient and steady-state conditions.  

One of these datasets reproduces DHN healthy condition, which considers that pipes are made of steel (λ*
P = 57 W∙m-1∙K-1) and are 

thermally insulated by means of a rock-wool layer (λ*
ins = 0.04 W∙m-1∙K-1) and an external casing (λ*

c = 1 W∙m-1∙K-1). Pipe roughness ε* 

is equal to 0.1 mm. Figure 5 shows the trend of mass flow rate, pressure and temperature of the power plant in the supply pipeline during 

ten days of operation under healthy conditions.  

 

Figure 5 – Mass flow rate (a), pressure (b) and temperature (c) of the power plant in the supply pipeline during ten days of 

operation under healthy conditions (values simulated by the digital twin of the DHN) 

 

The remaining twenty-two datasets were generated by considering the same boundary conditions (e.g., ground temperature and 

thermal energy demand of the end-users), but one or more faults were implanted by modifying pipe characteristics, i.e., ε and λins, Dint. 

The digital twin of the DHN simulated the anomalous heat losses, anomalous pressure losses and water leakages as follows.  

The anomalous heat losses were modeled by increasing the thermal conductivity of the insulation layer (see Table 2) with respect 

to the healthy condition. To mimic anomalous pressure losses, the pipe roughness or internal diameter of the faulty pipe were varied 

(a) (b) (c)



because of pipe fouling or corrosion. Faults that cause anomalous heat and pressure losses can affect the entire length or a portion of the 

pipe.  

Table 2 - Cause, effect and locations of the faults simulated by means of the digital twin. 

Fault cause Fault effect  Fault location Change in the digital twin 

Degradation of pipe 

insulation 

Anomalous  

heat losses 

Pipe segment or  

entire pipe 
Increase in insulation thermal conductivity 

Pipe fouling or 

corrosion 

Anomalous  

pressure losses 

Pipe segment or  

entire pipe 
Increase in pipe roughness 

Pipe segment or  

entire pipe 
Reduction in pipe internal diameter 

Pipe perforation Leakage 

Node 
Additional outlet water flow from an already 

existing junction node 

Pipe 
Additional junction node with outlet water flow 

between two pipe segments 

 

Finally, two types of water leakage with different fault location were simulated. First, leakages occurring along the pipe were 

accounted for. The digital twin modeled this faulty scenario by adding one intermediate splitting junction node, from which the water 

leakage leaves the pipe. In such a way, in the faulty pipe, the mass flow rate in the upstream node is higher than the mass flow rate in 

the downstream node, according to Eq. (1). In addition, the novel diagnostic approach was also checked to detect water leakages due to 

a faulty splitting or mixing junction node. The digital twin modeled this fault by accounting for an additional Qout (see Eq. (1))) in the 

faulty node. The diagnosis of this faulty scenario is extremely challenging for the novel diagnostic approach, since, by definition, the 

health index xQ accounts for water lost in a pipe, not in a node, as mentioned in the discussion about Eq. (1).  

As an anticipation of the results, it can be stated that the novel diagnostic approach accurately detected and identified all the twenty-

two faults simulated by the digital twin, by also evaluating the actual fault magnitude. However, the results and the analyses presented 

in this paper focus on seven out of twenty-two faulty datasets, namely Fault #1 through #7 (see Table 3). The seven faulty datasets 

account for all fault causes and different fault locations (e.g., the entire length of the pipe or a fraction of the pipe), by including both 

single (Fault #1 through #5) and multiple (Fault #6 and #7) faults. Despite single faults are more likely than multiple faults, Fault #6 

and #7 are also discussed to thoroughly evaluate the capability of the novel diagnostic approach even in the most challenging scenarios.  

For the sake of clarity, each pipe is labeled according to its upstream and downstream nodes. 

The anomalous heat losses of the Fault #1 (see Table 3) were caused by an increase of λins along the entire length of the faulty pipe, 

i.e., pipe 19-20. Instead, the anomalous pressure losses experienced by the pipe delimited by the nodes 19 and 20 were caused by an 

increase in the pipe roughness that, in the faulty scenario “Fault #2”, is equal to 1 mm, i.e., ten-times higher than under healthy condition. 

Instead, the anomalous pressure losses simulated in Fault #3 occurred because the internal diameter of pipe 12-14 was halved with 

respect to the healthy conditions along 10% of pipe length. Fault #4 and #5 differ from each other in the location of the leakage point, 

which was located within the pipe or at its downstream node, respectively. In both cases, the lost water was approximately 2.0 % of the 

water that leaves the thermal power plant.  

Fault #6 included both anomalous heat and pressure losses caused by the increase of λins and the decrease of the internal diameter.  



The anomalous pressure losses that characterize Fault #7 were caused by both an increase in the pipe roughness and a decrease in 

the pipe internal diameter of the pipe 12-14. As in Fault #2 and #3, pipe roughness is ten times the value under healthy condition, while 

the internal diameter was halved. For both Fault #6 and #7, the pipe internal diameter halved along 10% of pipe length.  

Finally, it is worth highlighting the influence of the accuracy of temperature measurements. In fact, in the interval of interest, i.e., 

30 °C – 90 °C, the uncertainty of temperature sensors employed in a DHN may be in the range from 0.45 °C to 0.75 °C [44]. Thus, the 

faults that affect pipe insulation were selected so that the temperature variation due to a fault is higher than 1 °C.  

 

Table 3 - Implanted faults analyzed in this paper 

Fault no. Effect of the fault Faulty pipe Fault location Faulty parameter Healthy parameter 

#1 Anomalous heat losses 19-20 Entire pipe λins = 2.00 W m-1 K-1 λ*
ins = 0.04 W m-1 K-1 

#2 Anomalous pressure losses 19-20 Entire pipe ε = 1.00 mm ε* = 0.1 mm 

#3 Anomalous pressure losses 12-14 10% of pipe length Dint = 0.0625 m D*
int = 0.1250 m 

#4 Water leakages 11-12 Pipe QL = 2 kg s-1 No leakage 

#5 Water leakages 12 Node QL = 2 kg s-1 No leakage  

#6 
Anomalous heat losses 

12-14 
Entire pipe λins = 20.00 W m-1 K-1 λ*

ins = 0.04 W m-1 K-1 

Anomalous pressure losses 10% of pipe length  Dint = 0.0625 m D*
int = 0.1250 m 

#7 Anomalous pressure losses 12-14 
Entire pipe ε = 1.0 mm ε* = 0.1 mm 

10% of pipe length  Dint = 0.0625 m D*
int = 0.1250 m 

 

4. RESULTS  

The capability of the diagnostic approach to evaluate the health state of the DHN of the campus of the University of Parma, whose 

measured variables were generated by the digital twin described in Section 3, is investigated in this Section.  

Since the diagnostic approach is used under steady-state conditions, the DHN diagnosis is performed by considering a single 

operating condition at which all DHN variables simulated by the digital twin exhibit a steady-state behavior in all nodes. To this purpose, 

a moving window of 60 minutes was considered, by calculating the mean value and standard deviation of each physical quantity. A 

steady-state time point is identified when the coefficient of variation, i.e., the ratio between the standard deviation and the mean value, 

of all physical quantities at all DHN nodes is lower than 10-6. 

In line with the procedure discussed in Section 2, the diagnostic approach identifies pipe health indices by exploiting an optimization 

algorithm based on a gradient-based method that is available in the Matlab® environment [45]. In fact, based on a specific analysis 

conducted by the authors, such optimization algorithm proved more accurate than alternative options (e.g., genetic algorithm), by also 

significantly reducing the computational time, which is in the range from 30 s to 2 mins for the system layout and faults considered in 

this paper. Such features are crucial to promptly identify possible losses and take proper actions.  

In the optimization procedure, the lower and upper bounds of the search space of health indices were set equal to 10-3 (i.e., 99.9% 

decrease) and 1.0 (healthy condition), respectively. The starting value for the optimization was set equal to 1.0: in this way, at the first 

guess, the system is assumed healthy. The optimization procedure stops when the variation of the objective function is lower than 10-9. 

The diagnostic approach is challenged to detect and identify the faulty pipe and the type of fault, as well as its magnitude. To this 

purpose, the DHN measurable variables generated by the digital twin) are compared to the corresponding predicted measurable variables 

calculated by the diagnostic approach.  



First, each faulty scenario was compared to the healthy condition to evaluate the effects of faults on the DHN variables. This analysis 

is summarized by means of Figs. 6, 8, 10, 12, 17 and 19, which compare each physical quantity under the faulty scenario (Y in Eq. (8)) 

to the same physical quantity under healthy condition (Y* in Eq. (8)).  

 

δY= 
Y - Y*

Y*
   , Y = Q, T, p (8) 

 

The goal of this analysis is out to display the pieces of information available to the DHN monitoring system. As shown in Figs. 6, 

8, 10, 12, 17 and 19, the effect of faults is usually almost uniformly spread over the measurable variables, according to DHN topology. 

Thus, the diagnosis of DHN health state would be impossible by just monitoring the measurable variables. Instead, as shown in the 

following, the health indices provide univocal pieces of information about fault type, localization and magnitude.  

Secondly, the expected and predicted health indices are documented. It has to be highlighted that the expected xRth and xRp are 

calculated by comparing Rth and Rp of the faulty scenarios simulated by the digital twin to the same values at healthy conditions. In 

addition, for a given leaking pipe, the expected xQ is calculated by dividing the amount of water that enters its downstream node by the 

amount of water that feeds its upstream node.  

The capability of the diagnostic approach to calculate DHN variables is also assessed. To this purpose, the expected and predicted 

Rth and Rp of the faulty pipes are evaluated, as well as the expected and predicted temperature and pressure drop from the healthy 

condition (T*, p*) to the faulty scenario (T, p). In case of leakage, the rate of lost water is discussed.  

The prediction error on each DHN variable is also reported, both in absolute (difference between expected and predicted Q, T and 

p) and relative (ratio of the absolute prediction error to the expected value) terms. It should be noted that the relative temperature error 

is calculated by expressing temperature values in degrees Celsius.  

The diagnosis of Fault #1 through #7 performed by the diagnostic approach is shown in Figs. 7, 9, 11, 13, 15, 18, 20. For each faulty 

dataset, a heatmap chart is reported, where the color depends on the predicted health index. For the sake of clarity, the predicted xRth,s 

and xRth,r are shown in a logarithmic scale. In Figs. 7, 9, 11, 13, 18, 20, the “X” symbol highlights the actual faulty pipe and fault type, 

i.e., the response that the diagnostic approach is expected to target. In Fig. 15, the “X” symbol is not reported because water leakage 

occurs at a node.  

The diagnostic approach was preliminarily validated under healthy conditions by using a healthy dataset whose expected health 

indices were equal to one. The diagnostic approach proved very accurate, since all the predicted health indices were always higher than 

0.995.  

 

4.1 Diagnosis of single faults  

Fault #1: anomalous heat losses within pipe 19-20. In the first dataset, pipe 19-20 is affected by anomalous heat losses caused by 

the increase of the thermal conductivity, whose value is fifty times higher than the healthy value (Table 3). Since the fault affects the 

whole pipe length, the temperature of the downstream node (20) decreases by 7.30 °C (see Table 4). As a result, the temperature of the 

node 20 reduces by 10.3 % with respect to the healthy condition (Fig. 6).  

As highlighted in Fig. 7 and Table 4, the faulty pipe was successfully localized, as well as the fault type and magnitude. In fact, the 

diagnostic approach predicts a value of xRth,s for pipe 19-20 equal to 0.0221. This is an extremely positive result since the expected xRth,s 

is only slightly lower than the predicted value. Moreover, the health indices xRth of the other healthy pipes are always higher than 0.92, 



in both the supply and return pipelines. Though such values are not very close to 1, they are not representative of an actual change of 

DHN health state.  

Finally, the diagnostic approach finds out that the predicted xQ,s, xQ,r, xRp,s and xRp,r are equal to one.  

Since all health indices are accurately calculated, all DHN variables are also accurately estimated. In fact, the mass flow rate of 

each pipe is exactly assessed, while the prediction errors of each DHN node are lower than 0.02 °C, and in the range from -16 Pa to 99 

Pa. As a consequence, the Rth of the faulty pipe is accurately calculated.  

 

Table 4 – Fault #1: expected vs. predicted values 

 Expected value Predicted value 

Health index xRth,s = 0.0205 xRth,s = 0.0221 

Rth [K/W] 3.70∙10-4 3.98∙10-4 

Effect on the downstream node T20
* - T20 = 7.29966 °C  T20

* - T20 = 7.29960 °C  

 

 

Figure 6 – Comparison between Fault #1 and the healthy scenario 

 

 

Figure 7 – Predicted health indices for Fault #1 

 

Fault #2: anomalous pressure losses within pipe 19-20. In dataset #2, anomalous pressure losses occur along the pipe delimited by 

nodes 19 and 20, since the roughness is ten times higher (Table 3). As a result, the pressure of the downstream node decreases by 

[%]

-10.3 %

˟



approximately 4 kPa (Table 5). Due to the fault #2, the mass flow rate that feeds the node 20 decreases by 2.10 % and its pressure is 

approximately 1 % lower than that in the healthy scenario (Fig. 8).  

As can be noted from Fig. 9, the diagnostic approach correctly detects the faulty pipe, as well as the fault type and magnitude. In 

fact, the predicted xRp,s is only slightly higher than the expected value (Table 5).  

 

Table 5 – Fault #2: expected vs. predicted values 

 Expected value Predicted value 

Health index xRp,s = 0.552 xRp,s = 0.556 

Rp [kg-1∙m-1] 392.43 390.56 

Effect on the downstream node p20
* - p20 = 4.00 kPa p20

* - p20 = 4.00 kPa 

 

 

Figure 8 – Comparison between Fault #2 and the healthy scenario 

 

 

Figure 9 – Predicted health indices for Fault #2 

 

The positive result is also confirmed by the fact that the health indices of the expected healthy pipes are found to be higher than 

0.995. As a result, both the detection and identification tasks are successfully fulfilled. Based on the accurate diagnosis, all physical 

quantities are correctly predicted. In fact, the prediction error of the node temperatures is always lower than 0.002 °C.  

[%]

˟



Similarly, all node pressures are accurately predicted since the prediction error varies from -42 Pa (i.e., -0.013 %) to 92 Pa (i.e., 

0.023 %).  

Fault #3: anomalous pressure losses within pipe 12-14. In dataset #3, pipe 12-14 has a halved internal diameter for 10% of pipe 

length. As a consequence, the pressure of the node 14 decreases by 0.66 kPa with respect to the healthy condition (Table 6), which 

corresponds to an expected xRp,s equal to 0.236.  

As shown in Fig. 10, the mass flow rate that feeds nodes 14 through 18, i.e., the downstream nodes of the faulty pipe, is about 0.5 

% lower than that in the healthy scenario, while their pressure reduces by 0.2 %.  

Once again, the implanted fault is correctly detected and identified (Fig. 11). In fact, the predicted xRp,s of the faulty pipe is by far 

the lowest health index, since it is roughly equal to 0.261, while the predicted health indices of the healthy pipes are always higher than 

0.992. This is a significant result because the fault affects an intermediate pipe, whose upstream and downstream nodes are not included 

within the objective function (see Eqs. (6) and (7)).  

As a result, the error of the predicted temperatures is the same as in Fault #2 (i.e., 0.002 %); instead, pressure errors are slightly 

higher, i.e., in the range from -87 Pa (-0.028 %) to 92 Pa (0.023 %).  

 

Table 6 – Fault #3: expected vs. predicted values 

 Expected value Predicted value 

Health index xRp,s = 0.236 xRp,s = 0.261 

Rp [kg-1∙m-1] 50.75 45.76 

Effect on the downstream node p14
* - p14 = 0.66 kPa p14

* - p14 = 0.65 kPa 

 

 

Figure 10 – Comparison between the Fault #3 and the healthy scenario 

 

[%]



 

Figure 11 – Predicted health indices for Fault #3 

 

Fault #4: leakage within pipe 11-12. In this case, 2.0 % of the water pumped out of the thermal power plant leaks; such a rate 

corresponds to 18.92 % of hot water passing through pipe 11-12. Thus, the expected xQ,s of the faulty pipe is equal to 0.811 (Table 7).  

 

Table 7 – Fault #4: expected vs. predicted values  

 Expected value Predicted value 

Health index xQ,s = 0.811 xQ,s = 0.915 

Effect on the downstream node Q = 8.57 kg∙s-1 Q = 9.98 kg∙s-1 

 

As shown in Fig. 12, the water leakage mainly affects the mass flow rate and the pressure of each node of the DHN. To counteract 

the effect of the water loss, the mass flow rate pumped out from the power plant has to be higher than that under the healthy scenario. 

Such a difference increases along those branches that connect the power plant to the faulty pipe. The maximum relative difference, i.e., 

13.2 %, occurs at node 11, since it is the upstream node of the faulty pipe.  

 

 

Figure 12 – Comparison between Fault #4 and the healthy scenario 
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As can be grasped from Figs. 13 and 14, the leakage significantly challenges the diagnostic approach. In fact, the fault occurs within 

a pipe whose upstream and downstream nodes are not included within the Fob (see Eq. (7)).  

 

 

Figure 13 – Predicted health indices for Fault #4 

 

 

Figure 14 – Predicted xQ,s for Fault #4 

 

Despite this, the diagnostic approach correctly detects the DHN zone where the fault occurs. In fact, the predicted xQ,s of pipe 11-

12 is the lowest health index, though the diagnostic approach underestimates the fault magnitude, since the predicted xQ,s of the pipe 11-

12 is found equal to 0.915. This outcome affects the DHN diagnosis in two different ways. First, the predicted xQ,s of a few healthy pipes 

is found lower than 1.00. More in detail, the predicted xQ,s of pipe 12-13 and 12-14 (see Fig. 14) is found equal to 0.94 and 0.95, 

respectively. This is an encouraging result, since the faulty pipe feeds 12-13 and 12-14; thus, the diagnosis made by the diagnostic 

approach is physically sound. In addition, the diagnostic approach also predicts that the xQ,s of the pipe that feeds the pipe 11-12 is 

roughly equal to 0.98. Second, because of this change, the mass flow rate that enters the pipe 11-12 is lower and the pressure losses are 

accordingly lower. Thus, the diagnostic approach estimates the predicted xRp,s of the faulty pipe equal to 0.97 to artificially increase the 

˟
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pressure losses along the pipe. It has to be mentioned that such a predicted value is the lowest xRp of all DHN health indices. Finally, the 

predicted values of xRth in both the supply and return pipelines are always higher than 0.99, as expected.  

The correct diagnosis allows to correctly evaluate both the temperature and pressure of each node. In fact, the temperature prediction 

error is always lower than 0.001 °C, while the pressure prediction error is in the range from -227 Pa (i.e., -0.06 %) and 40 Pa (i.e., 0.01 

%).  

Fault #5: leakage within node 12. As mentioned in Section 2, the diagnostic approach has been developed for detecting and 

identifying faults that affect pipes. However, in this paper, the diagnostic approach is also tested to detect leakages that take place in a 

node.  

In fact, in Fault #5, water is lost at the splitting junction node named 12, which is the downstream node of the pipe 11-12. As in 

Fault #4, 18.92 % of hot water passing through pipe 11-12 is lost (see Table 7) and the mass flow rate at node 11 is 13.2 % higher than 

that under the healthy condition (see Fig. 12). Thus, the expected health index is equal to 0.811. Thus, the diagnosis of Fault #4 and #5 

can be directly compared.  

As a general comment, the diagnostic approach correctly identifies the DHN zone in which the leakage occurs (Fig. 15), as well as 

the fault type. In fact, the lowest health indices are found in pipes 11-12, 12-14 and 12-13, whose predicted xQ,s are roughly equal to 

0.90, 0.92 and 0.92, respectively. This is a positive outcome because 12 is the downstream node of pipe 11-12, while it is the upstream 

node of pipes 12-14 and 12-13 (Fig. 16).  

 

 

Figure 15 – Predicted health indices for Fault #5 

 

Instead, in Fault #4, the health indices xQ,s of pipes 11-12, 12-14 and 12-13 are equal to 0.91, 0.94 and 0.95. Even though the 

diagnosis of two faulty scenarios is similar, in Fault #5 the predicted xQ,s of pipes 11-12, 12-14 and 12-13 are approximately the same, 

while slightly more scattered results are obtained in Fault #4. This result may be explained by considering that the fault occurs in two 

different ways and the diagnostic approach accordingly provides a slightly different response. In particular, the magnitude of Fault #5 

is almost equally distributed among the pipes that are directly connected to the faulty node.  

In Fault #5, the leakage is also confirmed by the fact that the predicted xRth and xRp are always higher than 0.99, with the exception 

of the pressure losses of pipes 11-12 and 12-14, in which xRp,s is set equal to 0.95 and 0.98, respectively. As mentioned in the discussion 

about Fault #4, such a result can be explained by considering that the predicted flow rate passing through these pipes is lower than the 

expected value and thus the xRp,s is found lower than one to artificially increase the pressure losses.  



Therefore, the actual health state of the DHN is correctly assessed, by strengthening the capability of the diagnostic approach.  

Finally, prediction errors achieved for Fault #5 were of the same order of magnitude as the ones obtained for Fault #4.  

 

 

Figure 16 – Predicted xQ,s for Fault #5 

 

4.2 Multiple faults  

Fault #6: anomalous pressure and heat losses within pipe 12-14. Finally, the diagnostic approach is tested against two different 

fault types that affect pipe 12-14. In this analysis, the pipe internal diameter halved along 10 % of the pipe length, while the thermal 

conductivity of the whole insulating material is 20 W∙m-1∙K-1 (Table 3). 

Because of these two concurrent effects, the pressure of the downstream node, i.e., node 14, is 0.66 kPa lower than the pressure 

under healthy condition, while its temperature drop is slightly higher than 1 °C (Table 8).  

 

Table 8 – Fault #6: expected vs. predicted values 

 Expected value Predicted value 

Health indices 
xRp,s = 0.237 

xRth,s = 0.039 

xRp,s = 0.262 

xRth,s = 0.039 

Rp [kg-1∙m-1] 50.75 45.73 

Rth [K∙W-1] 3.53∙10-3 3.51∙10-3 

Effect on the downstream node 
p14

* - p14 = 0.66 kPa 

T14
* - T14 = 1.10 °C 

p14
* - p14 = 0.66 kPa 

T14
* - T14 = 1.10 °C 

 

As can be grasped from Fig. 17, the faults mainly affect the mass flow rate and temperature of nodes 14 through 18, since their 

drops is approximately equal to 0.43 % and 1.6 %.  

The diagnosis performed by the diagnostic approach is depicted in Fig. 18, which highlights that both faults are successfully detected 

and identified. In addition, fault magnitudes are accurately evaluated, since the predicted xRth,s of pipe 12-14 is roughly equal to the 
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expected value, as well as the predicted xRp,s. This positive result is also confirmed by the fact that no water leakage is detected (i.e., all 

predicted xQ values are found equal to 1) and the predicted xRth values do not highlight anomalous heat losses in the expected healthy 

pipes.  

The accuracy of the diagnostic approach is also demonstrated by the negligible prediction error with which all DHN variables are 

calculated. In fact, temperature errors are in the range from -0.02 °C to 0.005 °C; in relative terms, they are always lower than 0.02 %. 

Similarly, the predicted pressures differ less than 0.03% (i.e., 95 Pa) from the expected values.  

 

 

Figure 17 – Comparison between Fault #6 and the healthy scenario 

 

 

Figure 18 – Predicted health indices for Fault #6 

 

Fault #7: anomalous pressure losses within pipe 12-14. Due to the anomalous pressure losses caused by the increase in the pipe 

roughness and decrease in the pipe internal diameter, the pressure of node 14 decreases by 1.46 kPa with respect to the healthy condition 

(Table 9). As a result, the expected xRp,s is equal to 0.124. As mentioned in the discussion about Fault #3, the fault mainly affects the 

downstream nodes of the faulty pipe, i.e., nodes 14 through 18, since their mass flow rate and pressure are approximately 1 % and 0.4 

% lower than the corresponding values under the healthy condition, respectively (Fig. 19).  

Based on Table 9 and Fig. 20, both the detection and identification tasks are successfully performed, since the lowest predicted 

health index is assigned to 12-14 (xRp,s equal to 0.131). Since the diagnostic approach slightly underestimates the pressure losses 

occurring in the faulty pipe, the health index xRP,s of the two downstream pipes is lower than one, i.e., 0.96 and 0.99.  
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Table 9 – Fault #7: expected vs. predicted values 

 Expected value Predicted value 

Health index xRp,s = 0.124 xRp,s = 0.131 

Rp [kg-1∙m-1] 96.73 91.61 

Effect on the downstream node p14
* - p14 = 1.46 kPa p14

* - p14 = 1.46 kPa 

 

 

Figure 19 – Comparison between Fault #7 and the healthy scenario 

 

Figure 20 – Predicted health indices for Fault #7 

 

Instead, the predicted xQ,s and xRth,s are equal to one, by confirming that no leakage and no anomalous heat loss are detected in the 

supply pipeline; in the return pipeline, the predicted xRp and xRth are always higher than 0.98, thus confirming that no fault affects the 

return pipeline.  

Based on the outstanding diagnostic capability, all DHN variables are correctly evaluated, with negligible prediction errors in the 

order of magnitude of 0.002 °C (i.e., 0.002 %) and in the range from -42 Pa (i.e., -0.013 %) to 92 Pa (i.e., 0.023 %).  
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5. CONCLUSIONS 

The efficient operation of a District Heating Network (DHN) can be compromised by different faults that can be classified as water 

leakage, anomalous heat loss and pressure loss. Thus, diagnostic methodologies have to be developed and tuned to promptly detect the 

faulty pipes, thus preventing anomalous energy consumption and economic losses.  

This goal was tackled by this study, which presented the development and validation of a novel diagnostic approach that detects 

and identifies three fault types, by also providing reliable health indices for each pipe of the DHN under analysis. In the proposed 

diagnostic approach, all health indices and variables of the DHN (i.e., mass flow rates, temperatures and pressures) are provided by 

coupling a DHN simulation model with an optimization algorithm that compares the calculated and measured DHN variables.  

The novel diagnostic approach was validated by considering twenty-two faults that may hypothetically affect the DHN of the 

campus of the University of Parma. The measured DHN variables were generated by means of a model that acts as a digital twin of the 

DHN.  

The proposed diagnostic approach was tested to detect and identify twenty-two faults, of which seven were investigated and 

thoroughly discussed in this paper to highlight the reliability and capability of the diagnostic approach. The seven faults included both 

single and multiple faults: single faults occurred when only one pipe was faulty, and the fault type was unique; conversely, multiple 

faults occurred because of multiple concurrent causes.  

Based on the results, both single and multiple faults were accurately detected and identified. This is an extremely positive result, 

since the digital twin mimics the actual dynamic behavior of the real DHN, whereas the diagnostic model performs the DHN diagnosis 

under steady-state conditions.  

The results also revealed that water leakages occurring within a pipe may challenge the novel diagnostic approach, but the DHN 

diagnosis was always physically sound. As a result, the detection and identification of the faulty zone were always guaranteed.  

The reliability of the novel diagnostic approach was also proved since both the temperature and pressure of each node of the DHN 

were accurately calculated. In fact, the error between the temperatures simulated by the digital twin and the ones calculated by the 

diagnostic approach was usually lower than 0.02 °C (i.e., 0.02 %), while the pressure error was usually in the range from – 230 Pa (i.e., 

- 0.06 %) to 99 Pa (i.e., 0.030 %).  

Finally, the novel diagnostic approach was checked to detect a water loss within a faulty node. Also in this case, the fault type was 

correctly identified, and the leakage was correctly split among the pipes connected to the faulty node. This all-in-all positive outcome, 

which allows the correct localization of the fault, can be explained by considering that the diagnostic approach accounts for losses of 

water occurring in a pipe, not in a node.  

Based on these positive results, future works are planned to further test the robustness of the diagnostic methodology by using noisy 

simulated data, which mimic measurement uncertainty. Such analysis will be crucial in order to identify the required accuracy of the 

measurement devices to be installed. In the last step, the diagnostic approach will be tested by means of experimental data. 
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