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Abstract 

 

The integration of all sectors of energy production, distribution and consumption in multi-source 

energy networks has lately gained attention as an attractive strategy to deal with the challenges raised 

by decarbonization roadmaps. For such a network to become a smart energy system, however, it 

needs to be managed and controlled in a smart way. While existing techniques mainly focus either on 

short-term unit commitment or on yearly scheduling separately, this work presents an original 

combined optimization algorithm which merges the two methods, in order to enhance system real-

time control with long-term evaluations (e.g. incentives and yearly constraints). The control 

architecture comprises three coordinated optimization levels, each periodically updated through the 

receding time horizon strategy. A long-term supervisory module performs whole-year optimal 

scheduling accounting for long-term factors and determines the constraints for a short-term 

supervisory module which, in turn, optimizes the control action for the energy production system in 

real-time. In parallel, energy distribution modules minimize energy supply to the different portions 

of the distribution network downstream. Simulation results on a hospital case study demonstrate a 

9.7% reduction in total operating cost over the whole year, as well as an increase in revenues deriving 

from incentives for high efficiency cogeneration.  

 

Keywords: Multi-energy systems; Model Predictive Control; long-term optimization; short-term 

optimization; District Heating and Cooling Networks; Combined Heat and Power plant 
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1. Introduction 

The transition toward clean energy, aiming to reduce energy-related carbon emissions and mitigate 

the impact of climate change on the environment, is gradually phasing out fossil fuels in favor of a 

higher penetration of renewable-based energy production technologies. Such a transformation of the 

global energy sector toward decarbonization is giving rise to systems of increased complexity as well 

as to new challenges in system management, due to the non-programmable character of solar and 

wind renewables [1]. A change of paradigm in which flexible demand adapts to variable generation 

rather than the opposite is expected to be led by sector integration [2]. This encompasses the 

interconnection, interaction and integration of all sectors of energy production, distribution and 

consumption (i.e. heating, cooling, electricity, and gas), in order to exploit the synergies arising 

among them [3].  

According to Mancarella [4], these multi-energy systems include different interacting energy vectors 

and coupling devices and are seen with a whole-system approach. It is stated that their technical, 

economic and environmental benefits are significant compared to the individual systems taken 

separately. The integrated energy infrastructure as defined by Guelpa et al. [5] comprises energy 

conversion units (e.g. boilers as gas-to-heat, cogeneration plants as gas-to-heat and power, and 

electrolyzers as power-to-gas), the networks used for the energy vector distribution (e.g. gas, power, 

district heating and cooling), energy storage devices (e.g. tanks for heat, cold or fuel, and electrical 

batteries) and finally the end-users. This framework enables (i) higher flexibility and reliability thanks 

to the multiple degrees of freedom, (ii) reduced waste of resources due to the possibility to switch 

between energy vectors when regarded as more cost effective according to the boundary conditions, 

and (iii) a more rational exploitation of renewables and waste heat. 

Nonetheless, several barriers to the realization of higher efficiency and flexibility of integrated 

systems can be identified [6], related in particular to their operation. All components of such complex 

systems should be coordinated in an optimal way through suitable optimization algorithms, in order 

to deliver the best performance while meeting system constraints. More importantly, the potential of 
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multi-energy infrastructures can be fully unlocked through smart control systems which 

autonomously optimize and update the management strategy in real-time [7], depending on the 

availability of the renewable energies [8], network state and consumer demands. Indeed, the 

introduction of a smart management strategy allows, in practice, the transition from a multi-energy 

system to a smart energy system [9,10]. 

The currently available methods for optimizing the operation and management of multi-source district 

energy network can be divided into short-term and long-term algorithms.  

On the one hand, the former type distributes the generation of different forms of energy among the 

available conversion devices over a time horizon that spans from a few hours up to one week, by 

considering the day-ahead forecast of end-user energy demands. This is a widely investigated 

problem also known as Unit Commitment [11], which has to be extended to different energy vectors 

when multi-energy systems are considered. In most works, this problem is solved through Mixed 

Integer Linear Programming (MILP) and is applied to case studies with different purposes and 

features: operation planning of combined cooling, heating and power systems [12], robust 

optimization of microgrids [13], temperature optimization of a 5th generation District Heating and 

Cooling (DHC) network [14]. Moreover, in order to investigate demand side management potential, 

Ghilardi et al. [15] also include the thermal energy balance of buildings connected to the multi-energy 

system in the MILP formulation, while Capone et al. [16] propose a bi-level optimization structure 

with the addition of a genetic algorithm. In other cases, the load allocation can be defined through 

different algorithms, such as Dynamic Programming [17].  

MILP methods display the great advantage of ensuring global optimality, but are subject to several 

limitations, as reviewed by Urbanucci [18]. In particular, the dimension of the problem can be kept 

computationally feasible, due to the short time horizons, and therefore it can be applied for real-time 

controllers. However, a growing number of energy conversion plants and end-users, which is typical 

of district energy applications, entails a substantial increase in the number of control variables and, 

consequently, in the required computational effort [19]. Despite this challenging issue, a few papers 
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in the literature use such short-term optimization algorithms in district energy control applications 

[20]. For instance, Mugnini et al. [21] present a control method based on Model Predictive Control 

(MPC) for a multi-energy system integrated within an individual building with specific focus on 

assessing the flexibility potential of the building during the cooling season. Further studies are 

necessary to extend the results in terms of cost and primary energy reduction at district level. Banta 

et al. [22] present an advanced MPC paradigm for a campus-size microgrid. Moser et al., instead, 

develop a modular MILP energy management system for urban networks which can repeatedly update 

its optimization according to the MPC concept, and test its performance in present and future 

simulation scenarios [23]. It is worth noting, however, that MPC is currently more widespread in the 

investigation of microgrids [24] or heat-pump systems [25], compared to smart energy systems in 

general.  

On the other hand, long-term algorithms dispatch the energy production for one or multiple years 

with an hourly or daily resolution. The whole-year horizon allows long-term features to be 

considered, such as seasonal storage [26]. The most part of research on the long-term optimization of 

district energy networks primarily aims at system design, scenario investigation and yearly operation 

scheduling. There is generally no focus on real-time control, due to the scale of the problem and 

consequent great computational effort required. Gabrielli et al. [27] provide optimal design guidelines 

for multi-energy systems with seasonal storage when there is uncertainty on forecasted data. This is 

achieved by aggregating yearly time series on a minimum number of typical design days, in order to 

reduce the number of variables and keep the computational costs down. While the approach of using 

representative days is widely used [28,29], other works reduce the computational demand of whole-

year energy scheduling with hourly resolution by using a sliding month approach [30] or a rolling 

horizon weekly strategy [31].  

Recent research is heading toward not only the optimal integration of different energy vectors, as 

outlined so far, but also the integration of different time scales and stages [32]. This means that 

optimization algorithms with different time features (i.e. time horizon and granularity) are combined 
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in a hierarchical [33] or concurrent fashion, in order to decompose the problem into simpler sub-

problems and fulfill multiple goals. Bornand et al. [34] demonstrate a multi-period formulation to 

generate long-term investment planning scenarios for large heterogeneous district energy consumers, 

such as hospitals, airports and educational complexes. The proposed methodology couples energy 

integration techniques with multi-objective optimization to determine the optimal size of alternative 

energy equipment in a long-term perspective. However, the analysis does not take system operation 

and control into account. Naughton et al. [35] investigate the market participation of an electricity-

hydrogen power plant through a three-stage optimization framework, where the three optimization 

problems perform device scheduling daily, preliminary power plant dispatch every 30 minutes and 

actual dispatch every 5 minutes, respectively [36]. A multi-time-space scale collaborative model for 

coordinating multiple energy communities is established by Li et al. [37], who integrated optimization 

levels ranging from real-time adjustment to day-ahead scheduling.  

As summarized in Table 1, the overview of existing research on the optimization of multi-energy 

systems shows that, in general, short-term and long-term algorithms cover different objectives and 

show conflicting advantages and limitations. It is clear that short-term optimal operation is able to 

include only immediate goals such as operating cost and energy consumption and, as such, it has no 

potential in including yearly objectives and features. For instance, the Italian regulation on high 

efficiency cogeneration establishes that high efficiency credits (namely white certificates) are 

awarded to systems that meet two energy saving criteria evaluated on a yearly basis or with reference 

to a given period [31]. Similar indicators can be found in other European or country-specific policies.  

Therefore, a short-term control algorithm certainly leads to immediate smarter operation, but it may 

also move the system away from achieving long-term benefits. In parallel, long-term optimization 

may be able to determine a profitable maintenance scheduling, but this cannot be reflected in a smarter 

control. Furthermore, the latter is not able to deal rapidly and effectively with external events that 

would require reassessing long-term system planning. These examples show that great potential lies 

in the combination of different time perspectives in the optimal control of energy systems.  
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Table 1. Features of short- and long-term optimization algorithms for multi-energy systems. 

 Short-term algorithms Long-term algorithms 

Objectives 

and 

constraints 

Operating cost 

Energy consumption 

Indoor comfort 

Operating constraints 

Yearly operating cost 

Yearly energy consumption 

Energy efficiency incentives 

Maintenance schedule 

Investment costs 

Advantages 

Low computational cost 

Suitable for control 

Plant operation included 

Long-term goals and constraints included 

Disadvantages 
Only short-term goals and constraints 

Not optimal with regard to yearly features 

High computational cost 

Not suitable for control 

Typical operating days must be used 

 

To the best of the authors’ knowledge, the literature lacks real-time control methods that are able to 

merge the advantages of both types of algorithms, and thus to optimize the operation of district energy 

systems with the simultaneous inclusion of yearly objectives.   

This work aims to bridge the gap between the two approaches by presenting a combined optimization 

algorithm for both sector integration and time integration of multi-source district energy systems. 

The approach is based on multi-agent hierarchical Model Predictive Control formulation with 

multiple space and time layers, in order to merge long- and short-term optimization goals and 

constraints. The long-term MPC layer performs yearly scheduling and calculates long-term 

constraints to be sent to the short-term MPC layer which, in turn, operates real-time system control. 

The two problems are solved individually with their specific variables, constraints and cost function, 

but the constant communication between them allows the limitations of each layer to be compensated. 

This global strategy combines the benefits of both types of optimization algorithm and paves the way 

toward multi-period system optimality of integrated energy networks regardless of their specific 

configuration. The control verification is carried out on a large hospital site by means of whole-year 

simulations in actual control configuration.  
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2. Methods and control architecture 

This section describes the novel combined optimization algorithm for optimally managing integrated 

energy networks with multiple interacting energy vectors and required energy services, as well as 

several energy conversion plants to be coordinated in the thermal power station.  

The main objectives and features of the algorithms are as follows: 

• Inclusion of all sections of the system, ranging from the thermal power station to the 

distribution network and end-users’ substations.  

• Modular extension to different system configurations, with particular reference to small-scale 

district energy, e.g. campus, hospitals, and small neighborhoods.  

• Fulfillment of end-user demand of all energy vectors (e.g. heating, cooling, electricity, and 

steam) with the lowest operating cost on a yearly basis, including the revenues deriving from 

incentives.  

• Coupling of two communicating optimization layers which operate at two different time 

scales, i.e. long-term optimization coupled with short-term optimization.  

• Application in a real-time controller based on MPC. 

One of the most notable characteristics of MPC is the receding time horizon strategy [38]. In practice, 

MPC calculates an open-loop sequence of optimal control actions for a time-discrete prediction 

horizon in the future, and applies the first element of this sequence. After a time-step, the actual 

system behavior is monitored, the prediction horizon is moved forward, and the updated optimal 

control sequence is recalculated starting from new system knowledge. This continuous procedure 

improves the control robustness with regard to disturbances and unpredictable events, but it also 

requires an optimization algorithm that computes the solution significantly faster than system 

dynamics. As far as multi-energy systems are concerned, most existing optimization algorithms are 

not suitable for MPC since they do not meet this requirement. Conversely, the combined algorithm 

proposed in this work is developed with special focus on real-time control applicability. The details 

on the original control architecture and all its layers are reported in the following sections.  
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2.1 Control algorithm architecture  

A generic district energy system can be divided into the district heating and cooling network, 

comprising several distribution loops and end-users, and the thermal power station, which aggregates 

all energy conversion plants. Performing optimal control of the whole system at the same time with 

a small time resolution and a yearly perspective would be infeasible, if tackled by a single traditional 

algorithm. In this work, this task is executed in a modular and manageable way by dividing the 

problem into smaller hierarchical sub-problems.  

As illustrated in Figure 1, the proposed control architecture combines three interacting space and time 

control layers: 

• Distribution modules. Each of these parallel modules is an autonomous MPC agent that 

manages energy distribution to a section of the heating and cooling network (e.g. branch 

supplying a building) and forecasts its heating and cooling requirements over a short-term 

prediction horizon (e.g. the following two days).  

• Short-Term Supervisory module, namely ShoTS. It is a low-level supervisory MPC agent 

which controls the thermal power station in real time, based on a short-term objective and 

prediction horizon. This layer receives (i) the demand forecast from the distribution modules, 

(ii) long-term constraints calculated by a high-level supervisory controller, and (iii) feedback 

on the actual operation of the system.  

• Long-Term Supervisory module, namely LoTS. It is a high-level supervisory controller that 

(i) receives the actual system operation in the form of the cumulated energy and fuel 

consumed, (ii) solves the yearly scheduling problem of the thermal power station with a daily 

time resolution, thus including long-term factors, and (iii) generates the long-term constraints 

for ShoTS.  

In the long run, real-time automatic control carried out by ShoTS should lead to the fulfillment of the 

yearly goals, since it is forced to follow indications given by LoTS. Moreover, in agreement with the 

receding time horizon strategy typical of MPC, the optimization problems of each module are updated 
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and solved at every related time-step, i.e. 15 minutes for the distribution and ShoTS, and one day for 

LoTS. The other main features are summarized in Table 2.  

 

 

Figure 1. Three-layer MPC control architecture for district energy networks. 

 

Table 2. Features of the three modules of the combined optimization algorithm.  

 Distribution module ShoTS module LoTS module 

Objective function 
Minimize energy 

supplied to end-user 
Minimize operating cost Minimize yearly cost 

Constraints 
End-user indoor 

comfort temperature 

Meet energy demand,  

plant operation, 

long-term constraints 

Meet daily demand,  

efficiency incentives, 

contracts and maintenance 

Disturbances 
Outdoor temperature,  

occupation schedule 

Energy demand,  

hourly cost of electricity 

Energy demand,  

daily cost of electricity 

Prediction horizon 2 days 2 days Whole year 

Time-step 15 minutes 15 minutes 1 day 

Algorithm 
Dynamic 

Programming 

Mixed Integer Linear 

Programming 
Linear Programming 

 

2.2 Long-term Supervisory module 

The LoTS module schedules the energy produced every day by the plants in the thermal power station 

in order to match the daily energy demand of all energy vectors. The module receives the forecast of 

the daily energy demand and average outdoor temperature for the remaining part of the year, as well 

as the daily average market price of electricity.  
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2.2.1 Optimization variables 

Each energy conversion unit receives an energy vector as input (e.g. fuel for a cogeneration unit) and 

returns one or more energy vectors as output (e.g. electricity and heat for the same unit). In the 

remainder of the manuscript, the superscripts h, c, el and f represent heating, cooling, electricity and 

fuel energy, respectively, while the subscripts in and out indicate input and output energy of a given 

unit, respectively. For instance, heat-only boilers are characterized by Ef
in and Eh

out, while 

cogeneration plants by Ef
in, E

h
out and Eel

out. In this module, the units are modeled with input-output 

relationships characterized by a fixed nominal efficiency ηi from energy vector l to energy vector i, 

as written in Eq. (1) for a generic unit j:  

𝐸out,j
i = 𝜂j

i𝐸in,j
l  (1) 

With this notation, the optimization variables for each day k of the LoTS problem are: 

1. El
in,j,k: daily input energy of form l to unit j; 

2. Ediss,j,k: daily heat dissipated from unit j; 

3. Egb,k: daily electrical energy bought from the power grid; 

4. Egs,k: daily electrical energy sold to the power grid; 

5. εj,k: daily availability of unit j due to maintenance or constraints on operating hours, comprised 

in the interval [0,1].  

In order to determine the long-term constraints for ShoTS, maximum and minimum auxiliary 

variables are added for daily input energy and exchange with the power grid: 

6. Mj,k: maximum daily input energy to unit j (or exchange with grid); 

7. mj,k: minimum daily input energy to unit j (or exchange with grid).  

The concept is qualitatively illustrated in Figure 2: the variables M and m bind the actual input energy 

and determine an optimal band of operation that shall be met for the remaining part of the year. The 

first section of these optimal bands, corresponding to the number of days of the ShoTS prediction 

horizon, is used as a long-term constraint to further bind the ShoTS problem and push it toward a 

solution that also meets the LoTS yearly goals.  
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If seasonal storage is present, there are additional variables for its state of charge, daily charge and 

discharge energy, and proper constraints. In this research, the seasonal storage implementation is 

omitted for the sake of brevity, but can be added with no effort following, for instance, the approach 

in [39].  

 

Figure 2. Qualitative representation of the optimal band of operation as long-term constraints determined by the maximum 

and minimum auxiliary variables in the LoTS problem.  

 

2.2.2 Objective function 

If the problem is written for a Nd number of days until the end of the calendar year, the objective 

function is the total operating cost for the given period, including cost of fuel, electricity and 

incentives obtained, for instance, due to high efficiency cogeneration: 

∑ [
𝑐f

𝐿𝐻𝑉
∑ 𝐸in,j,k

f

j
+ 𝐶gb,k𝐸gb,k − 𝐶gs,k𝐸gs,k]

𝑁d

𝑘=1

− ∑ 𝐶inc,j
j

 (2) 

where cf is the fuel cost, Cgb and Cgs are the average daily purchase and sale costs of electricity. The 

second sum includes the revenues from incentives. In particular, the Italian legislation rewards a high 

efficiency cogeneration unit with energy efficiency certificates proportional to the primary energy 

saving [31].  
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2.2.3 Constraints 

The constraints of meeting the daily demand of energy vector l (i.e. El
dem,k) for each day k is given by 

Eqs. (3). The electricity version Eq. (3c) accounts for grid exchange while the heat version Eq. (3a) 

subtracts the dissipated heat.  

∑ 𝐸out,j,k
h

j
− ∑ 𝐸diss,j,k

j
− ∑ 𝐸in,j,k

h

j
= 𝐸dem,k

h    ∀ 𝑘 (3a) 

∑ 𝐸out,j,k
c

j
− ∑ 𝐸in,j,k

c

j
= 𝐸dem,k

c    ∀ 𝑘 (3b) 

∑ 𝐸out,j,k
el

j
− ∑ 𝐸in,j,k

el

j
+ 𝐸gb,k − 𝐸gs,k = 𝐸dem,k

el    ∀ 𝑘 (3c) 

The constraints for the maximum and minimum auxiliary variables are:  

𝑚in,j,k ≤ 𝐸in,j,k ≤ 𝑀in,j,k  ∀ 𝑗, ∀ 𝑘 (4a) 

𝑚gb,k ≤ 𝐸gb,k ≤ 𝑀gb,k  ∀ 𝑘 (4b) 

𝑚gs,k ≤ 𝐸gs,k ≤ 𝑀gs,k  ∀ 𝑘 (4c) 

The technical and operating constraints are:  

𝑀in,j,k ≤ 휀j,k𝐸in,max,j  ∀ 𝑗, ∀ 𝑘 (5) 

𝐸diss,j,k ≤ 𝐸out,j,k
h   ∀ 𝑗, ∀ 𝑘 (6) 

where Ein,max,j is a parameter characteristic of each unit j, representing its maximum input energy in a 

day at full load. In addition, when there is a scheduled maintenance period for a given unit, the upper 

boundary of the corresponding ε is set to 0.  

The year-based constraints involve, for example, the yearly maximum and minimum fuel purchase 

established in the supply contract (i.e. Ef
max,y and Ef

min,y, respectively) in Eqs. (7): 

∑ ∑ 𝑚in,j,k
f

j

𝑁d

𝑘=1

≥ 𝐸min,y
f − 𝐸past

f  (7a) 

∑ ∑ 𝑀in,j,k
f ≤

j

𝑁d

𝑘=1

𝐸max,y
f − 𝐸past

f  (7b) 

where Ef
past is the fuel energy actually consumed by the real system in the previous period of the year, 

obtained by monitoring and cumulating its actual past operation. The same set of equations with 
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corresponding past cumulated parameters (indicated by the subscript past) can be written for 

electricity bought and sold to the grid, or for other energy vectors.  

According to the Italian regulation, the constraints a cogeneration unit j should fulfil to obtain the 

high efficiency cogeneration label are specific reference boundaries on overall efficiency (ηI
ref) and 

Primary Energy Saving (PESref):  

𝜂j
𝐼 =

∑ 𝑚out,j,k
el𝑁d

𝑘=1 + 𝐸past,j
el + ∑ (𝑚out,j,k

h − 𝐸diss,j,k)
𝑁d
𝑘=1 + 𝐸past,j

h

∑ 𝑚in,j,k
f𝑁d

𝑘=1 + 𝐸past,j
f

≥ 𝜂ref
𝐼  (8a) 

PESj = 1 − [
∑ 𝑚out,j,k

el𝑁d
𝑘=1 + 𝐸past,j

el

(∑ 𝑚in,j,k
f𝑁d

𝑘=1 + 𝐸past,j
f )𝜂el,ref,j 𝑝j

+
∑ (𝑚out,j,k

h − 𝐸diss,j,k)
𝑁d
𝑘=1 + 𝐸past,j

h

(∑ 𝑚in,j,k
f𝑁d

𝑘=1 + 𝐸past,j
f )𝜂h,ref,j

]

−1

≥ PESref 

(8b) 

where ηel,ref and ηh,ref are reference electrical and thermal efficiency when electricity and heat are 

produced individually, and p is a grid loss penalty. 

Finally, there are constraints on maximum operating hours OHmax: 

∑ 휀j,k

𝑁d

𝑘=1

≤
𝑂𝐻max,j − 𝑂𝐻past,j

24
  ∀ 𝑗 (9) 

Moreover, other custom equations can be easily inserted if additional limitations are present. 

Since all variables are continuous and all constraints and the cost function are linear (Eqs. (8) can be 

easily reformulated in linear form), LoTS is a Linear Programming problem.  

 

2.3 Short-term Supervisory module 

The ShoTS module contains a customized version of a highly detailed unit commitment problem 

which is further bound with the long-term constraints described previously. It receives the forecast of 

the demand, outdoor temperature and market price of electricity for the future prediction horizon. The 

goal is to define the operation of all conversion units in the thermal power station to minimize a given 

criterion. The deriving problem is an MILP due to the presence of continuous and binary variables.  
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2.3.1 Optimization variables  

Following the notation used in Section 2.2, the optimization variables for each time-step k of the 

ShoTS problem are: 

1. Pl
in,j,k: input power of form l to unit j; 

2. δj,k: on-off switch of unit j, binary variable that is 1 if the unit is producing and 0 otherwise;  

3. γj,k: stand-by switch of unit j, binary variable that is 1 if the unit is kept in stand-by mode (i.e. 

on but not producing) and 0 otherwise;  

4. SUl
j,k: start-up cost as additional input power of form l for start-up of unit j; 

5. Pdiss,j,k: thermal power dissipated from unit j; 

6. Pgb,k: electrical power bought from the grid; 

7. Pgs,k: electrical power sold to the grid. 

Compared to LoTS, the conversion units are modeled with a more detailed relationship which takes 

into account the efficiency reduction at partial load. The linearity of the problem is paramount to keep 

the computational cost down. Hence, the input-output performance curve of each unit j is linearized 

as in Eq. (10) with performance coefficients α and β, or it is transformed into a piece-wise linear 

function [40].  

𝑃out,j
i = 𝛼j

i𝐸in,j
l + 𝛽j

i𝛿j (10) 

In similarity with the LoTS module, if any kind of short-term storage is present, the additional 

variables for the state of charge, charge and discharge power, and the related constraints can be easily 

added. Here, this part is omitted without losing the generality of the approach. 

 

2.3.2 Objective function 

Given Δt is the amplitude of a time-step and N the number of time-steps of the ShoTS prediction 

horizon, corresponding to D days, the objective function Eq. (11) is the total operating cost for this 

time interval: 
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∑ [
𝑐f

𝐿𝐻𝑉
∑ (𝑃in,j,k

f + 𝑆𝑈j,k
f + 𝛾j,k𝑃sby,j

f )
j

+ 𝑐gb,k𝑃gb,k − 𝑐gs,k𝑃gs,k]

𝑁

𝑘=1

∆𝑡 (11) 

where cgb and cgs are the hourly purchase and sale costs of electricity and Pf
sby,j is the additional fuel 

power necessary for maintaining unit j in stand-by mode.  

 

2.3.3 Constraints 

Given Pl
dem,k is the power demand of vector l at time-step k, this is met through constraints similar to 

Eqs. (3): 

∑ (𝑃out,j,k
h − 𝑃diss,j,k)

j
− ∑ (𝑃in,j,k

h + 𝑆𝑈j,k
h + 𝛾j,k𝑃sby,j

h )
j

= 𝑃dem,k
h    ∀ 𝑘 (12a) 

∑ 𝑃out,j,k
c

j
− ∑ 𝑃in,j,k

c

j
= 𝑃dem,k

c    ∀ 𝑘 (12b) 

∑ 𝑃out,j,k
el

j
− ∑ (𝑃in,j,k

el + 𝑆𝑈j,k
el + 𝛾j,k𝑃sby,j

el )
j

+ 𝑃gb,k − 𝑃gs,k = 𝑃dem,k
el    ∀ 𝑘 (12c) 

The technical and operating constraints include upper and lower power exchange boundaries in Eqs. 

(13), up and down ramp constraints in Eq. (14), start-up costs in Eq. (15), as well as the inequality 

for heat dissipation in Eq. (16):  

𝛿j,k𝑃in,min,j ≤ 𝑃in,j,k ≤ 𝛿j,k𝑃in,max,j  ∀ 𝑗, ∀ 𝑘 (13a) 

0 ≤ 𝑃gb,k ≤ 𝑃gb,max  ∀ 𝑘 (13b) 

0 ≤ 𝑃gs,k ≤ 𝑃gs,max  ∀ 𝑘 (13c) 

∆𝑃down,j ≤ 𝑃in,j,k+1 − 𝑃in,j,k ≤ ∆𝑃up,j  ∀ 𝑗, ∀ 𝑘 𝜖 [1, 𝑁) (14) 

𝑃SU,j
l (𝛿j,k+1 − 𝛿j,k − 𝛾j,k) − 𝑆𝑈j,k

l   ∀ 𝑗, ∀ 𝑘 𝜖 [1, 𝑁) (15a) 

𝛿j,k + 𝛾j,k ≤ 1  ∀ 𝑗, ∀ 𝑘 (15b) 

𝛾j,k+1 − 𝛾j,k − 𝛿j,k ≤ 0  ∀ 𝑗, ∀ 𝑘 𝜖 [1, 𝑁) (15c) 

𝑃diss,j,k ≤ 𝑃out,j,k
h   ∀ 𝑗, ∀ 𝑘 (16) 

In the equat ons abo e, ΔPup and ΔPdown are ramp boundaries when increasing or decreasing the 

power input to a unit, respectively, while Pl
SU,j is a fixed additional input power when unit j is subject 

to a start-up. Eqs. (15) together indicate that a unit cannot be switched on and in stand-by mode at the 

same time, and this additional input power is assigned only when there is actually a start-up. The 

initial values of δ and γ are set starting from the actual plant state acquired from the real system.  



16 

 

Other constraints regard the unit operation minimum up-time and down-time, which follow the 

method presented in [40] and are omitted for the sake of brevity. Furthermore, proper hierarchical 

inequality constraints [41] are added in order to avoid the symmetry problem that appears in MILP 

when there are multiple identical conversion units. 

Finally, the long-term constraints are formulated starting from the solution of the LoTS problem. Two 

examples of the maximum and minimum fuel consumption over the ShoTS prediction horizon and 

maximum operating time of unit j are reported in Eqs. (17) and (18), respectively. Nevertheless, 

analogous formulations can be written for other requirements, such as the maximum and minimum 

production of a cogeneration unit or electricity exchange with the grid.  

∑ ∑ 𝑚in,j,k
f

j

𝐷

𝑘=1

≤ ∑ ∑ 𝑃in,j,k
f

j
∆𝑡

𝑁

𝑘=1

≤ ∑ 𝑀in,j,k
f

𝐷

𝑘=1

 (17) 

∑ 𝛿j,k

𝑁

𝑘=1

∆𝑡 ≤ ∑ 휀j,k ∙ 3600 ∙ 24

𝐷

𝑘=1

  ∀ 𝑗 

(18) 

where m, M and ε are obviously related to the LoTS optimal solution.  

 

2.4 Distribution module 

The development and demonstration of the distribution module through simulation and real-world 

case studies can be found in [38,42]. It contains a simplified gray-box model of the building, which 

can be identified with experimental or simulation datasets of a few days [38], and of the related branch 

of the district heating and cooling network. The model state is the indoor temperature, which is bound 

between the comfort limits when the building is occupied. Underlying physical phenomena such as 

heat losses and time delays in heat distribution are considered. An original Dynamic Programming 

algorithm regulates the network water mass flow rate and supply temperature to minimize the heating 

or cooling energy transferred through the branch over a two-day prediction horizon, while making 

sure that user comfort is maintained.  
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This approach has previously led to a significant reduction in energy consumption as regards the 

distribution side. This research extends its application by linking it to the combined ShoTS-LoTS 

algorithm with two time scales.  

 

2.5 Communication between modules 

The general logic of the proposed control solution and the communication between the algorithm and 

the external elements is represented in the flowchart in Figure 3.  

 

 

Figure 3. Flowchart of the communication between the MPC control modules and the district energy network. 
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After the initialization of the parameters, this procedure is carried out continuously with the LoTS 

and ShoTS different receding time horizon updates.  

In particular, during real-time operation the LoTS module follows the timeline schematized in Figure 

4. At each new day, the LoTS problem defined in Section 2.2 is written for the future period of the 

year (blue bar). The measurements from the real system are used to determine the actual operation 

and consumption, and to update the cumulated parameters (e.g. energy, fuel, and operating hours) of 

the previous period of the year (red bar). Once the solution has been found and the new long-term 

constraints have been defined, the horizon is diminished by one day and a new problem is solved. 

 

 

Figure 4. Timeline of the LoTS problem. 
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3. Application 

The combined optimization algorithm is tested on a real case study by means of Model-in-the-Loop 

(MiL) simulations. The dynamics of the real system is accurately represented by its digital twin in a 

simulation environment, which serves as a virtual test bench. All relevant variables of the system can 

be quickly monitored to evaluate the performance of different control logics over an entire operating 

year. Hence, the proposed combined algorithm is applied and compared with the traditional way to 

manage the system.  

 

3.1 Case study description 

The case study is a hospital site located near the city of Ferrara, in northern Italy, with a yearly demand 

of heat, cold and electricity of 0.98, 0.83 and 1, respectively, when normalized with reference to the 

electrical demand for confidentiality reasons. The hospital is supplied by a district heating and a 

district cooling loop, while the thermal power station is a multi-energy system, illustrated in Figure 

5, comprising the following energy conversion units:  

• Four identical heat-only boilers (B) fed by natural gas, which supply the heating loop.  

• A trigeneration plant consisting of an internal combustion engine in cogeneration mode (CHP) 

and an absorption chiller (ABS). The latter supplies cooling power to the cooling loop. The 

thermal power produced by the CHP can be sent to the heating loop, to ABS or dissipated into 

the environment.  

• Four identical electric chillers (EC) which convert electrical power into cooling power for the 

cooling loop.  

The electrical power balance is satisfied by means of a bidirectional exchange with the power grid: 

when the sum of hospital electrical demand and EC input is higher than the CHP power production, 

the remaining electrical power is purchased, while in the opposite case the surplus from the CHP is 

injected into the power grid. Both exchanges are subject to the limitations of the grid capacity.  
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The operating parameters of all plants are reported in Table 3. The hospital also has a steam demand 

met through steam generators located in a dedicated area, which do not interact with the rest of the 

system. This section is omitted from the analysis without hindering the generality of the approach.  

The maximum yearly operating time of the trigeneration unit is set to 8400 h. In particular, two 

maintenance periods of eight days each are scheduled for mid-April and mid-September.  

 

Figure 5. Schematic representation of the case study with the involved energy conversion units and energy vectors.  

B: boilers. CHP: Combined Heat and Power. ABS: absorption chiller. EC: electric chillers. DHC: District Heating and 

Cooling network.  

 

Table 3. Main parameters of the thermal power station of the case study. The plant outputs are normalized with reference 

to the CHP electrical output for confidentiality reasons. 

Parameter B CHP ABS EC 

Number of units 4 1 1 4 

Input Natural gas Natural gas Heat Electricity 

Output Heat Electricity | Heat Cold Cold 

Nominal output [-] 2.6 1 | 0.93 0.52 1.6 

Nominal efficiency [-] 0.92 0.447 | 0.422 0.77 2 

Min modulation [%] 5 50 20 5 

Max operating hours [h] - 8400 8400 - 

 

The demands of heating, cooling and electrical power for three weeks of the year taken as 

representative examples of winter, mid-season and summer operation are reported in Figure 6, while 

the related market prices of electricity are shown in Figure 7. All demands are normalized with respect 
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to the maximum value reached by one of the energy vectors, due to confidentiality reasons. It is worth 

noting the high variability of the boundary conditions during the week but also throughout the year. 

Indeed, the combined MPC has to deal with these exogenous factors.  

 

Figure 6. Normalized heating, cooling and electricity demand of the hospital case study of a winter, mid-season and 

summer week, with reference to the maximum value reached by one of the energy vectors.  
 

 

Figure 7. Market price of electricity for winter, mid-season and summer week. 
 

3.2 Simulation setup 

The system digital twin is built in the MATLAB®/Simulink® environment, by assembling the 

components from a custom library for energy systems simulation created by the authors and validated 

in several cases [42,43]. All blocks involve the physical flows of matter (e.g. water and fuel flows) 
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and energy as inputs and outputs. The energy conversion units can be controlled by varying such 

input flows. Their performance is determined by the operating parameters listed in the manufacturers’ 

datasheets and generally involves a downgrading of the efficiency with the load and temperature 

conditions (e.g. in the case of CHP and EC). Both circuits for district heating and district cooling are 

composed by the pumps, expansion vessels, supply and return pipelines, primary heat exchangers 

(i.e. for transferring the thermal power produced by the plants to the circulating water) and user 

substation heat exchangers. The hydraulic and thermal dynamics of all elements are considered.  

 

Benchmark control  

The benchmark control logic represents the traditional way in which the energy systems of the real-

world hospital are operated. The CHP is an electrical-load-following unit which, given the system 

size, results in a continuous operation at nominal load, except for the maintenance periods during 

which it is switched off, while ABS operates only during June, July and August. The water 

temperature in the supply pipeline of the district heating circuit is regulated as follows:  

• if the temperature is lower than the set-point (i.e. 85 °C), the boilers are activated in cascade 

by a feedback loop; 

• if the temperature is higher than the set-point, the boilers are switched off and part of the heat 

from the CHP, regulated by a feedback loop, is dissipated.  

The supply temperature of the district cooling circuit is controlled similarly: 

• if it is lower than the set-point (i.e. 6 °C), all units producing cooling power are switched off; 

• if it is higher than the set-point, the EC are activated in sequence to provide sufficient cooling 

power until the desired value is reached.  

There are additional low-level controllers for the system actuators. In particular, a feedback loop 

varies the pump rotational speed in order to match the reference temperature difference between 

supply and return in the user substation (i.e. 25 °C and 6 °C for the heating and cooling circuits, 

respectively).  
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MPC control 

Conversely, the MPC control logic gives the set-points for the operation of CHP and ABS, as well as 

the activation signals of the boilers and EC. These data correspond to the first time-step of the optimal 

sequence calculated by ShoTS in accordance with LoTS constraints. However, the boilers and EC are 

still regulated in series as in the benchmark case, in order to ensure compliance with the desired 

operating parameters of the district heating and cooling network. In addition, the actual demand of 

the energy vectors implemented in the digital twin is different from the forecast fed to the ShoTS and 

LoTS modules. Thus, for these reasons, the actual operation registered in the system digital twin 

differs from that predicted by the combined MPC. At every ShoTS time-step, the state of the plants 

and actual energy and fuel consumption are acquired and sent to the MPC algorithms, which update 

their parameters and solutions according to the flowchart in Figure 3. This MiL procedure, 

summarized in Figure 8, is carried out continuously for the entire operating year.  

The strategy to regulate the low-level actuators is the same as the benchmark case.  

 

 

Figure 8. Model-in-the-Loop simulation setup. It is highlighted that the forecast disturbances sent to the MPC are different 

from the actual disturbances, as in a real-world case.  
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4. Results and discussion 

This section presents the results of the simulation case study described in Section 3. The comparative 

results over a whole year of operation with the benchmark control strategy and with the combined 

MPC controller are reported in Table 4. The total operating cost of the system management is 

calculated as the LoTS cost function: sum of the fuel cost and electricity purchased from the grid 

decreased by the revenues from the sale of surplus electricity (considering the actual market price 

hour by hour) and the energy efficiency certificates awarded at the end of the year. The carbon dioxide 

emissions related to system operation are calculated by assuming emission factors of 2.16 kgCO2/Nm3 

and 445.5 kgCO2/MWh for natural gas [44] and electricity from the grid [45], respectively. As for 

natural gas, a fixed price of 0.23 €   3 has been considered.  

 

Table 4. Comparative results for the whole-year simulations with different control strategies.  

Result MPC vs. benchmark 

Operating cost  -9.7% 

Primary energy consumption  -0.05% 

Fuel consumption +9.9% 

CHP overall efficiency +4.9% 

CHP primary energy saving +12.7% 

CHP energy efficiency certificates +9.8% 

Dissipated heat -99.8% 

Electricity sale to grid +625% 

Electricity purchase from grid -27.4% 

Carbon dioxide emissions +0.97% 

 

It can be noted that the MPC accomplishes the goal of reducing the total operating cost of system 

management over the whole year. The performance of the CHP plant is significantly enhanced 

compared to the benchmark control, since both the overall efficiency (i.e. the ratio between the sum 

of the useful electrical and thermal energy produced and the fuel energy input) and total primary 

energy saving of the unit increase. In particular, the CHP is operated in order to reduce heat 

dissipation as much as possible (-99.8%) and to increase the revenues from incentives on high 

efficiency cogeneration (+9.8%). This is achieved thanks to the LoTS cost function, which is able to 

maximize the energy efficiency certificates (evaluated on the basis of the whole-year operation) and 
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to transmit information on this optimal yearly operation to the ShoTS module so that it is converted 

into real-time control action.  

Together with a 9.7% reduction in the operating cost, the global purchase of electricity is reduced by 

more than 27% in the MPC case, showing that it is preferable to exploit the production from the 

available units in the thermal power station and reduce dependency on the power grid. This comes 

together with an increase in fuel consumption by around 10% but also with a slight decrease in 

primary energy consumption, calculated by considering the net electricity between that purchased 

and that injected into the grid (an average conversion efficiency of the Italian national grid of 0.46 is 

assumed). Finally, carbon dioxide emissions are slightly higher in the MPC operation. However, it is 

important to recall that the cost functions of both long-term and short-term optimization algorithms 

do not include the environmental performance of the system. A different goal or a multi-objective 

optimization strategy [16] may lead to a different output. 

Figure 9 shows that the described results are due to the different shares of energy vector production 

and consumption. In particular, the absorption chiller is used to a greater extent in the MPC operation 

(i.e. around 47% of total cold production). This is because MPC makes it possible to calculate the 

cost-effectiveness of the absorption chiller and electric chiller share more precisely also when the 

cold demand is relatively low (winter and mid-seasons), compared to the benchmark case in which a 

fixed operation schedule is defined.  

Furthermore, Figure 10 confirms the lower share of electricity from the grid in the total primary 

energy in favor of higher fuel exploitation. Since this was obtained with a conservative natural gas 

price, a different value or a variable price may give a difference result. It is also remarked that the 

heat dissipation is reduced to a value lower than 1%.  
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Figure 9. Share of total energy production and consumption in the benchmark and MPC operation (heat, cold and 

electricity).  

 

 

Figure 10. Share of primary energy and CHP production. 
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The share of the production and consumption of the different forms of energy is further detailed in 

Figure 11, where the monthly values are reported and compared. All values are normalized with 

respect to the maximum of each chart, in order to show the variation in each contribution over the 

year. It can be noted that the MPC operation favors heat production in colder months, in order to 

adopt the absorption chiller. Furthermore, it avoids a significant amount of heat dissipation in 

particular in May, September and November, when the user heat demand is lower and the CHP is 

modulated more effectively. As for cold production, the trigeneration is controlled in such a way that 

the exploitation of electric chillers is almost avoided in winter.  

In agreement with previous studies from the authors [38], the presented optimal control strategy 

displays the best performance during mid-seasons, when the external conditions are generally subject 

to greater variations, which can be effectively forecast and dealt with by the MPC. The hourly shares 

of energy production and consumption during a representative spring day (i.e. May, 10) are illustrated 

in Figure 12, in order to underline these effects. 

 

  

(a) (b) 

Figure 11. Share of (a) monthly energy production and (b) monthly energy consumption in the benchmark and MPC 

operation (heat, cold and electricity). The bars highlighted in bold are related to the MPC operation. All values are 

normalized with respect to the maximum of each chart. The share of cold consumption is omitted as it is trivial. 
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(a) (b) 

Figure 12. Share of (a) hourly energy production and (b) hourly energy consumption in the benchmark and MPC operation 

during a May day (May, 10). The bars highlighted in bold are related to the MPC operation. All values are normalized 

with respect to the maximum of each chart. The share of cold consumption is omitted as it is trivial. 

 

It is worth remarking that these data are not a result of the perfect forecast either of the ShoTS or the 

LoTS modules, but they are related to the actual operation of the controlled system, which is subject 

to exogenous factors with a certain degree of uncertainty, as in reality.  

Figure 13 shows the computational feasibility of the method in real-time control. Each bar indicates 

the absolute frequency of the solution time of the ShoTS problem. The distribution is highly gathered 

toward solution times lower than 5 seconds, with just a few occurrences higher than 10 seconds. This 

is considered acceptable for the supervisory control of a multi-energy system. Furthermore, it is worth 

pointing out that the solution of each one of the MPC modules contains the optimal control sequence 

of the next prediction horizon, which is saved in the memory. If the problem does not converge or 

takes an infeasible computational time at a certain time-step k, it is possible to rely on the solution 

obtained at time-step k-1 for time-step k. This backup configuration may lead to sub-optimal operation 

locally, but it is regarded as a feasible option to deal with potential algorithm failures in real-time 

control. 

 

 

   

 
                   

 

   

 
               

     

                                       
 

   

 
                      

 r d    

 

   

 
                

To    To      ss  at on

                                       
 

   

 
                       

To user To   To gr d



29 

 

 

Figure 13. Distribution of computational time in the ShoTS calculation over the whole year simulation. 

 

The calculation times of all LoTS iterations during all days of the simulated year are instead shown 

in Figure 14. As expected, the solution time decreases over the year, as the consequent decreasing 

prediction horizon up to the end of the year makes the problem dimension smaller. In any case, the 

computational effort is very low even during the first days for a module that has to be updated every 

day, because LoTS solves a Linear Programming, which is faster than an MILP. This allows several 

upgrading options to be considered for the LoTS problem, e.g. a prediction horizon of 365 days for 

all yearly iterations, or even scheduling maintenance during optimal time periods as part of the 

optimization problem.  

Overall, the applicability of the proposed tool in autonomous real-time control of multi-source district 

energy networks has been assessed. Thus, it may also be used to automatically control (i) systems 

bound by specific contract limitations on electricity purchase/injection from/into the grid and on fuel 

purchase, and (ii) systems with long-term storage.  
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Figure 14. Computational time of the LoTS calculation on all days of the year. 

 

Finally, this research is on the same path as the global framework demonstrated in [42] for the 

development of smart controllers for integrated energy systems. After the setup and verification of 

the algorithm in a simulation environment, this is currently in the phases of (i) implementation in the 

real-world hospital case study and (ii) experimental investigation. The presented application serves 

as a baseline for the future experimental study of the hospital site. Data collection campaigns from 

sensors installed in the real system will be carried out in order to obtain a complete overview of the 

new MPC performance. 

Due to the fact that the algorithm operates as a supervisory controller generating optimal system set-

points (which are maintained by existing low-level controllers within the plants), the real-world 

implementation is straightforward and does not require changes to the system layout. Indeed, the 

algorithm is able to (i) run automatically on a computer or control toolbox within the control room 

and (ii) pass the calculated set-points to the plant through standard communication protocols. 

Together with the real field tests, the future developments of the project will focus on the investigation 

and further assessment of the combined algorithm properties and performance in more complex 

networks, such as: 
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• systems with different types of storage, e.g. both short-term and seasonal storage; 

• systems with a higher penetration of fluctuating renewable energy sources, with the 

integration of power-to-gas technologies to serve as storage; 

• renewable energy communities.  

 

 

5. Conclusions 

This work presented an original combined optimization algorithm for optimally managing multi-

source energy systems. The optimization was divided into three coordinated modules, each 

responsible for part of the problem: different multi-agent distribution modules minimized the energy 

supplied to the branches of the distribution network, while two combined supervisory modules 

performed smart control of the production site. In particular, the long-term supervisory algorithm 

solved a whole-year scheduling problem considering factors such as year-based incentives and 

contracts. It also determined the long-term constraints for the short-term supervisory algorithm, which 

calculated in real-time the optimal control inputs over a short prediction horizon. Each of these 

modules was a Model Predictive Control (MPC) that was periodically updated (every time-step) with 

new information deriving from the controlled system monitoring and disturbance forecast, in order 

to improve its robustness with respect to exogenous factors.  

The original approach was tested on a hospital case study, comprising a multi-energy thermal power 

station with boilers, electric chillers, a Combined Heat and Power unit (CHP) and an absorption 

chiller (ABS) for the production of heating, cooling and electrical power, as well as two district 

heating and cooling loops that supply energy to the hospital buildings. The proposed combined 

algorithm was used to manage in real-time the system digital twin in a simulation environment, and 

the results were compared to those obtained with a traditional benchmark control. The MPC approach 

led to a 9.7% reduction in yearly operating cost and to slightly lower global primary energy 

consumption. The operation of the CHP unit was significantly enhanced to reduce heat dissipation as 
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much as possible and to use such excess heat as input to ABS. Moreover, the CHP overall efficiency 

and primary energy saving increased by 4.9% and 12.7%, respectively, leading to a greater financial 

remuneration of high efficiency cogeneration through incentives. In addition, the system dependency 

on the power grid was reduced, as there was more than a 24% decrease in the total amount of 

electricity purchased. 

These outcomes were made possible by binding the short-term optimization module through long-

term constraints deriving from the whole-year optimization module, leading to effective integration 

not only of different energy vectors but also of different time scales in smart control. The modular 

and generic nature of the combined algorithm makes it applicable to several types of multi-energy 

systems, including the contribution of power-to-gas technologies, long-term storage and renewable 

energy sources. These features will be further investigated in future upgrades of this research, together 

with its experimental verification in the real-world case study.  
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Nomenclature 

C  daily average cost [€/MWh]  

c  cost  €   h  or  €   3] 

D  number of days of ShoTS prediction horizon [-] 

E  energy [MWh] 

LHV  lower heating value [kJ kg-1] 

M  maximum auxiliary variable [MWh] 

m  minimum auxiliary variable [MWh] 

N  number of time-steps [-] 

Nd  number of days of LoTS prediction horizon [-] 

OH  operating hours [h] 

P  power [kW] 

SU  start-up additional power [kW] 

t  time [s] 

α  coefficient of unit performance curve [-] 

β  coefficient of unit performance curve [kW] 

γ  stand-by switch (binary) [-] 

δ  on-off switch (binary) [-] 

ε  daily availability variable [-] 

η  efficiency [-] 
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Superscripts 

c  cooling 

el  electricity 

f  fuel 

h  heating 

I  related to overall efficiency 

 

Subscripts 

bg  bought from power grid 

dem  demand 

diss  dissipation 

down  related to a decrease in power input 

el  electrical 

f  fuel 

h  thermal 

in  input 

inc  incentive 

j  generic unit 

k  generic time-step 

l  generic energy vector 

max  maximum 

min  minimum 

output  output 

past  related to the previous period of the year 

ref  reference 

sby  related to stand-by mode 
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sg  sold to power grid 

SU  related to start-up  

up  related to an increase in power input 

y  yearly 

 

Acronyms 

ABS  Absorption chiller 

B  Boiler 

CHP  Combined Heat and Power 

DHC  District Heating and Cooling 

EC  Electric chiller 

LoTS  Long-Term Supervisory module 

MiL  Model-in-the-Loop 

MILP  Mixed Integer Linear Programming 

MPC  Model Predictive Control 

PES  Primary Energy Saving 

ShoTS  Short-Term Supervisory module 

 


