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Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, and 

novel therapeutics are much needed. Profiling patient leukemia’ drug sensitivities ex vivo, we 

discovered that 44.4% of childhood and 16.7% of adult T-ALL cases exquisitely respond to 

dasatinib. Applying network-based systems pharmacology analyses to examine signal circuitry, we 

identified preTCR-LCK activation as the driver of dasatinib sensitivity, and T-ALL-specific LCK 

dependency was confirmed in genome-wide CRISPR-Cas9 screens. Dasatinib-sensitive T-ALLs 

exhibited high BCL-XL and low BCL2 activity and venetoclax resistance. Discordant sensitivity 

of T-ALL to dasatinib and venetoclax is strongly correlated with T-cell differentiation, particularly 

with the dynamic shift in LCK vs. BCL2 activation. Finally, single-cell analysis identified 

leukemia heterogeneity in LCK and BCL2 signaling and T-cell maturation stage, consistent with 

dasatinib response. In conclusion, our results indicate that developmental arrest in T-ALL drives 

differential activation of preTCR-LCK and BCL2 signaling in this leukemia, providing unique 

opportunities for targeted therapy.

Introduction

Acute lymphoblastic leukemia (ALL) is a prototype of cancer that can be cured by 

pharmacotherapy alone1,2. In B-cell ALL (B-ALL), molecularly targeted agents are 

particularly effective in high-risk diseases, such as imatinib and dasatinib in ALL with the 

BCR-ABL1 fusion or fusions involving other ABL class kinases3–5. ALL can also arise in a 

T-cell lineage, accounting for 12–20% of this leukemia6. T-ALL is characterized by a unique 

set of genomic features, including chromosomal rearrangements and enhancer mutations 

involving transcription factor genes such as TAL1, TAL2, LMO1, and LMO27,8. T-ALL is 

associated with a more aggressive clinical presentation and historically inferior treatment 

outcome with cytotoxic chemotherapy, compared to B-ALL9,10. T-ALL becomes highly 

refractory to chemotherapy upon relapse, with a dismal prognosis9,10. Because there are 

presently no cellular or immunotherapies available in T-ALL11, treatment options are very 

limited for this group of patients and novel therapeutic agents are much needed6.
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The current paradigm of cancer drug discovery often adopts a reverse genetics approach, i.e., 

developing small molecules that specifically target a genomic abnormality that is essential 

for cancer cell survival. For example, deregulated NOTCH signaling is an oncogenic driver 

in the majority of T-ALL and has been examined as a therapeutic target12,13. However, the 

clinical development of NOTCH-targeting agents has proven challenging, with the notable 

example of gamma-secretase inhibitor therapy14,15. Additionally, the mechanism of drug 

response is highly complex; therefore, efficacy of a drug that targets a single genomic 

aberration may be substantially influenced by a plethora of other tumor mutations or by 

unintended host effects. In fact, there are many clinical examples of non-response to targeted 

agents despite the presence of genomic lesions involving purported molecular targets16,17. In 

contrast, a forward genetics approach starts by determining the drug sensitivity phenotype of 

cancer cells and then examining the biological basis of drug response. For example, 

pharmacotyping of tumor samples can identify drug-sensitive patients to guide therapeutic 

decisions, agnostic of tumor genomics18. Subsequent genomic characterization of drug-

sensitive and -resistant cases can then pinpoint the pharmacogenomic basis of inter-patient 

variation in response, which in turn would inform targeted therapy in future clinical trials. 

The utility of this approach has been illustrated in a number of recent pharmacotyping 

studies of both solid and liquid tumors19–23, including ALL24,25. It should also be noted that 

biological processes operate through molecular networks, and singular focus on genomic 

aberration of individual genes overlook the “wiring” and “rewiring” of these networks that 

drive drug response. Therefore, network-based systems pharmacology analyses are 

particularly valuable in identifying signaling circuitry and non-genetic drivers of drug 

sensitivity in cancer, with notable success by us and others26–28.

Originally developed as an ABL inhibitor, dasatinib is highly effective in chronic 

myelogenous leukemia and BCR-ABL1 ALL29. Unlike imatinib and nilotinib, dasatinib has 

a broader spectrum of potential targets, including ABL and SRC-family kinases30. SRC-

directed dasatinib inhibitory effects can be therapeutically beneficial in some settings, 

although at a concentration higher than that needed in BCR-ABL1 leukemias31–33. This is 

also true in T-ALL, with a number of recent reports independently describing dasatinib 

sensitivity in a significant proportion of patients with this type of leukemia33–35, with 

emerging evidence that points to LCK and preTCR sigaling as the putative therapeutic 

target. In fact, LCK activity is also required for proliferation and survival of T-ALL with 

ABL fusion gene, conferring dasatinib sensitivity36. However, the biological basis of inter-

individual variability in dasatinib sensitivity in T-ALL is incompletely understood, with a 

particular paucity of systematic examination of regulators of dasatinib response beyond LCK 

and potential drivers of drug resistance. It is also unclear whether dasatinib sensitivity is 

related to T-ALL subtype, age, and treatment outcome with conventional chemotherapy.

Profiling leukemia drug response ex vivo for 352 cases of ALL, we identified 44.4% of 

childhood T-ALL with exquisite sensitivity to dasatinib. Our RNA-seq-based systems 

pharmacology analyses pointed to LCK-preTCR activation as the driver of dasatinib 

sensitivity in T-ALL, with orthogonal validation by phospho-proteomic profiling and 

genome-scale CRISPR-Cas9 screens. We also comprehensively evaluated the genomic and 

developmental basis of LCK activation in T-ALL, and explored mechanisms of dasatinib 

resistance by single cell analysis. Taken together, our results highlight opportunities for 
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molecularly targeted therapies in T-ALL, with a potential to impact the next generation of 

clinical trials for this type of leukemia.

Results

Ex vivo pharmacotyping revealed dasatinib response in T-ALL

To characterize the pattern of dasatinib response in ALL, we analyzed a cohort of 352 

children and adults with ALL for whom drug sensitivity (measured as LC50, the 

concentration at which 50% of leukemia cells were killed) was determined using a 

mesenchymal stromal cell co-culture assay ex vivo. This pharmacotyping cohort consisted 

of 239 adults (18 T-ALL and 221 B-ALL) and 113 children (27 T- and 86 B-ALL), 

representative of diverse molecular subtypes of ALL (Supplementary Table S1). 

Comprehensive genomic profiling was performed using RNA-seq, whole exome seq, and/or 

whole genome seq (Supplementary Table S2).

We observed a wide inter-patient variability in dasatinib sensitivity in ALL, with a bimodal 

distribution representing cases with low LC50 (mean at 6.04 nM [range 0.05 to 79.4]) or high 

LC50 (12,046.20 nM [101.65 to 20,000], Extended Data Fig. 1A). In B-ALL, cases with a 

BCR-ABL1 fusion gene or fusions involving ABL class genes exhibited high sensitivity to 

dasatinib in both children and adults (Fig. 1A, Supplementary Table S3). The frequency of 

BCR-ABL1 ALL was significantly higher in adults who consequently also showed a higher 

prevalence of dasatinib response than children with B-ALL (Extended Data Fig. 1B). Based 

on LC50 distribution in BCR-ABL1 ALL (Extended Data Fig. 1C) we chose 80 nM as the 

cutoff to define dasatinib-sensitive vs -resistant ALL. In T-ALL, 15 (33.3%) cases were 

classified as dasatinib-sensitive, with a LC50 range largely indistinguishable from that of 

BCR-ABL1 B-ALL (Fig. 1B and Extended Data Fig. 1D). Surprisingly, none of the 

dasatinib-sensitive T-ALLs harbored ABL class fusion genes. There was a trend for an over-

representation of dasatinib-sensitive T-ALL in children compared to adults (44.4% and 

16.7% of T-ALL, respectively, P=0.063 by Fisher’s exact test, Fig. 1C). Testing three other 

ABL inhibitors in a subset of these primary T-ALL samples (N=18), we observed that 

dasatinib-sensitive cases were universally resistant to ABL-specific inhibitors imatinib and 

nilotinib, but responded to ponatinib which shares non-ABL targets with dasatinib (P=0.048 

by Pearson correlation test, Fig. 1D–E and Extended Data Fig. 2A–B). In addition, we 

profiled eight human T-ALL cell lines for their sensitivity to dasatinib in vitro, of which 

three exhibited extreme response: ALL-SIL cell line with NUP214-ABL fusion, HSB-2 cell 

line with TCR-LCK fusion, and KOPT-K1 cell line with TCR-LMO2 fusion (Extended Data 

Fig. 2C).

We randomly selected four dasatinib-sensitive T-ALL to confirm anti-leukemic efficacy in 
vivo, using patient-derived xenografts (PDXs, Fig. 2A–B). Given at 10 mg/kg twice daily, 

dasatinib significantly impeded leukemia growth in the recipient mice compared to those 

receiving vehicle control across the 4 cases (Fig. 2C), with prolonged leukemia-free survival 

ranging from 1.47 to 1.90-fold (Fig. 2D).
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NetBID analyses identified preTCR-LCK activation as the driver of dasatinib sensitivity in 
T-ALL

To systematically examine biological factors underlying T-ALL response to dasatinib, we 

applied a data-driven network inference algorithm (NetBID)37 to model signaling molecule 

activity from RNA-seq derived expression profiles (Fig. 3A and Supplementary Tables S4–

5). First, we reverse-engineered, by using the SJARACNe algorithm38, a T-ALL-specific 

interactome (T-ALLi) from the RNA-seq dataset of 261 unselected childhood T-ALL cases 

in the previously published TARGET ALL cohort8. The resultant T-ALL network consists of 

27,179 genes and 1,068,228 interactions, representing 7,924 hub genes and their 

downstream targets. Overlaying T-ALLi to the RNA-seq dataset of 15 dasatinib-sensitive T-

ALL and 30 resistant cases in the pharmacotyping cohort, we then inferred activity of each 

hub gene based on the expression of its targets weighed by the interaction strength of each 

hub-target pair. Compared to cases resistant to this drug, 193 and 268 hub genes showed a 

significantly higher or lower activity in dasatinib-sensitive T-ALL (P< 10−5), respectively 

(Supplementary Table S6). In particular, we observed a remarkable enrichment of up-

regulated genes in the pre-TCR signaling pathway (Fig. 3B, P=9.6×10−21), signified by 

CD28, CD3E, CD3G, ICOS, CD40LG, LCK, and PTCRA (Fig. 3C and Extended Data Fig. 

3A). In parallel, we manually curated a list of 94 putative dasatinib targets, using 

DrugBank39, DGIdb40, and chemical proteomics-based TKI target profiling41. Of 13 targets 

identified in all three databases, SRC, LCK, FYN, and FGR showed a significantly higher 

activity in dasatinib-sensitive T-ALL, and LCK was the top hit with the most pronounced 

difference (Fig. 3D, Extended Data Fig. 3B–E, and Table S7). We also performed these 

analyses with pediatric cases alone to avoid confounding effects by age, and the results were 

highly concordant with those with all cases included (Extended Data Fig. 3F). Collectively, 

these results nominated LCK as the potential driver for dasatinib sensitivity in T-ALL.

To test this hypothesis, we selected seven dasatinib-sensitive and four resistant T-ALL cases 

to expand human leukemia cells in PDX for further functional experiments (Supplementary 

Table S2). Focusing on key components of the proximal preTCR signaling pathway 

immediately down-stream of LCK, we assessed the phosphorylation of LCK (Y394)42, 

CD247 (Y142)43, and ZAP70 (Y319)44. The level of tyrosine phosphorylation at baseline 

across these three proteins were markedly high in dasatinib-sensitive T-ALL cases and 

decreased dramatically upon dasatinib treatment in a dose-dependent fashion (Fig. 3E). By 

contrast, there was minimal phosphorylation of LCK, CD247, and ZAP70 in dasatinib-

resistant T-ALL at baseline which also did not change by dasatinib. Similar results were 

observed in T-ALL cell line models HSB-2, KOPT-K1, and CEM (Extended Data Fig. 4A). 

To confirm dasatinib cytotoxicity is mediated through LCK inhibition, we examined the 

effects of LCK mutant T316M which is known to be resistant to dasatinib45. In KOPT-K1 

cells, expression of the wildtype LCK or vector alone remained highly sensitive to dasatinib 

(LC50 of 0.0005 nM), whereas introduction of the T316M mutant led to a 25.8-fold increase 

in LC50. In parallel, cells with wildtype LCK or the empty vector exhibited dose-dependent 

inhibition of LCK, compared to sustained LCK phosphorylation in cells expressing the 

T316M mutant, consistent with drug resistance (Extended Data Fig. 4B–E).
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To globally explore dasatinib-mediated kinase inhibition, we selected three sensitive and two 

resistant T-ALL for phospho-proteomic profiling. In total, we identified 21,450 unique 

phosphosites across samples (Supplementary Table S8) and inferred activity of 172 human 

kinases based on the level of phosphorylation of their known substrates (Supplementary 

Table S9). In dasatinib-sensitive T-ALL, LCK, LYN, FYN, and INSR were significantly 

inhibited by dasatinib (Fig. 3F). In contrast, dasatinib-resistant T-ALL cells showed no 

significant changes in kinase activity before and after dasatinib treatment. Finally, because 

dasatinib can broadly inhibit SRC family kinases (including both SRC and LCK), we also 

tested T-ALL cases and cell lines with LCK inhibitors WH 4–02346 and nintedanib47. Both 

compounds showed potent cytotoxicity in dasatinib-sensitive cases but not in dasatinib-

resistant T-ALL (P=7.8×10−4 and 0.013 by Pearson correlation test for WH 4–023 and 

nintedanib, respectively, Fig. 3G and Extended Data Fig. 5). Together, these results indicate 

that the anti-leukemic activity of dasatinib in T-ALL is most likely mediated by LCK 

inhibition.

Genome-scale CRISPR-Cas9 screen validated LCK dependency in T-ALL

In parallel, we performed unbiased genome-scale CRISPR-Cas9 loss-of-function screening 

to identify genes essential to the growth and survival of T-ALL. Comparing the three T-ALL 

cell lines assayed (HSB-2, PF-382, and SUP-T1) to either all other cancer cell lines screened 

(N=686) or limited to hematologic malignancy cell lines (N=73), LCK emerged as the top 

selectively essential gene (Fig. 3H–I). LCK dependency varied amongst three T-ALL cell 

lines but was dramatically higher than cell lines from any other cancer types (P=1.4×10−34, 

Extended Data Fig. 4F). Interestingly, other preTCR pathway genes (e.g., CD247, ZAP70) 

also showed significant effects on T-ALL survival, consistent with the essential role of this 

signaling axis in T-ALL leukemia maintenance (Extended Data Fig. 4F). In contrast, 

deletion of SRC or other members of the SRC kinase family only minimally influenced T-

ALL survival (Extended Data Fig. 4G).

Biomarker modeling predicted dasatinib sensitivity across T-ALL subtype

To build a robust biomarker model to predict dasatinib sensitivity in T-ALL, we used the 

pharmacotyping cohort of 15 sensitive and 30 resistant T-ALL cases, from which preTCR-

LCK was identified, as the discovery dataset for training, and then collected an independent 

validation cohort of 5 dasatinib-sensitive and 8 resistant cases for testing. We first filtered 

the top 461 driver genes identified by NetBID analysis against preTCR pathway genes and 

dasatinib targets in the discovery cohort, resulting in a final panel of 30 markers, including 

LCK and PTCRA (Fig. 4A). Summing the weighed NetBID-inferred activity of these genes, 

we estimated a dasatinib biomarker score for each T-ALL case from their RNA-seq profile. 

Dasatinib-sensitive leukemias had significantly higher scores than those resistant to this drug 

in both the discovery cohort (P=3.7×10−7, Extended Data Fig. 6A), with replication in the 

validation set (P=0.023, Extended Data Fig. 6B, Supplementary Table S1). In the receiver 

operating characteristic curve analysis, dasatinib biomarker score achieved an area under the 

curve (AUC) value of 0.924 with a 95% confidence interval (CI) of 0.820—1.0 in the 

discovery cohort (Fig. 4B) and an AUC value of 0.85 with a CI of 0.624—1.0 in the 

validation cohort (Fig. 4C). At a cutoff value of 0.6, the dasatinib biomarker score achieved 

Gocho et al. Page 6

Nat Cancer. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a sensitivity and specificity of 0.933 0.767, and 1.0, 0.75, in the discovery and validation 

cohort, respectively.

Applying this dasatinib biomarker scoring algorithm to the RNA-seq dataset of 261 cases in 

the TARGET T-ALL cohort described above, we observed a wide variation in predicted 

dasatinib sensitivity across molecular subtypes (Fig. 4D and Extended Data Fig. 6C). T-ALL 

with overexpression of TAL1, TAL2, or LMO1/2 genes exhibited the highest likelihood of 

dasatinib response whereas cases in the LMO2/LYL1 subtype were the least sensitive to this 

drug (P<2.0×10−16 by ANOVA). Similarly, NetBID-predicted activities of LCK and PTCRA 

also vary by subtype, in a pattern consistent with the biomarker scores (Extended Data Fig. 

6D–E). Dasatinib sensitivity biomarker score was negatively associated with treatment 

outcome of conventional cytotoxic chemotherapy (Fig. 4E): individuals predicted as 

dasatinib-sensitive (dasatinib biomarker score>0.6) showed a significantly worse event-free 

survival (EFS) than those with low predicted dasatinib sensitivity (dasatinib biomarker 

score≤0.6) (P=0.037, Cox regression test). The association of dasatinib sensitivity with EFS 

was particulary strong within the LMO2-LYL1 T-ALL subtype (P=0.0016, Extended Data 

Fig. 6F). Further, T-ALL patients predicted to be dasatinib-sensitive also tend to have higher 

leukocyte count at diagnosis than those with low dasatinib biomarker scores (P=3.3×10−6) 

(Fig. 4F). These results pointed to potential benefits of adding dasatinib to the 

chemotherapy-based T-ALL treatment regimen.

T cell differentiation program and dasatinib sensitivity in T-ALL

From whole-genome and whole-exome seq, we did not observe a unifying somatic genomic 

abnormality that completely explained dasatinib sensitivity, although a number of features 

were notable (Fig. 5A and Supplementary Tables S10–12). NOTCH1 mutations were 

detected in 93.3% of dasatinib responders compared to 50% in drug-resistant T-ALL 

(P=0.0069 by Fisher’s exact test, detailed variants information in Fig. 5B), and a similar 

trend was seen with FBXW7 mutation (33.3% vs 6.7%, P=0.032 by Fisher’s exact test). 

Known to be associated with early T precursor ALL, mutations in the DNM2 or RUNX1 
genes were only observed in cases resistant to dasatinib, suggesting LCK signaling may be 

dispensable in T-ALL with this immature immunophenotype.

Most notably, we identified TCF7-SP1 fusion in one T-ALL case with exquisite sensitivity 

to dasatinib (LC50=0.05 nM, Fig. 5A). Recently described as a novel subtype, TCF7-SPI1 T-

ALL is associated with a characteristic expression profile, including elevated expression of 

PTCRA and LCK48. We subsequently identified two additional T-ALL cases with the same 

SPI1 fusion, and in both cases, we confirmed ex vivo sensitivity to dasatinib (LC50=0.05 

nM, Extended Data Fig. 7A). During normal T cell development, PTCRA expression is 

specifically turned on at the double negative 3a/3b (DN3a/3b) stage which in turn triggers a 

robust proliferative signal through LCK activation49. Therefore, we hypothesize that the 

differentiation arrest of TCF7-SPI1 T-ALL at DN3 stage renders them vulnerable to LCK 

inhibition by dasatinib. In fact, applying the 30-gene biomarker model to expression profiles 

of murine T cell compartments at 19 differentiation stages50, we noted that the predicted 

dasatinib sensitivity score rose sharply between DN2 and DN3 stages (Fig. 6A and Extended 

Data Fig. 8A), with a similar pattern observed for LCK and PTCRA activities (Extended 

Gocho et al. Page 7

Nat Cancer. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Fig. 8B). Conversely, we also compared the gene activity profile of each T-ALL case 

against these 19 stages during normal T cell development and quantified leukemia’s 

similarity to different T cell compartments by clustering analysis. Dasatinib-resistant T-

ALLs were most related to the early T-cell precursor (ETP) cells whereas dasatinib-sensitive 

cases were clustered closely to the DN3-DN4 T cells (Fig. 6A). We also explore NetBID 

analyses using human T cell expression profiles and again observed similar pattern of 

differentiation-related LCK and PTCRA activation (Extended Data Fig. 8C–E).

To test this experimentally, we isolated mouse Lineage−Sca+cKit+ cells (LSK cells) and 

transduced with either TCF7-SPI1 fusion gene or empty vector as the control. Transduced 

LSK cells were then allowed to differentiate into various T cell subsets in vitro in the 

presence of OP9-DL1 cells. While the control LSK cells differentiated extensively into 

mature CD4/8 single positive T cells, TCF7-SPI1-expressing LSKs were unable to 

differentiate beyond the DN3 stage, which showed significantly higher levels of 

phosphorylation of LCK (Fig. 6C–D, Extended Data Fig. 7B). Similarly, we also observed 

variable dasatinib sensitivity across populations within mouse DN thymocytes: dasatinib 

induced robust growth inhibition of the DN3 cells and had little effects on DN1 and DN2 

cells (Fig. 6E). Therefore, differentiation arrest at the DN3 stage represents a potential 

mechanism of LCK activation and dasatinib sensitivity, as exemplified in SPI1-rearranged T-

ALL.

Dynamic shift of BCL2 and BCL-XL dependency during T-cell differentiation and its 
relation to T-ALL response to dasatinib and venetoclax

Among the top 461 driver genes for dasatinib sensitivity in T-ALL were BCL2 and BCL-

XL. NetBID-inferred activity of BCL2 was significantly higher in dasatinib-resistant T-ALL 

than cases sensitive to dasatinib, whereas BCL-XL activity was positively associated with 

dasatinib response (P=8.0×10−7 and 1.3×10−7, respectively, Fig. 7A–B). Similar to LCK, the 

activity of BCL2 and BCL-XL also shift dynamically across T-cell developmental stages. 

BCL2 is most up-regulated in ETP cells and its activity subdues as T cells become more 

mature, with the lowest value observed in the DN3-DN4 populations before it is activated 

again at the immature single positive (ISP) stage (Fig. 7C). By contrast, BCL-XL activity 

oscillates in a pattern that is opposite to BCL2, rising gradually from ETP to DN3 then 

followed by downregulation until T cells reach the ISP stage (Fig. 7C). Based on these 

observations, we postulated that dasatinib-sensitive T-ALL would be resistant to BCL2 

antagonist venetoclax because of low BCL2 activity arising from developmental arrest at the 

DN3-DN4 stages. Testing venetoclax sensitivity ex vivo in the pharmacotyping T-ALL 

cohort (N=34), dasatinib-sensitive leukemia was indeed resistant to BCL2 inhibition-

induced apoptosis (Fig. 7D). Venetoclax sensitivity ex vivo was associated with high BCL2 

activity (Fig. 7E), whereas high BCL-XL activity was linked to resistance to venetoclax 

(Fig. 7F). Consistently, LCK activity was higher in venetoclax-resistant T-ALL than -

sensitive cases (Extended Data Fig. 9A). To comprehensively identify biological basis for T-

ALL sensitivity to venetoclax, we performed NetBID analyses and nominated 656 driver 

genes with P value < 0.001, with a highly significant enrichment of genes in the preTCR 

signaling pathway (Extended Data Fig. 9E). When we examined each of 7,441 genes 

included in the NetBID analysis for their effects on sensitivity to dasatinib vs. venetoclax, 
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there was a remarkable negative correlation (Fig. 7G), i.e., genes driving dasatinib sensitivity 

were almost always associated with venetoclax resistance. BCL2 and BCL-XL activity also 

varied significantly by T-ALL subtype (Fig. 7H–I).

Siimilarly, ETP cases in the TARGET T-ALL cohort showed the lowest activity score for 

LCK and BCL-XL. By contrast, ETPs had the highest BCL2 activity, consistent with 

previous report and their sensitivity to venetoclax51 (Extended Data Fig. 9B–D).

Single-cell RNA-sequencing identified leukemia heterogeneity in preTCR and BCL2 
signaling, T-cell maturation, and dasatinib response

To explore the biological basis of intra-tumor variability in dasatinib sensitivity, we 

performed single-cell RNA-sequencing (scRNA-seq) analysis of two dasatinib-sensitive T-

ALL cases with detectable subclones as determined by TCRβ rearrangements 

(Supplementary Table. S13). For each case, we profiled leukemia cells with vs without 

exposure to dasatinib in vitro, and we postulate that cell that survived dasatinib would be 

drug resistant whereas vehicle-treated cells should remain naïve and drug sensitive 

(Supplementary Table S14). In SJ65, unsupervised clustering analysis of the scRNA-seq 

data identified three clusters, namely C1, C2, and C3, each of which consisted of both 

dasatinib-treated and naïve cells (Fig. 8A and Extended Data Fig. 9F). By computationally 

inferring the dasatinib biomarker score in each cell using NetBID, we observed distinct 

dasatinib biomarker scores, with C1, C2, and C3 predicted as the most sensitive, 

intermediate, and resistant to dasatinib (Fig. 8B). In fact, C3 primarily consisted of naïve 

leukemia cells sensitive to dasatinib (35.6% of cells), and this population was largely 

depleted upon dasatinib treatment. By contrast, cells that survived dasatinib were 

predominant in the drug-resistant cluster C1, and C2 included both sensitive and resistant 

populations (Fig. 8A and Extended Data Fig. 9F). NetBID-inferred activity of LCK was 

highest in the dasatinib-sensitive clusters C3 and C2 and decreased in drug resistant cluster 

C1, and the opposite trend was observed for BCL2 (Fig. 8C–D). In fact, at a single cell level, 

there was a striking inverse correlation of LCK and BCL2 activity (R=−0.77, P<2.2×10−16, 

(Fig. 8E), while BCL-XL and LCK activities exhibited a positive correlation (R=0.49, 

P<2.2×10−16, Extended Data Fig. 9G). Superimposing gene signatures of T-cell maturation 

stages, we observed a significant enrichment of ETP genes (e.g., CD34, CD44) in C1 and 

DN3/4 signature genes (e.g., CD3D, CD3E, CD3G, ZAP70, CD28, LEF1) in C3 (Fig. 8F 

and Supplementary Table S15). We repeated these analyses of single cell RNA-seq in the 

second T-ALL case and observed highly consistent results (Extended Data Fig. 9F–M). 

Taken together, these single cell profiling experiments indicated that the same biological 

regulators of dasatinib sensitivity identified from bulk RNAseq were also operative at the 

single cell level: DN3/4 stage with high LCK activity linked to sensitivity and ETP stage 

with high BCL2 activity linked to resistance, respectively. More importantly, our results 

identified subpopulations within individual T-ALL samples with heterogeneous signaling 

circuitry and drug response potential, which may explain the dasatinib resistance at relapse.

Integrating ex vivo drug profiling, multi-modality molecular profiling (whole 

transcriptomics, genomics, phospho-proteomics, and scRNA-seq) and functional genomic 

screening (Extended Data Fig. 10), we have identified hyperactivation of the preTCR-LCK 
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signaling as a highly effective therapeutic target in T-ALL. Our results suggest that T-ALL 

can retain signaling program activated in the maturation state where leukemia transformation 

occurs, giving rise to unique therapeutic vulnerability.

Discussion

Despite differences in the biology of B-ALL vs T-ALL, their current treatment regimens 

consist of nearly identical cytotoxic drugs. Therefore, exploring lineage-specific 

leukemogenesis processes is an exciting strategy to identify molecular targets for 

individualized ALL therapy. The association of preTCR-LCK activation with dasatinib 

sensitivity in T-ALL described herein is a particularly interesting example of lineage-

dependent drug response. In early T-cell progenitors (double negative for CD4 and CD8), 

preTCRα serves as a molecular sensor for successful rearrangement of TCRβ. Only the 

successful assembly of the preTCR complex by the invariant preTCRα and productively-

rearranged TCRβ would trigger a robust proliferative signal to expand these immature T 

cells, transmitted through LCK and a series of phosphorylation events. The proliferative 

signal set in motion by preTCR complex supports a pro-oncogenic effect in T-ALL 

leukemogenesis, as evidenced in different T-ALL mouse models52,53. The over-expression 

of PTCRA and concomitant LCK activation therefore could be a remnant of signaling events 

during leukemogenesis, but the strong anti-leukemic effects of preTCR signaling inhibition 

(by dasatinib) argue that it is also essential for leukemia maintenance. preTCR activation 

could also be the result of T-cell differentiation blockade when leukemia transformation 

occurs. For example, SPI1-rearranged T-ALL exhibits a highly characteristic 

immunophenotype indicative of a developmental arrest at the DN3 stage which is precisely 

when preTCRα expression is turned on and LCK is activated54, likely explaining its 

dasatinib sensitivity.

Although dasatinib cytotoxicity is observed in both B- and T-ALL, the mechanisms of action 

are clearly lineage-specific, invoking inhibition of ABL and LCK (IC50 of 9 nM vs 17 nM, 

respectively41). Using a similar ex vivo drug sensitivity profiling approach, Bourquin et al. 

also described that ~30% T-ALL cases are sensitive to dasatinib and attributed the anti-

leukemic effects to SRC inhibition22. By comparison, our systems pharmacology analyses 

clearly identified preTCR-LCK activation as the top distinguishing feature between 

dasatinib-sensitive vs -resistant T-ALL, corroborated by unbiased phospho-proteomic 

profiling as well as phospho-flow of LCK and its downstream targets in the preTCR 

pathway. Finally, our genome-scale CRISPR-Cas9 screen showed a consistent LCK 

dependency unique to T-ALL, whereas no other members of the SRC family affected T-ALL 

growth, providing further evidence that LCK inhibition is the driver for dasatinib sensitivity 

in this cancer. Beyond the preTCR pathway, our systems pharmacology analyses also 

identified a number of additional driver genes of dasatinib response in T-ALL, among which 

are BCL2 and BCL-XL. BCL2 and BCL-XL sequester pro-apoptotic molecules BAX or 

BAK and thus prevent commitment to cell death55. It has been known that normal T cells 

shift back and forth between BCL2 and BCL-XL as the primary antiapoptotic protein 

depending upon the differentiation stage56. In fact, this differential dependency is also 

retained in T-ALL, with ETP leukemia selectively exhibiting strong therapeutic response to 

BCL2 antagonist venetoclax51. This is in line with our observation that ETPs are almost 
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always dasatinib-resistant but sensitive to venetoclax. But importantly, the decrease of BCL2 

with concomitant increase of BCL-XL overlaps with LCK activation around the DN3-DN4 

stage, and the rise and fall of these drug targets creates a differentiation-dependent pattern of 

therapeutic vulnerability in T-ALL. Our single cell analysis further revealed substantial 

intra-leukemia heterogeneity in LCK and BCL2 activity and maturation stage. The 

population with high LCK activity resembled DN3-DN4 T cell whereas LCKlow population 

showed high BCL2 activity and transcriptional program similar to immature T cells. 

Therefore, the combination of dasatinib with venetoclax (or navitoclax) may be needed to 

maximally induce remission.

Our NetBID approach is distinct from traditional differential gene expression analysis in that 

we do not rely on comparing expression on an individual gene basis, instead the expression 

of multiple genes is used collectively in a network fashion to computationally predict the 

activity of the driver or “hub gene”.37 Comparing results from our gene activity-based 

analyses vs those from a differential gene expression approach, LCK and Pre-TCR pathway 

were not prominently identified by the latter (Extended Data Fig. 6G–H), suggesting that 

expression level alone is inadequate to reflect variation in gene activity.

It is noteworthy that NOTCH1 mutation was significantly over-represented in dasatinib 

sensitive T-ALL compared to those resistant to this drug in our cohort (Fig. 5A). In normal T 

cell development, NOTCH signaling is highest during β-selection and coincides with 

preTCR signaling49. Therefore, it is plausible that NOTCH1 potentiates the proliferative 

signal arising from preTCR-LCK activation in dasatinib-sensitive T-ALL and as a result 

renders leukemia cells particularly reliant on LCK signaling for survival.

Dasatinib sensitivity also seemed to be more common in pediatric T-ALL cases compared to 

adults, although not significant with our small sample size. To further explore this, we 

analyzed an independent microarray-based T-ALL gene expression dataset28, consisting of 

37 adult and 191 pediatric patient samples. Applying NetBID analysis, we observed that 

dasatinib biomarker score in pediatric cases is significantly higher than in adults in this 

cohort (Extended Data Fig. 6I–J, P=0.0012). Interestingly, pediatric cases have a higher 

prevalence of subtypes predicted to be dasatinib-sensitive (e.g., TAL1 and TAL2, Figure 

4D), whereas dasatinib-resistant subtypes (e.g., HOXA and LMO2/LY1) are enriched in 

adults (Extended Data Fig. 6I–J). In a multivariate regression analysis, the association of age 

with dasatinib biomarker score was no longer significant after adjusting for subtype (P=0.3). 

Therefore, the differential distribution of T-ALL subtype between children and adults likely 

contributes to the age pattern in leukemia sensitivity to dasatinib, although this needs to be 

further validated with a larger sample size and mechanistically.

A dasatinib-based therapy in T-ALL is clinically attractive because this drug has already 

been approved for pediatric and adult ALL (with BCR-ABL1 fusion) with a tolerable 

toxicity profile3. Currently for children with Ph+ ALL, dasatinib is given orally at 60–

80mg/m2/dose b.i.d3,57, with median Cmax values between ~100 and 200 ng/ml58–60. These 

values translate to a plasma drug concentration of 200–400 nM, which is significantly higher 

than mean LC50 in dasatinib-sensitive T-ALL (6.04 nM) based on ex vivo drug sensitivity 

profiling. Therefore, it is reasonable to expect systemic drug exposure achievable with 
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current dasatinib dosing and dosing schedule is sufficient for LCK inhibition in T-ALL in 
vivo. Because ponatinib is also known to inhibit LCK (IC50=55 nM)41 and showed cytotoxic 

effects ex vivo in a subset of our pharmacotyping T-ALL cases (Fig. 1D), it would be of 

interest to evaluate this agent in future studies and compare it against dasatinib.

In conclusion, our systems pharmacology study identified biological factors related to inter-

patient variability in response to targeted therapeutics in T-ALL, namely dasatinib and 

venetoclax. The development of biomarker-guided clinical trial to test these agents (or 

combination) is needed to translate this laboratory discovery into improved clinical outcome 

of T-ALL in the near future.

Methods

Patients and samples

The ALL cases included for pharmacotyping consisted of 129 pediatric cases from St. Jude 

Children’s Research Hospital (NCT03117751) and the Children’s Oncology Group; and 243 

adults from MD Anderson Cancer Center, University of Chicago, ECOG E1910 clinical trial 

(NCT02003222), and the Alliance A041501 trial (NCT03150693). The main T-ALL cohorts 

consist of the pharmacotyping discovery set of 45 cases and a validation set of 13 cases, all 

of which were subjected to RNA-seq and used for the systems pharmacology analysis (i.e., 

NetBID). Details of molecular profiling assays and functional experiments performed for 

each ALL sample are provided in Supplemental Tables S2 and S3.

Leukemia blasts were obtained from either bone marrow or peripheral blood after Ficoll 

gradient centrifugation. Samples were subjected to further enrichment by magnetic-activated 

cell sorting if blast percent was below 85% (CD19 for B-ALL and CD7 for T-ALL, 

respectively). Leukemia cells were subjected to drug sensitivity profiling ex vivo for a panel 

of anti-leukemic drugs (Extended Data Fig. 1E). Bone marrow or blood was collected during 

remission and used as germline samples.

This study was approved by the respective institutional review boards at St. Jude Chhildren’s 

Research Hospital, MD Anderson Cancer Center, University of Chicago, Children’s 

Oncology Group, the ECOG-ACRIN Cancer Research Group, the Alliance for Clinical 

Trials in Oncology, and informed consent was obtained from parents, guardians, and/or 

patients, as appropriate.

Statistics and reproducibility

Sample size was not statistically predetermined for systems pharmacology analyses and 

maximal number of cases were included based on sample and data availability, without other 

filtering. Mice were randomly assigned to experimental groups to avoid bias and only female 

mice were used to ensure engraftment efficiency. All statistical testes were two-sided and 

were chosen as appropriate to data distribution; the threshold for statistical significance was 

defined as P<0.05 or lower with consideration of multiple testing. In the treatment outcome 

analysis, event free survival was considered as a time-to-event variable, and its relation to 

the t-SNE-based clusters was assessed by using the Cox proportional hazard regression 

model adjusting for T-ALL molecular subtypes and genetic ancestry. Events included 
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relapse, second cancers, death in remission, etc. We did not exclude any data and replicate 

experiments were stated in the legends of each figure. Details of preproducibility are 

included in the Reporting Summary.

Genomic profiling

For total RNA-seq, library was constructed from leukemia RNA using Illumina TrueSeq 

stranded mRNA library prep kit and sequenced using the HiSeq or NovaSeq platforms (2 × 

101- bp pair-end reads). On average, we achieved at least 20x coverage for more than 30% 

of the transcriptome. RNA-seq analyses were performed using our previously established 

procedures61. Gene expression was quantified as Fragments Per Kilobase of transcript per 

Million mapped reads (FPKM) using RSEM v1.2.28PP with the hg GRCh38 and annotation 

file (Gencode v30). CICERO (v0.30.) was used to detect fusions62 and the reported fusion 

contigs were remapped by BLAT to check reliability of mapping quality, breakpoints were 

manually reviewed from the aligned reads.

For whole exome seq, libraries were prepared using the Nextera rapid capture expanded 

exome kit and subjected to pair-end sequencing (101 bp read length) on the HiSeq or 

NovaSeq platforms. On average, we achieved 20x coverage for a median of 71% exome. For 

whole genome seq, libraries were constructed using Kapa Hyperprep kit (Roche) and 

sequenced for 2 × 151 bp pair-end reads. Whole exome seq and whole genome seq analyses 

were performed following procedures established previously61,63. Reads were aligned to the 

hg GRCh37 by BWA (version 0.7.12). Picard (version 1.129) was used for marking PCR 

duplication, the reads were realigned around potential indel regions by GATK 

IndelRealigner module (version 3.5). The MuTect2 module (version 4.1.0.00) from GATK 

was used to identify single nucleotide variants and indels, with annotation using ANNOVAR 

(version 20191024). Tumor copy-number variations and structural variations were detected 

using CONSERTING (version 1.0)64 and CREST (version 1.0)65.

For cases with leukemia RNA-seq data only, we used the GATK pipeline to infer single 

nucleotide variants and indels from RNA-Seq with the HaplotypeCaller module (version 

4.0.10.0). We only included variants called in genes in which mutations were detected in 

other cases by whole genome or whole exome seq.

Whenever appropriate, we performed SNP microarray profiling to determine copy number 

status, using either Illumina Infinium Omni2.5 Exome-8 and/or Affymetrix Genome-Wide 

Human SNP Array 6.0. Our analytical pipeline for copy number was described previously66.

The previously published RNA-seq data from the TARGET T-ALL cohort8 was used for 

network building and biomarker analyses as described below. T-ALL subtype was defined 

using expression profile-based clustering analysis, following procedures reported 

previously8.

Ex vivo leukemia drug sensitivity assay

Drug response of primary human ALL cells was evaluated using a co-culture system and 

flow cytometry assays. hTERT-immortalized mesenchymal stem cells67 (provided by Dr. 

Dario Campana from National University of Singapore) were first seeded in a 96-well plate 
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format at a density of 10,000 cells per well in 100ul of complete medium (RPMI-1640, L-

glutamine, 10% fetal bovine serum and 1μM Hydrocortisone). After 24 hours, leukemia 

cells were added at 160,000 cells per well to the stromal cell layer in 80 μl AIM-V medium 

along with 20 μl of drug solution prepared in the same medium. Duplicates were included 

for each of the six drug concentrations (10000, 1000, 100, 10, 1, 0.1 nM for dasatinib/

ponatinib/nilotinib; 2500, 250, 25, 2.5, 0.25, 0.025 nM for imatinib; 100, 10, 1, 0.1, 0.01, 

0.001 nM for venetoclax). After 96 h incubation at 37°C with 5% CORR2RR, cells were 

harvested and stained with CD19 or CD7 to identify leukemia blasts (for B- and T-ALL, 

respectively). The total number of live leukemia cells were evaluated by using flow 

cytometry after Annexin V and DAPI staining. Drug-induced death was estimated by 

comparing to leukemia cells treated with the vehicle alone. The drug concentration that 

killed 50% of the leukemia cells (LCRR50RR value) was determined with a dose-response 

model. Quality control was performed to remove cases with low viability (less than 1000 

viable blast cells in each well in the absence of drugs on day 4). For cases with which even 

the lowest dasatinib concentration kills more than 50% of leukemia cells, LCRR50RR was 

assigned as 0.05 nM. Conversely, for cases with >50% viability even at the highest drug 

concentration, LCRR50RR was assigned as 20000 nM.

Construction of T-ALL interactome via SJARACNe

To reverse engineer a T-ALL specific interactome (TALLi), we applied SJARACNe (version 

0.2.0)38 to the TARGET T-ALL RNA-seq dataset8 with expression profile of 27,218 unique 

genes from 261 patients, after removing 5,820 genes with low or invariable expression and 

three outlier cases. Based on Gene Ontology classification, we compiled a list of 

transcription factor genes and signaling molecule genes (N=2,002 and 9,626, respectively). 

Transcription factor network and signaling molecule network were generated separately 

using SJARACNe, with drivers (hubs) linked to their targets through interactions (edges) 

based on gene-gene relationship derived from their expression pattern. The transcription 

factor network contained 27,063 nodes and 484,160 edges; signaling network included 

26,927 nodes and 584,068 edges. After combining these two networks, the final TALLi 

consisted of 35,102 nodes and 1,068,228 edges, among which, there were 7,924 unique hub 

genes (1,653 transcriptional factors and 6,271 signaling molecules).

Genome-scale CRISPR-Cas9 screen and analysis

We first engineered T-ALL cell lines HSB-2, PF-382, and SUP-T1 to stably express Cas9, 

following procedures described previously68. Briefly, 4 × 106 T-ALL cells were virally 

transduced with 4000 ng pCMV-VSV-G (Addgene #8454), 2000 ng pCMVdeltaR8.91, and 

8000 ng pLX311-Cas9 (Addgene #118018) or pXPR_011_EGFP (Addgene #59702). Cells 

were selected with 8 ug/ml blasticidin (for pLX311-Cas9 expressing cells) (Sigma-Aldrich, 

St. Louis, MO, USA, # SBR00022) or 1 ug/ml puromycin (Invitrogen, San Diego, CA, USA 

#ANT-PR-1) (for pXPR_011 expressing cells). Optimal infection conditions were 

determined for each T-ALL cell lines in order to retain a Cas9 activity greater than 50% (i.e., 

the fraction of EGFP positive and EGFP negative as measured by flow cytometry).

Cas9-expressing T-ALL cell lines HSB-2, PF-382, and SUP-T1 were then used for the 

genome-scale CRISPR-Cas9 screen, as part of the Cancer Dependency Map project at the 
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Broad Institute69. This screen was conducted as previously described68 and data analyses 

(e.g., dependency score) were performed following procedures describe by Dempster et al.
69. Briefly, cancer cell lines with constitutive expression of Cas9 were infected in replicate 

(n=3) at low multiplicity of infection (MOI<1) with the Avana sgRNA library containing 

>70,000 unique sgRNAs with an average of 4 guides per gene and approximately 1,000 

nontargeting control guides. Cells were selected in puromycin and blasticidin for 7 days and 

then passaged for 21 days after infection. Genomic DNA was purified and guide RNAs were 

PCR amplified and sequenced with standard Illumina protocols. The resulting read counts 

for each sgRNA per cell line replicate were processed as described previously69 to generate 

gene effect scores for each gene in each cancer cell line. To determine the genetic 

dependencies that were enriched in T-ALL cell lines, we utilized linear-model analyses from 

the limma R package (version 3.44.3) to perform a two-tailed t-test for the difference in 

distribution of gene effect (dependency) scores in T-ALL cell lines compared to other cell 

lines screened. Statistical significance was calculated as a q-value derived from the p-value 

corrected for multiple hypothesis testing using the Benjamini & Hochberg method70.

NetBID analysis to identify drivers of dasatinib sensitivity in T-ALL patients

A total of 45 T-ALL were included in the NetBID analysis(version 0.1.2) to identify drivers 

of dasatinib sensitivity. Dasatinib LCRR50RR in ALL largely followed a bi-modal 

distribution, and we defined sensitive and resistant as LCRR50RR less or greater than 80nM, 

respectively, with dasatinib LCRR50RR of BCR-ABL1 B-ALL as the reference (Extended 

Data Fig. 1C). Therefore, subsequent analysis was performed comparing 15 sensitive vs 30 

resistant T-ALL cases.

Expression profile was extracted from RNA-seq data for 18,294 genes and used for NetBID 

analysis. Then cal.Activity function (method= ‘weightedmean’) in NetBID was employed to 

infer the activities of driver genes for each patient from their gene expression profiles and 

the TALLi. The weighted mean activity of a hub (driver) gene i in sample s was defined by 

the following equation:

HUBsi =
∑j = 1

n SIGNij * MIij * EXPsj
n .

The gene expression matrix was Z-normalized in each sample and EXPsj is the expression 

value of gene j in sample s. MIij is the mutual information between driver gene i and its 

target gene j and SIGNij is the sign of spearman correlation between gene i and its target 

gene j. The total number of targets for driver i is denoted by n.

To identify drivers of dasatinib sensitivity in T-ALL, differential activity (dasatinib sensitive 

cases vs. resistant cases) was calculated by NetBID function getDE.BID.2G. We also 

performed pathway analysis to identify the enrichment of drivers in specific biological 

processes by querying the KEGG pathway database71 and evaluated the statistical 

significance of the enrichment using the Fisher’s exact test. In addition, we curated 

DrugBank39, DGIdb40, and chemical proteomics-based TKI target profiling41 to compile a 
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list of putative dasatinib targets whose enrichment in the 461 drivers was again evaluated by 

using the Fisher’s exact test.

We also performed traditional differential gene expression analysis using the RNA-seq 

dataset described above. The expression of each gene was compared between dasatinib-

sensitive vs. -resistant T-ALL in the discovery cohort, using the getDE.limma.2G function in 

the NetBID package.

NetBID analysis to identify drivers of venetoclax sensitivity in T-ALL patients

We profiled venetoclax sensitivity ex vivo for 34 of 45 T-ALL patient samples within the 

dasatinib pharmacotyping cohort. Applying NetBID, we evaluated the association of gene 

activity with venetoclax LCRR50RR using the non-parametric Spearman correlation. 

Venetoclax LCR50RR did not follow a bimodal distribution and thus were treated as a 

continuous variable in this analysis.

Dasatinib biomarker panel and sensitivity score

We derived a 30-gene biomarker panel by filtering the 461 NetBID-predicted drivers against 

the known dasatinib target genes and genes in the preTCR pathway. To estimate biomarker-

based dasatinib sensitivity score for a given patient, we first standardized the RNA-seq 

profile (logRR2RR-transformed FPKM) by z-transformation to make it comparable across 

samples, and then calculated the activities of 30 drivers individually using our T-ALLi and 

the cal.Activity function (method= ‘weightedmean’) in NetBID. For a given T-ALL case, we 

took a weighted (+1 for positive drivers and −1 for negative drivers) mean of activities of all 

30 drivers as the dasatinib sensitivity score.

Ss =
∑i = 1

30 Zi * Dsi
30 .

Ss is the summarized dasatinib sensitivity score of sample s. Zi is the z score of driver i 
between sensitive and resistant samples and Dsi is the driver i activity in sample s.

Dasatinib sensitivity score was estimated for 261 cases in the TARGET T-ALL dataset8 and 

45 cases samples in the pharmacotyping T-ALL cohort. We also applied this biomarker 

model to the gene expression dataset of 19 mouse T cell populations50, to infer dasatinib 

sensitivity across development stages. Finally, we estimated biomarker score in microarray-

based T-ALL gene expression data72, after removing control probes, probes targeting 

multiple genes, and then used IQR.filter function in NetBID (thre=0.2) to select variable 

genes for inferring gene activity and biomarker score as described above.

T-ALL differentiation staging

Gene activities were inferred using NetBID from the expression dataset of mouse T cell 

populations50, as described above, and then mapped to human genes using BioMart73. 

Genes with species-specific activities were excluded, and then T-ALL and normal T cell 

gene activity profiles were pooled with the final dataset of 465 genes with coefficient of 
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variation >0.5. Applying t-SNE to this dataset, we performed clustering analysis of T-ALL 

and normal T cells. Cluster groups were determined using the k-means method. We also 

performed similar analyses using gene expression profiles of human T-cell populations74.

Phospho-proteomics and data analyses

Human T-ALL cells from 3 dasatinib-sensitive and 2 resistant cases were selected for 

proteomic studies. A total of 20 million cells were incubated with 10 nM dasatinib or 

vehicle in 10cm2 petri-dishes and incubated for one hours. Cells were then harvested and 

washed rapidly using cold PBS, and cell pellets were placed in liquid nitrogen for 30 min 

and stored at −80°C. Each T-ALL case was tested as a singlet. Proteomic assays were 

performed following previously published procedures75. Briefly, cell pellets were lysed and 

digested into peptides, which were then labeled with tandem-mass-tag reagents and enriched 

for phosphopeptide using TiORR2RR. Reverse-phase LC and tandem mass spectrometry 

were performed to quantify phospho-peptides. After curation using the JUMP software suite 

and applying a false discovery rate cutoff of 1%, our final dataset consisted of 27,757 

phosphopeptides. For phosphosites mapped to multiple peptide fragments, we selected the 

phosphopeptide with the most significant difference in dasatinib-treated vs. untreated T-ALL 

samples, which resulted in 21,450 unique phosphosites for subsequent analyses.

We infer kinase activity based on the substrate phosphorylation levels, using the 

PhosphoSitePlus database76 to define 10,594 kinase-substrate pairs (359 human kinases). Of 

these, we detected phosphorylation events in our T-ALL phospho-proteome dataset, related 

to 1,223 pairs linked to 172 kinases. We estimated the activity of each kinase by using the 

following equation:

Ki =
∑j = 1

n log2 pij
n

The intensity of each phosphosite was logRR2RR-transformed and Z-normalized in each 

sample. Pij is the abundance of phosphosite j which is phosphorylated by the Kinase i. The 

kinase i activity can be defined by its ability to phosphorylate substrate sites, which was 

estimated by the mean intensity of the kinase substrate phosphosites.

We used NetBID to compare inferred kinase activity between dasatinib-treated and baseline 

samples in the dasatinib- sensitive or -resistant group separately, using linear modeling.

Phospho-flow of LCK signaling molecules

Human leukemia cells were collected and incubated overnight, before exposed to dasatinib 

for one hour. Cells were then harvested and resuspended in cold PBS. Pre-warmed (37°C) 

Lyse/Fix buffer (BD Phosflow™, #558049) was added, and cells were incubated at 37°C for 

10 minutes, and fixed cells were premetallized with pre-chilled Perm Buffer III (BD 

Phosflow™, #558050) for 30 minutes on ice.

Fixed and permeabilized cells were stained with CD3 (BD Pharmingen™, #558117) and 

phospho-antibodies targeting SRC-Y418/LCK-Y394 (BD Phosflow™, #560095/560096), 
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CD247-Y142 (BD Phosflow™, #558448), and ZAP70-Y319 (BD Phosflow™, #557881) (all 

antibodies were diluted at 1:50) and then run on flow-cytometer (MACSQuant® × Flow 

Cytometer, Miltenyi Biotec). All phospho-flow data were analyzed by FlowJo (version 

10.5.3)™.

Patient derived xenograft (PDX) and in vivo evaluation of dasatinib therapy

PDXs were developed for 11 T-ALL cases in this cohort, using the NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ (NSG) mice. Cases were selected solely based on whether sufficient material 

was available for xenografting. All animal studies were approved by the Institutional Animal 

Care and Use Committee of St. Jude Children’s Research Hospital. For each case, primary 

human T-ALL cells were injected into female NSG mice between 8–12 weeks of age 

through tail vein (2 million cells/mouse). All NSG mice were housed in sterilized condition 

at 20–23°C and 40–60% humidity, a 12 light/12 dark cycle was applied. Health status of all 

injected mice were monitored daily. Starting from two weeks after injection, peripheral 

blood was sampled to monitor the level of human leukemia by flow cytometry (cells were 

stained with TER119 (BD Pharmingen, #560512), mCD45 (BD Pharmingen, #557659), 

CD45 (BD Pharmingen, #555482), CD7 (BD Pharmingen, #555361), all diluted at 1:100 

ratio; humanCD45 and humanCD7 double positive percentage was determined using BD 

FACS Aria IIIu machine & BD FACS LSR II machine (BD FACS Diva Software V8.0.1)) 

every other week. Mice were euthanized when leukemia reached 80% in blood or they 

became moribund, and human leukemia cells were harvested from spleen and bone marrow 

and enriched using immunomagnetic isolation kit (Stemcell, #19849).

Dasatinib efficacy was evaluated in vivo in 4 T-ALL PDX models. Dasatinib (LC 

Laboratories, #D-3307) was dissolved in citric acid (Jena Bioscience, #CSS-508) and was 

administrated at 10 mg/kg twice daily through oral gavage. Leukemia burden was monitored 

in blood with the same procedure and endpoints as above.

Rescue experiment by overexpression of T316M mutant LCK

LCK overexpression construct was cloned from Cl20c-IRES-GFP vector with wildtype 

human LCK cDNA insertion (cl20c-LCK-IRES-GFP). Primers for T316M mutagenesis was 

designed by QuikChange webtool (https://www.chem.agilent.com/store/

primerDesignProgram.jsp): forward primer 

5’ggagcccatctacatcatcatggaatacatggagaatgggag3’, and reverse primer 

5’ctcccattctccatgtattccatgatgatgtagatgggctcc3. Mutagenesis was performed using Agilent 

QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent, #210518). Lenti-virus was 

packaged and stored in −80°C prior to use.

To measure dasatinib/ponatinib/imatinib sensitivity of KOPT-K1 expressing mutant or 

wildtype LCK (or vector control), a flow-based assay was performed as described in the ex 
vivo leukemia drug sensitivity assay section. After intracellular staining with LCK-Y394-

Alexa647 (BD Phosflow™, #560096, 1:50 dilution), phosphorylation of KOPT-K1 cells 

treated with dasatinib for one hour was examined by phospho-flow, as described above.
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Functional studies of SPI1 fusion in T-ALL

To overexpress TCF7-SPI1 fusion gene, we utilized a MSCV-IRES-mCherry vector 

(originally from MSCV-IRES-GFP, Addgene, #20672) and inserted cDNA for the fusion 

gene. To isolate hematopoietic progenitor/stem cells, mouse (C57BL/6) bone marrow cells 

were harvested and resuspended in MACS buffer (2mM EDTA/0.5% BSA/PBS). Cells were 

then stained with CD117 MicroBeads (Miltenyi Biotec, #130-091-224) and positively sorted 

with magnetic columns (LS column, Miltenyi Biotec, #130–042-401) and separator 

(QuadroMACS™ Separator, Miltenyi Biotec, #130-091-051) to enrich CD117 positive cells. 

After overnight incubation, CD117 enriched cells were stained with antibodies against 

CD117 (BD Pharmingen, #560557) and Sca-1 (BD Pharmingen, #560654) and sorted for 

double positive population (LSK cells). LSK cells were loaded onto virus-coated plate and 

centrifuged at 423 g for 10 minutes at room temperature, and cells were sorted for mCherry 

positive cells 2 days later.

To evaluate LSK cell differentiation in vitro, we adopted the OP9-DL1 co-culture assay, 

following procedures established previously77.

To determine dasatinib sensitivity in each DN stage, mouse thymocytes were isolated from 

C57BL/6 thymus and DN cells were enriched by removing CD4/8 positive cells. DN cells 

were then allowed to grow in vitro for 2 days on supportive OP9-DL1 cells with and/or 

without dasatinib. Cells were stained with CD4-PE-Cy7 (BD Pharmingen, #552775), CD8-

APC (BD Pharmingen, #561093), TER119-BV421 (BD Horizon™, #563998), CD4-PacBlue 

(BD Pharmingen, #558107); CD8-BV421 (BD Pharmingen, #562428), CD45-BV711 (BD 

Horizon™, #563685), CD44-APC (BD Pharmingen™, #559250), and/or CD25-PE-Cy7 (BD 

Pharmingen™, #552880); all antibodies were diluted at 1:100 ratio; and viable cell counts in 

all DN populations were measured by flow-cytometry and compared between dasatinib 

treated and untreated groups.

To validate the association of SPI1 fusion with dasatinib sensitivity, we identified two 

additional human T-ALL cases with TCF7-SPI1 fusion at St. Jude and the Institute of 

Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences.

Single cell RNA-seq

scRNA-seq was performed using PDX cells from two T-ALL patient samples (SJ65 and 

SJ53). Following RBC lysis (Qiagen, #158904), human leukemia cells were enriched by 

EasySep™ Mouse/Human Chimera Isolation Kit (StemCell #19849) and then resuspended in 

culture media (RPMI1640 Gibco #11875–093 with 20% FBS GE life sciences 

#SH30071.03). 10nM dasatinib or vehicle was added to culture, followed by incubation at 

37C with 5% CORR2RR for four days. Cells were then harvested and subjected to lysis, 

library construction, and sequencing.

Alignment, barcode assignment and unique molecular identifier counting—
The Cell Ranger 3.1.0 Single-Cell software suite (10X Genomics) was implemented to 

process the raw sequencing data from the Illumina HiSeq run. This pipeline performed 

demultiplexing, alignment (hg GRCh38) and barcode processing to generate gene–cell 

matrices used for downstream analysis. Specifically, data from PDX samples with vehicle or 
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dasatinib treatment were combined into one dataset for consistent filtering. SJ65 and SJ53 

corresponding to two T-ALL primary samples were analyzed separately. Cells with low or 

high UMI counts were filtered, as well as those with high mitochondria gene reads 

(>12.6%). A small fraction of outlier cells was further removed because of their low 

transcriptome diversity. For SJ65, a total of 13,992 cells were captured, with an average of 

5,455 mRNA molecules. For SJ53, a total of 12,292 cells were captured, with an average of 

7,556 mRNA molecules. We normalized the expression level of each gene to 100,000 UMIs 

per cell and log-transformed them by adding 1 to the expression matrix.

Clustering analysis and data visualization—For the clustering analysis, we modified 

the Single-Cell Consensus Clustering (SC3) algorithm (version 3.12)78 as the following. We 

first used mutual information as a distance metric to reconstruct cell-cell similarity matrix 

and then performed multidimensional scaling analysis (MDS). To obtain robust clustering 

results, we perform consensus k-means clustering by using the first 16–19 dimensions. By 

testing various k values, we converged into 3 clusters for both cases. For visualization of 

clustering results, we used t-distributed stochastic neighbor embedding (t-SNE) with the first 

19 MDS dimensions as the input. Gene activity and dasatinib biomarker score were 

calculated using NetBID as describe above. To obtain ETP and DN3/4 thymocytes 

signatures, gene expression (preT.ETP.Th and preT.DN3–4.Th from GEO datasets: 

GSE15907) was compared between each other (LogRR2RRFC > 0.5 or LogRR2RRFC < 

−0.5) using limma R package v3.44.3. The expression of each gene in the signature was 

averaged across cells within each cluster and then scaled and color-coded based on z-score.

Cell line and chemicals

hTERT MSCs (Mesenchymal Stem Cell) were maintained in RPMI1640 (Gibco, 

#11875093) with 2mM L-Glutamine (Gibco, # 25030081), 10% FBS (GE life sciences, 

#SH30071.03) and 1μM hydrocortisone (Sigma-Aldrich, #H0888); T-ALL cell lines Jurkat, 

CEM, RPMI-8402, MOLT-4, KOPT-K1 and DND-41 were maintained in RPMI1640 with 

10% FBS; other T-ALL cell lines HSB-2 and ALL-SIL were maintained in RPMI1640 with 

20% FBS. All cells were incubated at 37°C with 5% CO2.

Drugs were purchased from Selleckchem: dasatinib (#S1021), ponatinib (#S1490), nilotinib 

(#S1033), WH 4–023 (#S7565), nintedanib (#S1010) and venetoclax (#S8048).

Cell line drug sensitivity profiling using the MTT assay

Drug sensitivity was determined for ALL cell lines using MTT assay, following procedures 

described previously79

Data Availability Statement

Details of data access are provided on the permalink page on St. Jude Cloud (https://

pecan.stjude.cloud/permalink/PGx-TALL). Briefly, genomic data are available at St. Jude 

Cloud (SJC-PB-1022), NCBI GEO (GSE158457), and EGA (EGAS00001004700). 

Genome-scale CRISPR-Cas9 screen result can be obtained at the DepMap Portal (https://

depmap.org/portal/achilles) with raw data available at FigShare (https://figshare.com/

articles/dataset/DepMap_19Q4_Public/11384241/3).
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TARGET T-ALL dataset is available in dbGAP (phs000218 and phs000464), and the 

microarray-based T-ALL expression profile is at NCBI GEO (GSE32215). Drug Bank 

database is at go.drugbank.com, KEGG pathway database is at genome.jp/kegg/

pathway.html. The data that support the findings of this study are available from the 

corresponding authors upon request.

Code Availability Statement

Codes for NetBID analysis and dasatinib biomarker score calculation are available at 

GitHub (https://github.com/jyyulab/dasatinib-TALL).

Extended Data

Extended Data Fig. 1. ALL sensitivity to dasatinib and cytotoxic drugs.
A. Dasatinib LC50 distribution of all 352 ALL patient samples (including 307 B-ALL and 45 

T-ALL samples). B. Of 86 pediatric B-ALL samples, 17.4% were sensitive to dasatinib, 

whereas 29.4% of 221 adult B-ALL samples were dasatinib-sensitive. C. Dasatinib LC50 

reliably identified BCR-ABL1 B-ALL based on the receiving operating characteristic 

analysis. Dasatinib LC50 from 307 B-ALL (including 71 BCR-ABL B-ALL) was analyzed, 

and a LC50 cutoff at 80nM achieved the optimal balance in sensitivity and specificity that 

distinguishes BCR-ABL samples from other B-ALLs. D. Examples of dose-response curve 

of dasatinib-sensitive or -resistant B-ALL and T-ALL. Sensitive and resistant cases are 

shown in red and blue, respectively. The sensitive B-ALL sample is BCR-ABL1-positive. 

For each patient at each drug concentration, cells were tested in duplicates. E. Of drugs 

tested for at least 30 cases in the T-ALL cohorts, LC50 of prednisolone and asparaginase 
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exhibited a bimodal distribution whereas 6-MP and daunorubicin did not. N=43, 38, 40, and 

41 patients for prednisone, daunorubicin, 6-MP, and L-Asparaginase, respectively.

Extended Data Fig. 2. Comparison of T-ALL sensitivity to four ABL inhibitors.
A-B. PDX-derived leukemia cells were tested for sensitivity to each of the 4 inhibitors. A 

total of 11 cases were selected to represent dasatinib-sensitive vs resistant T-ALL and were 

xenografted in NSG mice to develop PDX. Mice were sacrificed once leukemia burden 

reached predefined endpoint, and human leukemia cells were harvested and subjected to 

drug sensitivity profiling ex vivo. Cells were incubated with increasing concentrations of 

each ABL inhibitor for 96 hours and cell viability was determined by flow cytometry as 

described in Methods. C. Dose-dependent cell death was determined for four ABL inhibitors 

in 8 T-ALL cell lines. HSB-2 (harbors TCR-LCK fusion), KOPT-K1 (harbors TCR-LMO2 
fusion) and ALL-SIL (harbors ABL class fusion) were sensitive (LC50s are less than 0.05 

nM) to both dasatinib and ponatinib but resistant to imatinib and nilotinib. For each 

leukemia case at each drug concentration, cells were tested in duplicates.
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Extended Data Fig. 3. NetBID identified LCK and related genes for association with dasatinib 
sensitivity in T-ALL.
A. Activity of each gene was inferred using NetBID as described in Method and then 

compared between dasatinib-sensitive vs -resistant T-ALL with P value listed in the far right 

column. Top panel describes the expression ranking of all genes from the most highly 

expressed in dasatinib-sensitive cases on the left to the most highly expressed in resistant T-

ALL on the right. Each gene in this pathway regulates a multitude of targets and their 

expression is indicated in two rows with positive-regulated target genes on the top and 

negatively regulated target genes at the bottom. In the case of LCK, it has 188 positive and 

147 negative targets, each represented by a vertical line. Red lines indicate high expression 

in dasatinib sensitive T-ALL and blue lines indicate high expression in dasatinib-resistant 

cases. P-value was estimated using two-tailed t test. B. NetBID results for dasatinib target 

Gocho et al. Page 23

Nat Cancer. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes for association with dasatinib sensitivity in T-ALL. Dasatinib target gene list is 

derived from three databases Drug Bank, DGIdb, and chemical proteomic-based TKI target 

profiling, as shown in the Venn diagram in the left panel. Thirteen targets are commonly 

identified across three sources. NetBID analysis identified four of these 13 targets with a 

significantly higher activity (LCK, SRC, FYN and FGR) in dasatinib-sensitive samples 

compared to resistant cases, with P value for the differential gene activity listed in the right 

panel. P-value was estimated using two-tailed t test. C. PTCRA and LCK activity were 

compared between dasatinib-sensitive vs -resistant T-ALL samples with RNA-seq data in the 

pharmacotyping cohort (N=15 and 30, respectively), P-value was estimated using two-tailed 

t test. Boxplots show summary of data in terms of the minimum, maximum, sample median, 

and the first and third quartiles. D-E, Gene networks used to infer PTCRA (D) and LCK (E) 

activity in NetBID. Each spoke represents a target gene (positively-regulated as red and 

negatively-regulated as blue), with gene name indicated at the edge of each arrow. P-value 

was estimated using two-tailed t test. F. Running NetBID analysis using only pediatric cases 

in the discovery cohort (N=12 and 15 patients for dasatinib-sensitive and -resistant, 

respectively), we re-estimated Z score for each gene which were then correlated with those 

from NetBID analysis using all T-ALL cases. Genes in the 30 biomarker panel are labeled 

and P value was estimated using Pearson correlation test.
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Extended Data Fig. 4. LCK signaling is essential for dasatinib sensitivity in T-ALL.
A. Phospho-flow of LCK, ZAP70 and CD247 in dasatinib-sensitive vs -resistant T-ALL cell 

lines. Cells were treated with increasing concentrations of dasatinib for 1 hour and then 

subjected to intracellular staining for phosphorylated LCK, ZAP70, and CD247, as 

described in Method. Phospho-protein was quantified by flow cytometry and normalized 

with samples not exposed to dasatinib as 100%. HSB-2 and KOPT-K1 (sensitive to 

dasatinib) is plotted in darker colors while CEM (resistant) is plotted in lighter colors. P-

values were derived by ANOVA. B-D. LCK T316M mutation confers dasatinib resistance in 

KOPT-K1 cells. LCK T316M mutation was ectopically expressed in dasatinib-sensitive T-

ALL KOPT-K1 cells. KOPT-K1 cells with wildtype LCK overexpression or empty vector 

control remained sensitive to dasatinib and ponatinib while overexpression of T316M LCK 
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resulted in resistance to dasatinib (B) and ponatinib (C). Meanwhile, all three lines were 

resistant to ABL specific inhibitor imatinib (D). For each leukemia sample at each drug 

concentration, cells were tested in duplicates. E. In KOPT-K1 cells with expressing wildtype 

LCK or empty vector control, LCK phosphorylation was inhibited by dasatinib in a dose-

dependent manner, whereas LCK phosphorylation was unablated by dasatinib in cells 

expressing the T136M mutant LCK. Standard deviation is derived from biologically 

independent samples (N=3) and is plotted as error bar. P value was estimated using 

Wilcoxon test. F-G. Genome-wide CRISPR screen identifies preTCR pathway genes as 

dependencies in T-ALL. F. LCK, ZAP70 and CD247 dependency score (x-axis) versus gene 

dependency probability (y-axis) demonstrates that a subset of T-ALL lines (blue, N=3) show 

dependency on these preTCR pathway genes compared to all other cell lines screened 

(hematologic cancer cell lines in black, N=73 and other cancer cell lines in gray, N=613). 

Gene dependency of greater than 0.5 indicates a high probability that a cell line is dependent 

and corresponds to an approximate dependency score of −0.5. More negative gene 

dependency scores indicate greater effect on cell line survival. G. Gene dependency score 

(x-axis) versus gene dependency probability (y-axis) demonstrates that none of the T-ALL 

lines (blue, N=3) show dependency on SRC kinase family genes (other than LCK show in 

Fig. 2J) compared to all other cell lines screened (hematologic cancer cell lines in black, 

N=73 and other cancer cell lines in gray, N=613). Gene dependency of greater than 0.5 

indicates a high probability that a cell line is dependent and corresponds to an approximate 

dependency score of −0.5. More negative gene dependency scores indicate greater effect on 

cell line survival.
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Extended Data Fig. 5. Comparison of T-ALL sensitivity to three LCK inhibitors.
A-B. A total of 11 cases were selected to represent dasatinib-sensitive vs resistant T-ALL 

(N=7 and 4 in Panels A and B, respectively) and were xenografted in NSG mice to develop 

PDX. Mice were sacrificed once leukemia burden reached predefined endpoint, and human 

leukemia cells were harvested and subjected to drug sensitivity profiling ex vivo. Cells were 

incubated with increasing concentrations of each LCK inhibitor for 96 hours and cell 

viability was determined by flow cytometry as described in Methods. C. Dose-dependent 

cell death was determined for two drugs in 8 T-ALL cell lines. For both drugs, HSB-2, 

(harbors TCR-LCK fusion) and KOPT-K1 (harbors TCR-LMO2 fusion) showed the highest 

sensitivity compared to ALL-SIL (harbors ABL class fusion) and other T-ALL cell lines. For 

each leukemia sample at each drug concentration, cells were tested in duplicates.
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Extended Data Fig. 6. Biomarker model of dasatinib sensitivity in T-ALL.
A-B. A panel of 30 genes were selected as biomarkers from the top 461 driver genes in the 

NetBID analysis, as described in Methods. Dasatinib biomarker score was plotted for T-ALL 

cases, in the discovery cohort (A, N=45) and in the validation cohort (B, N=13). P value was 

estimated using two-tailed t test. C. Similarly, activity of each biomarker gene was estimated 

for the TARGET T-ALL cohort, from which an unsupervised clustering analysis was 

performed, as shown in the heatmap. Each row is a biomarker gene and each column 

represents a T-ALL case, with color discriminating the level of inferred gene activity. T-ALL 

subtype is indicated in the top row by color. D-E. Predicted LCK and PTCRA activity in the 

TARGET T-ALL cohort (N=261) using the biomarker model. Activity of LCK and PTCRA 

was estimated for each T-ALL case from its RNA-seq data by NetBID algorithm. T-ALL 
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subtypes were defined as previously described (Liu et al., 2017). F. In TARGET cohort, 

dasatinib biomarker score of cases in LMO2/LYL1 subtype showed a bimodal distribution. 

Cases with high biomarker score (dasatinib-sensitive, blue curve) exhibited a worse event-

free survival compared to those with low biomarker score. P-value was estimated using Cox 

regression. G-H. Differential gene expression analyses of dasatinib sensitivity in T-ALL. In 

the discovery cohort, differences in gene expression between dasatinib-sensitive vs -resistant 

T-ALL was examined using the Limma method based on a linear model and results are 

presented as the volcano plot compared (G). Pathway analysis was performed with 254 

genes that met the significance and effect size threshold (adjusted P<1e-3 and log2 fold 

change >2), using the KEGG pathway database. P-value was inferred by Fisher exact test. I-
J. Comparison of predicted dasatinib sensitivity in pediatric and adult T-ALL. I. Dasatinib 

biomarker score was significantly higher in pediatric cases than adults in the discovery 

cohort. This was also validated in an independent microarray-based T-ALL gene expression 

dataset (NCBI GSE32215) with 37 adult and 191 pediatric patient samples. J.T-ALL 

subtype was inferred from gene expression profile for cases in the GSE32215 dataset. 

Pediatric cases have a higher prevalence of the TAL1 and TAL2 subtypes whereas adults 

have a higher frequency of HOXA and LMO2/LYL1 subtypes. P value was estimated using 

two-tailed t test. Boxplots show summary of data in terms of the minimum, maximum, 

sample median, and the first and third quartiles.

Extended Data Fig. 7. SPI1-rearrangement is associated with developmental arrest and related 
to dasatinib sensitivity in T-ALL.
A. Dose-dependent cell death was determined for dasatinib using the ex vivo drug sensitivity 

assay as described in Methods. For each patient at each drug concentration, cells were tested 

in duplicates. B. Mouse Lin-Sca+Ckit+ (LSK) cells were isolated from bone marrow and 
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transduced lentivirally with SPI1 fusion gene or empty vector. After in vitro differentiation 

in the presence of OP9-DL1 cells and Il7 and Flt3 ligand, LSK cells were subjected to flow-

cytometry analysis. TCF7-SPI1 expressing cells exhibited differentiation blockade at DN 

stage while the empty control cells were able to extensively differentiate to double positive 

and single positive stages.

Extended Data Fig. 8. Activity of dasatinib sensitivity-related genes across normal T cell 
developmental stages in mouse and human.
A-B. The activity of dasatinib sensitivity genes vary by T cell differentiation stage in mouse. 

RNA-based gene expression profile was obtained from the previously published dataset 

(Mingueneau et al., 2013), and NetBID was used to infer gene activity. A. NetBID-inferred 

activity of the 30 biomarker genes. Each mouse T cell developmental stage is represented as 
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a column and each row indicates different genes in the biomarker panel. Gene activity is 

represented by color (low to high as blue to red). B. NetBID-inferred activity of PTCRA and 

LCK. Horizontal bars indicate the mean of gene activity for each T cell population. DN3–4 

stages are highlighted in red. C-E. NetBID-inferred dasatinib biomarker score and activity 

of PTCRA and LCK in 10 normal human T cell developmental stages. RNA-based gene 

expression profile of human T cells was obtained from the previously published dataset 

(Casero et al., 2015). NetBID was used to infer LCK (D) and PTCRA (E) activity and 

biomarker score (C). Thy3 and Thy4 (approximately equivalent to DN3–4 and DN4 stages 

in mouse) are highlighted in red.

Extended Data Fig. 9. Relationship of LCK/BXL-XL/BCL2 activities with dasatinib and 
venetoclax sensitivity.
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A. LCK activity was inversely correlated with venetoclax sensitivity in vitro. LCK activity 

was inferred from RNA-seq data using NetBID in the discovery cohort (P value was 

estimated using ANOVA). B-D. ETP T-ALL is associated with high BCL2 and low LCK/

BCL-XL activity. BCL2/LCK/BCL-XL activity was estimated for cases in the TARGET 

cohort. Each case was annotated with ETP status. ETP cases exhibit low activity of LCK (B) 

and BCL-XL (D) while have high BCL2 activity (C). P-value was estimated using ANOVA. 

Boxplots show summary of data in terms of the minimum, maximum, sample median, and 

the first and third quartiles. E. NetBID analysis of venetoclax sensitivity in a subset of T-

ALL case in the discovery cohort (N=34 patients) identified 656 driver genes for drug 

response. Genes in the Pre-TCR signaling pathway were most enriched in pathway analysis 

(downregulation linked to venetoclax sensitivity). F-M. Single cell transcriptomic analysis 

identified intra-leukemia heterogeneity in LCK activity. T-ALL cells from SJ53 were 

incubated with dasatinib or vehicle for 4 days in vitro. scRNA-seq was then performed using 

viable cells from each group separately but transcription profiling data was pooled for 

subsequent analyses. Vehicle-treated cells mimicked naïve and sensitive to dasatnib whereas 

cells survived dasatinib exposure (dasatinib-treated) represented drug resistant cell 

population. F. tSNE visualization shows the distribution of dasatinib-treated (brick red) and 

naïve (green) cells in SJ65 and SJ53. Single cell RNA-seq and data analyses were described 

in Methods. G. LCK and BCL-XL activity was inferred by NetBID from single cell RNA-

seq of SJ66 and SJ53. P value were calculated using Pearson correlation, and color indicates 

cell populations (C1, C2, and C3 represented dasatinib resistant [red], responsive [green] 

and sensitive [blue] groups). P value was estimated using Pearson correlation. H. Left panel, 

unsupervised clustering analysis of scRNA-seq of vehicle and dasatinib-treated T-ALL cells 

from SJ53. Each dot represent a single cell visualized in a two-dimensional projection by t-

SNE. Three clusters (C1, C2, and C3, in red, green, and blue, respectively) were identified 

using k-means clustering. Right panel, cell composition of each cluster is visualized by stack 

plot with red and green indicating the % of cells from vehicle or dasatinib-treated samples. 

C1, C2, and C3 consisted of increasing proportion of naïve dasatinib-sensitive cells, 

representing populations with low, intermediate, and high sensitivity to dasatinib, 

respectively. I. Distribution of Dasatinib biomarker score across three clusters. J. LCK 

activity was highest in cluster C3, intermediate in C2, and lowest in C1, paralleling the 

proportion of dasatinib-sensitive population. LCK activity is color-coded (from low to high, 

blue–red) on t-SNE plot. K. BCL2 activity was lowest in cluster C3, intermediate in C2, and 

highest in C1, paralleling the proportion of dasatinib-sensitive population. BCL2 activity is 

color-coded (from low to high, blue–red) on t-SNE plot. L. Inverse correlation of LCK and 

BCL2 activity at the single cell level in SJ53. Each dot represents a cell and color 

discriminate clusters C1, C2, and C3 (red, green, and blue, respectively). Correlation 

coefficient and P value were estimated using Pearson correlation. M. Differentiation stage of 

each population was projected by examining the gene expression signature characteristic of 

ETP or DN3/DN4 T cells. Signature was derived from differential expression analysis of 

mouse T cell expression dataset (Mingueneau et al., 2013). Heatmap indicates the average of 

each gene (rows) for cells within each cluster (columns), after Z-normalization.
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Extended Data Fig. 10. Schematic summary of main analyses, experiments, and major findings 
of this study.
Text is highlighted in red to indicate those unique to this report and advances compared to 

previous findings.
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Figure 1. Ex vivo pharmacotyping identified dasatinib-sensitive T-ALL.
A and B, dasatinib LC50 distribution in BCR-ABL1 B-ALL or those with ABL class fusions 

(N=71) and T-ALL (N=45). C. The proportion of dasatinib-sensitive T-ALL (marked in red) 

is significantly higher in children (44.4%) than in adults (16.7%). D. Comparison of 

dasatinib sensitivity with that to three other ABL inhibitors: imatinib (N=18), nilotinib 

(N=8) and ponatinib (N=10). LC50 correlation between each pair was evaluated using 

Spearman test. E. Circos plot of targets of four ABL inhibitors. TKIs (left) are connected to 

their purported targets (right), based on drug-target relationships previously described using 

systematic chemical proteomic profiling (Klaeger et al., 2017). The right half of the circle 

highlights the shared targets across these four inhibitors. For all the above panels, N 

represents the number of patients.
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Figure 2. In vivo efficacy of dasatinib therapy in T-ALL.
A-B. Dose-response curves of dasatinib (A) and ponatinib (B) in T-ALL PDX cells used for 

in vivo efficacy studies. Leukemia cells were incubated with increasing concentration of 

drugs for 96 hours in the stromal cell co-culture system and cell viability was quantified 

using flow cytometry, as described in Methods. For each paitent sample at each drug 

concentration, cells were tested in duplicate. C. Leukemia burden in peripheral blood as a 

function of time in each T-ALL PDX models treated with dasatinib or vehicle. Dasatinib was 

given at 10mg/kg/day for 98 days until endpoint is met (e.g., leukemia burden reaches 80% 

or moribund for other reasons). In vivo efficacy of dasatinib treatment in PDX mouse model. 

P value was estimated using ANOVA test. Each curve represents an indidual mouse. D 
leukemia-free survival estimated for each T-ALL PDX model. The dasatinib treatment arm 

is shown in red curves and the vehicle treatment arm is shown in blue curves. P value was 

estimated using Cox regression model. Each treatment arm included 8 mice for cases 1, 2, 

and 3, and 6 mice per arm for case 4.
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Figure 3. preTCR-LCK activation drives dasatinib sensitivity in T-ALL.
A Schema of the NetBID analysis for identifying drug sensitivity driver. By applying the 

SJARACNe algorithm to the published TARGET T-ALL RNA-seq dataset (N=261 patients), 

we first constructed a T-ALL interactome to describe signaling network in this leukemia. 

Then we perform network-based inference of gene activity (NetBID) using RNA-seq data of 

dasatinib-sensitive vs -resistant T-ALL (N=15 and 30 patients, respectively). Comparing 

gene activity between two groups, we identify drivers/master regulators of drug response. B. 
Pathway analysis of driver genes associated with dasatinib sensitivity. A total of 461 drug 

sensitivity driver genes were identified by using NetBID. Fisher exact test was used to assess 

the over-representation of each gene set in KEGG database in the drug sensitivity driver 

genes. C-D. Associations of preTCR pathway genes (C) and dasatinib target genes (D) with 

dasatinib sensitivity in T-ALL. Genes are shown as dots in networks based on their 

relationships defined by the T-ALL interactome, using SJARACNe. Driver genes up- and 

down-regulated in dasatinib-sensitive cases were marked as red and blue, respectively. Dot 

size corresponds to the P-value comparing gene activity in dasatinib-sensitive vs. -resistant 

cases. E. Phosphorylation level of LCK, ZAP70 and CD247 in fresh T-ALL PDX cells 

treated with various concentrations of dasatinib. Leukemia cells were incubated with 

dasatinib for 1 hour and phosphorylation was quantified by flow cytometry after intracellular 

staining with antibodies specific to each phospho-protein. Y-axis shows relative phospho-

level of each molecule, with no drug as 100%; and x-axis indicates dasatinib concentration. 

Sensitive samples (N=7 independent PDX models) were plotted in dark colors while 

resistant samples (N=4 independent PDX models) were labeled in light colors. P value was 

estimated using Wilcoxon rank test. F. Phospho-proteomic profiling of dasatinib-sensitive vs 
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resistant T-ALL (N=3 and 2 independent T-ALL PDX cases, represented by the left and 

right panels, respectively). T-ALL PDX cells were treated with dasatinib (10 nM for 1 hour) 

and subjected to TMT-based phospho-proteomics. Kinase activity was estimated on the basis 

of phosphorylation of known substrates (see Methods) and compared between baseline and 

after-dasatinib treatment. In the Volcano plots, each dot represents a unique kinase and the 

degree to which its activity is affected by dasatinib is indicated by Log2 transformed fold 

change (dasatinib treated versus baseline, x-axis) and–log10 transformed P-value (estimated 

using two-sided t test) (y-axis). Kinases with significant changes by dasatinib treatment are 

highlighted in blue and their sizes represent the number of known substrate phosphorylation 

sites. G. Correlation of dasatinib LC50 with that of LCK-specific inhibitors nintedanib and 

WH 4–023 (green and red, respectively) in T-ALL PDX cells (N=11 cases). P values were 

estimated using Pearson correlation test. H-I. Genome-scale CRISPR-Cas9 screening of T-

ALL cell lines (N=3 unique cell lines) compared to all other cancer cell lines (N=686 cell 

lines) (H) or other hematologic malignancy cell lines (N=73 cell lines) (I). Each point 

represents one gene in the screen. The effect size on the x-axis represents the mean 

difference in dependency score between the T-ALL lines compared to other cell lines 

screened with negative effect size indicating greater dependency in T-ALL compared to 

other cell lines. The y-axis represents the statistical significance of enrichment calculated as 

-log10(q-value) from a two-sided t-test with Benjamini Hochberg correction. Standard 

deviation is plotted as error bar.
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Figure 4. Biomarker model predicts dasatinib sensitivity across T-ALL subtypes.
A. Heatmap of NetBID-inferred activity of 30 drug sensitivity driver genes in the dasatinib 

pharmacotyping cohort as discovery (N=45 patients) and in the validation set (N=13 

patients). To identify this panel, the 461 drivers associated with ex vivo dasatinib response 

were filtered against the preTCR pathway genes and known dasatinib targets. The top 15 

rows show genes associated with dasatinib sensitivity while the bottom 15 rows represent 

genes driving dasatinib resistance. B-C. receiver operating characteristic curve analysis of 

the dasatinib biomarker score performance in the discovery and validation cohorts, 

respectively. D. Predicted dasatinib sensitivity in the TARGET T-ALL cohort (N=261) using 

the biomarker model. A biomarker score was estimated for each T-ALL case from its RNA-

seq data and NetBID-inferred gene activity. T-ALL subtypes were defined as previously 

described8 (Liu et al., 2017). E. Survival analysis of T-ALL cases predicted as dasatinib-

sensitive vs -resistant in the TARGET cohort (dasatinib biomarker score > or ≤ 0.6), 

indicating disparate treatment outcome of conventional chemotherapy. P value was estimated 

using Cox regression with the biomarker score as a continuous variable. F. White blood cell 

count at diagnosis was compared between T-ALL cases with predicted dasatinib sensitivity 

vs resistance in the TARGET cohort. P value was estimated using Wilcoxon rank test. 

Boxplots show summary of data in terms of the minimum, maximum, sample median, and 

the first and third quartiles.
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Figure 5. Somatic genomic abnormalities in dasatinib-sensitive T-ALL.
A. Oncoplot summarizes somatic genomic abnormalities in the T-ALL pharmacotyping 

cohort. Each column represents one sample and its dasatinib sensitivity is listed in the top 

row. Cases with SPI1-rearrangement are marked as red in the “Fusion” row. The type of 

genomic profiling (whole exome seq and/or RNA-seq) is indicated in the second row. 

Genomic data analyses (fusion gene and sequence mutation calling) were performed as 

described in Methods. B. NOTCH1 mutations were more common in dasatinib-sensitive T-

ALL compared to cases resistant to this drug (shown in the top and bottom panel, 

respectively). Mutation calling was performed using pipeline described previously and in 

Methods, from paired whole exome-seq, whole genome-seq, and/or leukemia RNA-seq.
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Figure 6. Association of T cell differentiation arrest with dasatinib sensitivity in T-ALL.
A. Inferred dasatinib sensitivity biomarker score for 19 mouse T-cell populations 

representing different developmental stages (N=3 mice for each stage). Published RNA 

expression profile50 (Mingueneau et al., 2013) was used as input of NetBID to infer gene 

activities from which dasatinib biomarker score was calculated. Dasatinib biomarker score 

approached the maximal level starting at DN3a-DN3b-DN4 stage (highlighted in red). 

Horizontal bars indicate the mean biomarker score for each T cell population. B. 
Differentiation stage of dasatinib-sensitive vs -resistant T-ALL. NetBID-based gene activity 

profiles of human T-ALL and mouse T cells from differentiation stages50 (Mingueneau et 

al., 2013) were pooled after mapping to the same set of genes using BioMart. 465 genes had 

a coefficient of variation >0.5 and were included in clustering analysis using tSNE. Shaded 

circles represent three distinctive clusters inferred using the k-means method. Circle and 

triangle indicate T-ALL and normal T cell populations, respectively . C. Developmental 

arrest at DN3 stage of mouse hematopoietic stem and progenitor cells by ectopic expression 

of TCF7-SPI1. Mouse Lin-Sca+Ckit+ (LSK) cells were isolated from bone marrow and 

transduced lentivirally with SPI1 fusion gene or empty vector, followed by in vitro 
differentiation in the presence of OP9-DL1 cells, with Il7 and Flt3 ligand. The upper panels 

show CD25 and CD44 expression pattern in CD4/CD8 double negative population by flow 

cytometry, to define DN1, 2, 3, and 4 populations as labeled. D. LCK phosphorylation in 

mouse LSK cells transduced with TCF7-SPI1 expression vector and empty vector. At the 

end of in vitro differentiation assay (Panel C), mouse cells were subjected to pohopho-flow 
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cytometry using LCK (Y394) antibody. Standard deviation was estimated from N=3 

independent transduction and P value was derived from two-sided t test. E. Growth 

inhibition of mouse DN3 thymocytes by dasatinib in vitro. Primary mouse CD4 and CD8 

double-negative thymocytes were isolated from thymus and incubated with dasatinib 

(100nM) for two days. Viable cell counts were performed by flow-cytometry using DAPI. 

DN3 T cells show the highest sensitivity to dasatinib. *P<0.05, P values for DN1, 2, 3 and 4 

are 0.000388, 0.395572, 0.000043 and 0.000020, respectively. P values were estimated by 

two-sided t test. Standard deviation is plotted as error bar and is derived from N=3 unique 

mice. Center value represents mean.
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Figure 7. Differentiation-dependent activation of BCL2 and BCL-XL and its relation to T-ALL 
response to dasatinib and venetoclax A-B.
Association of BCL2 (A) or BCL-XL (B) activity with dasatinib sensitivity in T-ALL. Gene 

activity was inferred by NetBID analyses of the N=45 cases in the T-ALL pharmacotyping 

cohort and compared between dasatinib-sensitive and -resistant samples with P values 

estimated using two-sided t-test. C. Dynamic change of BCL2 and BCL-XL activity across 

normal T-cell differentiation stages (N=3 for each stage and bar represents the mean for each 

population). Gene activity was estimated from published mouse gene expression dataset50 

(Mingueneau et al., 2013), as described in Figure 6. DN3a/DN3b/DN3b-4 stages are 

highlighted in red. D. Dasatinib sensitivity was associated with venetoclax resistance in T-

ALL. Within N=45 cases in the T-ALL pharmacotyping cohort, N=34 were tested for 

venetoclax sensitivity ex vivo, Venetoclax LC50 was compared between dasatinib-sensitive 
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vs -resistant T-ALL, with P values estimated using two-sided t-test. In the same cohort, T-

ALL sensitivity to venetoclax was associated with high BCL2 and low BCL-XL activity, 

respective (E and F, N=10, 18, 6 patients in the Resistant, Responsive, and Senstive groups, 

respectively). P values were estimated using ANOVA. G. Inverse correlation of the effects of 

gene activity on dasatinib sensitivity vs venetoclax sensitivity in T-ALL. Each dot represents 

a gene with Z-score plotted on the x and y axis to indicate the association of its activity with 

dasatinib and venetoclax sensitivity, respectively, as estimated by NetBID in the T-ALL 

pharmacotyping cohort. Marked in red are example genes up-regulated in dasatinib-sensitive 

cases but downregulated in venetoclax-sensitive cases. Those marked in green exhibited the 

opposite pattern of association with drug sensitivity. Correlation of two sets of Z scores was 

evaluated using Spearman correlation test. H-I. BCL2 and BCL-XL activity across subtypes 

in TARGET cohort (N=261 patients). Boxplots show summary of data in terms of the 

minimum, maximum, sample median, and the first and third quartiles.
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Figure 8. Single cell transcriptomic analysis identified intra-leukemia heterogeneity in LCK and 
BCL2 signaling, T-cell maturation, and dasatinib response.
T-ALL cells from SJ65 were incubated with dasatinib or vehicle for 4 days in vitro. scRNA-

seq was then perfomred using viable cells from each group separately but transcription 

profiling data was pooled for subsequent analyses. Vehicle-treated cells mimiced naïve and 

sensitive to dasatnib whereas cells survived dasatinib exposure (dasatinib-treated) 

represented drug resistant cell population. A. Left panel, unsupervised clustering analysis of 

scRNA-seq of vehicle and dasatinib-treated T-ALL cells from SJ65. Each dot represent a 

single cell visualized in a two-dimensional projection by t-SNE. Three clusters (C1, C2, and 

C3, in red, green, and blue, respectively) were identified using k-means clustering. Right 

panel, cell composition of each cluster is visualized by stack plot with red and green 

indicating the % of cells from vehicle or dasatinib-treated samples. C1, C2, and C3 consisted 

of increasing proportion of naïve dasatinib-sensitive cells, representing populations with low, 

intermediate, and high sensitivity to dasatinit, respectively. B. Distribution of dasatinib 

biomarker score across three clusters, with C3 showing the highest predicted sensitivity and 

greatest proportion of vehicle-treated cells. C. LCK activity was highest in cluster C3, 

intermediate in C2, and lowest in C1, paralelling the proportion of dasaitnib-sensitive 

population. LCK activity is color-coded (from low to high, blue–red) on t-SNE plot. D 
BCL2 activity was lowest in cluster C3, intermediate in C2, and highest in C1, paralelling 

the proportion of dasaitnib-sensitive population. BCL2 activity is color-coded (from low to 

high, blue–red) on t-SNE plot. E. Inverse correlation of LCK and BCL2 activity at the single 

cell level in SJ65. Each dot represent a cell and color discriminate clusters C1, C2, and C3 

(red, green, and blue, respectively). Correlation coefficient and P value were estimated using 

Pearson correlation. F. Differentiation stage of each population was prejected by examining 

the gene expression signature charateristic of ETP or DN3/DN4 T cells. Signature was 

derived from differential expression analysis of mouse T cell expression dataset50 

(Mingueneau et al., 2013). Heatmap indicates the average of each gene (rows) for cells 

within each cluster (columns), after Z-normalization.
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