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Abstract: Bioactive peptides refer to as short peptides (3–20 amino acid residues in length)
endowed of specific biological activities. The identification and characterization of
bioactive peptides of food origin are crucial to better understand the physiological
consequences of determined foods, as well as to design novel foods, ingredients,
supplements, and diets to counteract the onset or worsening of metabolic disorders.
For this reason, the identification of bioactive peptides is also relevant from a
pharmaceutical standpoint. Nevertheless, the systematic identification of bioactive
sequences of food origin are still challenging and relies mainly on the so defined
“bottom-up” approaches, which rarely results in the total identification of most active
sequence. Conversely, “top-down” approaches pursue the identification of bioactive
sequences with certain features and may be more suitable for the precise identification
of very potent bioactive peptides. In this context, this work presents a top-down,
computer-assisted and hypothesis-driven identification of potent angiotensin I
converting enzyme inhibitory tripeptides, as a proof of principle. A virtual library of 6840
tripeptides was screened  in silico  to identify potential highly potent inhibitory peptides.
Then, computational results were confirmed in experimental trials leading to the
identification of a very potent novel sequence, LMP, with an IC  50  of 15.8 and 6.8 µM
in cell-free and cell-based assays, respectively. In addition, a bioinformatic approach
was used to search potential food sources for LMP and yolk proteins were identified as
a possible relevant source worthy of being analyzed further. Overall, the method
presented may represent a powerful and versatile framework for a systematic, high-
throughput and top-down identification of bioactive peptides.
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 top-down, computer-assisted strategy for ACE inhibitory tripeptides identification 

 virtual library of 6840 tripeptides was screened in silico to identify ACE inhibitory peptides 

 LMP is a new potent ACE-inhibitory peptide with an IC50 of 15.8 µM 

 LMP inhibits the cellular ACE activity with IC50 6.8 µM  
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Abstract  17 

Bioactive peptides refer to areas short peptides (3–20 amino acid residues in length) 18 

endowed of specific biological activities. The identification and characterization of bioactive 19 

peptides of food origin are crucial to better understand the physiological consequences of 20 

determined foods, as well as to design novel foods, ingredients, supplements, and diets to 21 

counteract the onset or worsening of mild metabolic disorders. For this reason, the 22 

identification of bioactive peptides is also relevant from a pharmaceutical standpoint. 23 

Nevertheless, the systematic identification of bioactive sequences of food origin are is still 24 

challenging and relies mainly on the so defined “bottom-up” approaches, which rarely 25 

results in the total identification of most active sequences. Conversely, “top-down” 26 

approaches pursue aim at the identifying ication of bioactive sequences with certain 27 

features and may be more suitable for the precise identification of very potent bioactive 28 

peptides. In this context, this work presents a top-down, computer-assisted and hypothesis-29 

driven identification of potent angiotensin I converting enzyme inhibitory tripeptides, as a 30 

proof of principle. A virtual library of 6840 tripeptides was screened in silico to identify 31 

potential highly potent inhibitory peptides. Then, computational results were confirmed in 32 

experimentally and trials leading to the identification of a very potent novel sequence, LMP 33 

was identified. LMP showed , with an IC50 of 15.8 and 6.8 µM in cell-free and cell-based 34 

assays, respectively. In addition, a bioinformatics approach was used to search potential 35 

food sources for of LMP.  and yYolk proteins were identified as a possible relevant source to 36 

worthy of being analyzed in further experiments. Overall, the method presented may 37 

represent a powerful and versatile framework for a systematic, high-throughput and top-38 

down identification of bioactive peptides.  39 

 40 

Keyword: bioactive peptides, top-down approach, angiotensin I converting enzyme, in silico 41 

screening, egg proteins  42 
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1. Introduction  43 

Bioactive peptides are amino acid sequences, generally 3–20 amino acid residues in length, 44 

endowed of  and refer to as some biological activities, which may be ly active peptides that 45 

are encrypted into proteins and remaining inactive until they are released upon protein 46 

hydrolysis (Mora et al., 2019). In the last decade, bioactive peptides of food origin have 47 

gained a growing interest as they potentially determine a measurable modulateion of 48 

essential biological functions, including the regulation of blood pressure, cholesterol level, 49 

and glucose metabolism, among the others (Moller et al., 2008; Peighambardoust et al., 50 

2021). From a food science standpoint, the identification and characterization of bioactive 51 

peptides released and made available upon food digestion is crucial an important piece of 52 

information for to understanding the possible health effects of specific food on human 53 

healths, as well as to rationally design specific diets, foods, or food supplements to 54 

counteract the onset or the aggravation of mild metabolic disorders (Dellafiora et al., 2015; 55 

Li et al., 2018). Nevertheless, thanks to the broad array of biological activities, the 56 

identification of bioactive sequences is also relevant to the from a pharmaceutical field. In 57 

this respect, bioactive peptides  purpose either can be considered as drug candidates per se 58 

or leads to derive peptido-mimetic molecules with enhanced pharmacological properties 59 

(D'Annessa et al., 2020; Lenci and Trabocchi, 2020; Uhlig et al., 2014). In both cases, the 60 

development of reliable and high-throughput methods to identify and characterize bioactive 61 

sequences is getting more and more desirableadvisable.  62 

Nowadays, despite the advances in the analytical methods, the comprehensive 63 

identification of bioactive peptides encrypted in food is still challenging and mainly relies on 64 

the so defined “bottom-up” approaches (Schrader, 2018). These approaches are often time-65 

consuming and typically based requireon: i) the digestion of food using consolidated in vitro 66 

digestive models (either static or dynamic) or the extraction of proteins from food sources 67 

of interest and theirfollowed by their digestionhydrolysis using enzymes or other chemical 68 

means; ii) the description of peptidomic fractions made either available or accessiblefor the 69 

absorption; and iii) the biological testing of a selection of sequences (Capriotti et al., 2016; 70 

Lammi et al., 2019). Frequently, the high number of sequences identified in digested 71 

samples needs to be rationally hierarchized to select a manageable number of hints to test 72 

experimentallyin experimental trials. In this respect, the use of computational methods may 73 
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estimate the bioactivity of identified sequences either qualitatively or quantitatively helping 74 

to identify highlight those most worthy of beingto test analyzed experimentally with high 75 

priority (Agyei et al., 2018; Marseglia et al., 2019; Yu et al., 2019). In this context, the choice 76 

of digestion protocols, along with,  the analytical precision to describe the peptidomic  77 

profilesprofile, and the reliability of computational prediction are key factors to ensure the 78 

comprehensive successful decryption of potent bioactive sequences included in food 79 

proteins. However, such analysisthis type of approach is inherently complex, and it is likely 80 

to fail the full mining of bioactive sequences considering due to the possible methodological 81 

inaccuracies, instrumental and experimental variability, or readout fluctuations. 82 

As opposed to such approachesConversely, “top-down” methods can refer to techniques to 83 

create organized bioactive structures, including peptides, either by etching down a bulk 84 

material or by manipulating engineering components them into specific locations (Smith et 85 

al., 2011). In the context of bioactive peptides of food origin, “top-down” methods are 86 

typically independent from food matrices. They target  and aim atthe identification of ying 87 

bioactive sequences with specific features,  that which could be searched afterwards on a 88 

second instance among those made available upon  digestion of given foods. These methods 89 

provide a high-throughput framework of analysis where, once define a chemical space to 90 

search, all the possible sequences within a given chemical space defined a priori may be 91 

theoretically analyzed. As a second step of analysis, specific active sequences might be 92 

searched within proteins, including but not limited to those of food origin, to identify the 93 

diverse types of sources potentially encrypting the bioactive sequences of interest. 94 

However, the experimental setup to characterize properly the bioactivity of peptides may 95 

be burdensome, limiting in practice the number of sequences undergoing testing. 96 

Therefore, similarly to “bottom-up” methods, “top-down” approaches require a careful 97 

prioritization of sequences to test and a rational design of experiments to make feasible the 98 

analysis in a real-world scale. 99 

In this context, as a proof-of-principle, this work dealt with a top-down, computer-assisted 100 

and hypothesis-driven identification of potent angiotensin I converting enzyme (ACE; EC 101 

3.4.15.1) inhibitory tripeptides. ACE is a key player in the blood pressure regulation as it is a 102 

carboxy-dipeptidase transforming the inactive peptide angiotensin I into the vasoconstrictor 103 

peptide angiotensin II (Vasquez-Villanueva et al., 2019). Therefore, ACE inhibition may result 104 

in an appreciable reduction of the blood pressure in hypertensive subjects (Kaur et al., 105 
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2021). In this respect, , and to that end many promising peptides of food origin have been 106 

identified over the years (e.g. (Cao et al., 2020; Vasquez-Villanueva et al., 2019)). 107 

Specifically, the present work relied on a knowledge-based in silico screening of a semi-108 

combinatorial library of tripeptides including all the possible non-repeated permutations 109 

using the 20 proteinogenic amino acids (6840 different sequences in total) to identify potent 110 

in vitro ACE inhibitory sequences never described before. The analysis focused on 111 

tripeptides as they can have a relatively high degree of bioavailability and shown an 112 

appreciable abdsorption by enterocytes (van der Wielen et al., 2017). Once ascertained tThe 113 

screening performance was assessed first. , Then, a selection of top-scored sequences never 114 

studied before to the best of our knowledge for ACE inhibition underwent a 3D modeling 115 

study to identify entries peptides to test experimentally.for the biological activity 116 

assessment.  LMP was the best sequence identified in the in silico studies and it underwent 117 

ACE inhibition testing in vitro using cell-free and cell-based trials.  In particular, the effect of 118 

the best scored sequence (LMP) on the in vitro and cellular ACE activity was investigated 119 

using the porcine kidney recombinant ACE enzyme. The biological characterization of LMP 120 

activity confirmed itsa high inhibitory potential. Finally, the presence of activity of LMP, 121 

whose relevance LMP in proteomes of organisms relevant to food production and its 122 

possible release upon proteases activity has been investigated through bioinformatic 123 

means.in food area was estimated through a bioinformatic approach searching its presence 124 

in the proteomes of organisms relevant to the food production.   125 

   126 

2. Material and methods 127 

2.1 Computational analysis  128 

2.1.1 Buildup of tripeptides library 129 

The virtual library of tripeptides included all the possible non-repeated permutations 130 

considering the 20 proteinogenic amino acids, while excluding peptides with repeated 131 

amino acids in their sequence (6840 sequences in total ware included). The 3D structures 132 

were built in the Trypos .mol2 format using the Biopolymer tool implemented in Sybyl, 133 

version 8.1 (https://www.certara.com) taking advantage of an ad hoc spl (sybyl 134 

programming language) script to ensure the automatic and bulk production of the entire 135 
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library of peptides. The C-terminal and N-terminal were set de-protonated and protonated, 136 

respectively.  137 

2.1.3 Ligand-based virtual screening of tripeptides library  138 

A multiple-model ligand-based virtual screening was applied to mine highly active 139 

sequences from the virtual library. To that end, aA selection of the most active sequences 140 

(i.e. with a reported IC50 lower than 1 µM) reported recorded in the two reference 141 

benchmark database for of bioactive peptides, i.e. BIOPEP-UWM 142 

(http://www.uwm.edu.pl/biochemia/index.php/en/biopep) (Minkiewicz et al., 2019) and 143 

AHTPDB (https://webs.iiitd.edu.in/raghava/ahtpdb/index.php) (Kumar et al., 2015), were 144 

selected, along with captopril (a strong ACE inhibitory drug), as the reference template 145 

molecules to perform 5 independent ligand-based virtual screening using the LiSiCA (Ligand 146 

Similarity using Clique Algorithm) algorithm (Legnik et al., 2015). This algorithm provides a 147 

fast ligand-based virtual screening platform to search quantify for chemical similarities 148 

between a reference template (strong ACE inhibitors in this case) and a database of target 149 

compounds. LiSiCA, and it expresses similarities using the Tanimoto coefficient, a gold 150 

standard to quantify chemical analogies. LiSiCA’s default parameters were used, with the 151 

exception of considering the 3D structures of ligands and setting with the exception of 152 

considering the 3D structure of ligands with the maximum allowed atom spatial distance for 153 

3D product graph set at 2. Specifically 154 

In more detail, LRW (reported IC50=0.2 µM), IVY (reported IC50=0.5 µM), GEP (reported 155 

IC50=0.3 µM), and IVR (reported IC50=0.8 µM) were arbitrarily selected to represent the 156 

chemical heterogeneity of the 14 sequences with an IC50 lower than 1 µM reported in the 157 

database at the time of analysis (i.e. LRW, IKW, GEP, LKP, MKP, IVY, MRW, IRY, IRW, LGP, 158 

LIY, MAP, IVR , LRP and VHW; for further details see section 3.1.1 and Table 1S, Supporting 159 

material). The structure of captopril was retrieved form PubChem 160 

(https://pubchem.ncbi.nlm.nih.gov; compound CID: 44093) and set deprotonated for the 161 

analysis. The sequences included in the library then underwent 5 independent virtual 162 

screening (i.e. one for each reference template) and the best score out of the five 163 

independent screening applied was used to estimate the likeliness of sequences to act as 164 

strong ACE inhibitor.  165 
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2.1.4 Docking studies   166 

Docking studies were performed on a selection of sequences to study the interaction with 167 

ACE from a structural standpoint. Specifically, docking simulations were performed using 168 

the GOLD software (Genetic Optimization for Ligand Docking, version 2020) as it already 169 

showed reliability to compute protein-ligand interactions (e.g. ref. (Maldonado-Rojas and 170 

Olivero-Verbel, 2011; Rollinger et al., 2006)). Docking protocol was set in agreement with 171 

previous studies that already succeeded to estimate the ACE inhibitory activity or peptides  172 

on ACE (Dellafiora et al., 2015; Dellafiora et al., 2020). Briefly, The models for both C- and N-173 

domains of ACE were derived from the Protein Data Bank (http://www.rcsb.org) structures 174 

having PDB codes 4APH and 4BZS, respectively (Kramer et al., 2014; Masuyer et al., 2012) as 175 

previously described (Dellafiora et al., 2015). The docking software GOLD implements a 176 

genetic algorithm that may cause fluctuations of scores. Therefore, each docking simulation 177 

was performed in triplicate and scores are expressed as means ± standard deviations.   178 

2.1.5 Pharmacophoric analysis   179 

The pockets of ACE were defined using GetCleft (Gaudreault et al., 2015), while the 180 

respective pharmacophoric imagines fingerprints were derived using the IsoMIF (Chartier 181 

and Najmanovich, 2015). Default parameters were used. As exception, the maximum 182 

distance value between the grid and residues atoms was set at 3, and a grid resolution of 1 183 

Å was used. 184 

2.1.6 Molecular dynamic simulations 185 

Molecular dynamic simulations were performed to investigate the geometrical stability of 186 

peptide-ACE complexes over the time, in agreement with a previous study (Dellafiora et al., 187 

2020). Briefly, simulations were performed using GROMACS (version 5.1.4) (Abraham et al., 188 

2015) with CHARMM27 all-atom force field parameters support (Best et al., 2012). Input 189 

structures were solvated with SPCE waters in a cubic periodic boundary condition, and 190 

counter ions (Na+ and Cl−) were added to neutralize the system. Prior to simulation, each 191 

system was energetically minimized to avoid steric clashes and to correct improper 192 

geometries using the steepest descent algorithm with a maximum of 5,000 steps. 193 

Afterwards, all the systems underwent isothermal (300 K, coupling time 2psec) and isobaric 194 
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(1 bar, coupling time 2 psec) 100 psec simulations before running 50 nsec simulations (300 K 195 

with a coupling time of 0.1 psec and 1 bar with a coupling time of 2.0 psec). 196 

2.1.7 Statistical analysis of docking results 197 

The docking simulations were run in triplicates and the statistical analysis of docking results 198 

was performed using IBM SPSS Statistics for Linux, version 25 (IBM Corp., Armonk, NY). The 199 

data was analyzed by one-way ANOVA (α = 0.05), followed by post hoc Fisher’s LSD test (α = 200 

0.05). Of note, the score assignment was found satisfyingly stable for the purpose of this 201 

work in all measurements (with a coefficient of variation lower than 3.5 %) and further 202 

replicates were considered not needed.   203 

2.1.8 Bioinformatic search of LMP in possible food sources 204 

The relevance of certain foods as a possible source of LMP was estimated using a 205 

straightforward bioinformatic approach through a peptide search into the proteome of 206 

chickens (Gallus gallus), garden peas (Pisum sativum) and Spirulina platensis (Arthrospira 207 

platensis) stored in the UniProt Proteomes repository (https://www.uniprot.org/proteomes; 208 

taxa ID 9031, 3888 and 118562, respectively). Only the sequences annotated as “reviewed” 209 

(i.e. records with information extracted from literature and curator-evaluated 210 

computational analysis) were considered for the analysis (i.e. 2,297; 398 and 2 sequences 211 

for chickens, garden peas and Spirulina platensis, respectively).  212 

The possible release of peptides from proteins has been calculated using the PeptideCutter 213 

tool (Gasteiger et al., 2005), which has been developed by the Swiss-Prot group and 214 

supported by the SIB Swiss Institute of Bioinformatics (https://www.sib.swiss/). The protein 215 

sequences in the FASTA format were used as input selecting the all set of proteases 216 

available. 217 

2.2 Experimental analysis  218 

2.2.1 Chemicals and sampling  219 

All chemicals (reagents and solvents) were from Sigma-Aldrich (St. Louis, MO, USA). Caco-2 220 

cells were obtained from INSERM (Paris, France; Dulbecco’s modified Eagle’s medium 221 

(DMEM), stable L-glutamine, foetal bovine serum (FBS), phosphate buffered saline (PBS), 222 
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penicillin/streptomycin and 96-well plates were purchased from Euroclone (Milan, Italy). 223 

The ACE1 Activity Assay Kit was from Biovision (Milpitias, CA, USA). The peptides LKP and 224 

LMP were synthetized by GenScript (Piscataway, NJ, USA) at >95% purity. 225 

2.2.2 In vitro evaluation of ACE inhibitory activity 226 

Peptides were tested as already described (Boschin et al., 2014a, b) evaluating hippuric acid 227 

(HA) formation from hippuryl-histidyl-leucine (HHL), as mimic substrate for angiotensin I. 228 

 229 

2.2.3 Cell line culture 230 

Caco-2 cells were routinely sub-cultured at 50% density and maintained at 37°C in a 90% 231 

air/10% CO2 atmosphere in DMEM containing 25 mM of glucose, 3.7 g/L of NaHCO3, 4 mM 232 

of stable L-glutamine, 1% non-essential amino acids, 100 U/L of penicillin and 100 μg/L of 233 

streptomycin (complete medium), supplemented with 10% heat-inactivated foetal bovine 234 

serum (FBS; Hyclone Laboratories, Logan, UT, USA). 235 

2.2.4 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay 236 

A total of 3 x 104 Caco-2 cells/well were seeded in 96-well plates and treated with 0.1 – 100 237 

µM of LKP and LMP, or vehicle (H2O) in complete growth media for 48 h at 37 °C under 5% 238 

CO2 atmosphere. Subsequently, the treatment solvent was aspirated and 100 µL/well of 3-239 

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) filtered solution added. 240 

After 2 h of incubation at 37 °C under 5% CO2 atmosphere, 0.5 mg/mL solution was 241 

aspirated and 100 µL/well of the lysis buffer (8 mM HCl + 0.5% NP-40 in DMSO) added. After 242 

10 min of slow shaking, the absorbance at 575 nm was read on the Synergy H1 fluorescence 243 

plate reader (Biotek, Bad Friedrichshall, Germany). 244 

2.3.5 Cell-Based ACE Activity Assay  245 

For the experiments, cells were seeded on 96-well plates at a density of 5 × 104 cells/well for 246 

24 h. The following day, cells were treated with 100 μL of LKP and LMP peptides (from 1.0 to 247 

50.0 μM) or vehicle in growth medium for 24 h at 37 °C. The next day, cells were collected 248 

and lysed scraped in 30 μL of ice-cold ACE1 lysis buffer and transferred in an ice-cold 249 

microcentrifuge tube. After centrifugation at 13,300 g for 15 min at 4 °C, the supernatant 250 
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was recovered and transferred into a new ice-cold tube. Total proteins were quantified by 251 

Bradford method, and 1.5 μg of total proteins (the equivalent of 1.5 μL) were added to 18 252 

μL of ACE1 lysis buffer in each well in a black 96-well plate with clear bottoms. For the 253 

background control, 20 μL of ACE1 lysis buffer were added to 20 μL of ACE1 assay buffer. 254 

Then, 20 μL of 4% of ACE1 substrate (in assay buffer) was added in each well except the 255 

background one and the fluorescence (Ex/Em 330/430 nm) was measured in a kinetic mode 256 

for 10 min at 37°C. 257 

2.3.6 Statistical analysis of biological experiments 258 

Statistical analyses of in vitro and cellular ACE activity data set were carried out by Student’s 259 

t-test using Graph-pad Prism 9 (SanDiego, CA, USA). Values were expressed as means ± sd; 260 

p-values < 0.05 were significant. 261 

 262 

3. Results 263 

3.1.1 Benchmarking and assessment of screening performances  264 

The computational analysis was benchmarked against the data reported so far in specific 265 

reference databases to develop the screening strategy and to check computational 266 

performances. In particular, the two reference databases used in this study were BIOPEP-267 

UWM (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) (Minkiewicz et al., 2019) 268 

and AHTPDB (https://webs.iiitd.edu.in/raghava/ahtpdb/index.php) (Kumar et al., 2015). The 269 

extraction of all the all set of sequences matching the chemical criteria used to build the 270 

library under analysis (i.e. tripeptides with not repeated amino acids) was performed first. 271 

At the time of analysis (last database access 20th of May 2021), BIOPEP-UWM included 1051 272 

sequences annotated as ACE inhibitors. Among them, 241 tripeptides were listed in total, 273 

with 171 sequences having showing non-repeated amino acid residues and havingexplicit 274 

molar IC50 values reported. Concerning AHTPDB, 1463 ACE inhibitory sequences annotated 275 

as ACE inhibitors were found. Among them, 398 tripeptides were listed, with 156 entries 276 

having ashowing non-repeated sequences and having explicit molar IC50 values reported. 277 

After removing redundancies, 213 tripeptides with non-repeated sequence with IC50 values 278 

ranging from 0.02 to 2700 µM were listed in total (Supporting material, Table 1S).  279 
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The final list of peptides was then analyzed to extract a selection of theose most active 280 

sequences (with IC50 values arbitrarily set as ≤ 1 µM) to be used as template molecules in 281 

the ligand-based virtual screening of the library under analysis. Specifically, the ligand-based 282 

screening used in the present work refers to as aconsisted in the computational 283 

hierarchization of library’sof  tripeptides included in the virtual library according to their 284 

chemical similarity to the strong tripeptides already characterized and recorded in the 285 

reference benchmark databases. In this respectIn principle, the higher the chemical 286 

similarity of uncharacterized sequences to verythe most potent ones peptides already 287 

characterized, the higher the chance to identify uncharacterized peptide with a high 288 

inhibitory activity. However, in principle this more likely the possibility to detect novel 289 

potent inhibitory sequences ismay reduce the chemical space under analysis likely leading 290 

to identify sequences with a marked chemical similar to those previously described. 291 

Considering the range of activity (IC50) reported in the reference databases (i.e. 0.02 – 292 

2700.00 µM), the threshold for the most potent sequences was arbitrarily set at 1 µM. The 293 

list of 213 peptides extracted from BIOPEP-UWM and AHTPDB included 15 sequences with 294 

IC50 ≤ 1 µM (Supporting material, Table S1) and, among them, 4 sequences were selected 295 

after a visual inspection as reference to describe the chemical heterogeneity observed: LRW 296 

(reported IC50=0.2 µM), IVY (reported IC50=0.5 µM), GEP (reported IC50=0.3 µM) and IVR 297 

(reported IC50=0.8 µM). The strong ACE inhibitory drug captopril (IC50=0.007 µM) (Li et al., 298 

2019) was included in the list of reference templates too.  299 

Of note, the library under analysis was likely to include, in addition to LRW, IVY, GEP and 300 

IVR, other sequences previously characterized and a certain number of sequences 301 

previously characterized and listed alreadylisted in BIOPEP-UWM or AHTPDB. Therefore, 302 

This piece of informationthis information  wasas used to assess the computational 303 

performance in terms of extraction efficiency ofto extract highly active sequences (with IC50 304 

values arbitrarily set as < 3 µM). Specifically, 33 sequences with an IC50 < 3 µM (excluding 305 

IVY, IVR, GEP and LRW) included in the virtual library were already annotated in BIOPEP-306 

UWM or AHTPDB (excluding IVY, IVR, GEP and LRW). To that end, the 5 reference templates 307 

mentioned above (i.e. LRW, IVY, GEP, IVR and captopril) were used as a template to run 5 308 

independent screenings of the whole virtual library. Specifically, 33 sequences with an IC50 < 309 

3 µM (excluding IVY, IVR, GEP and LRW) included in the library were already annotated in 310 

BIOPEP-UWM or AHTPDB. The ranking analysis of those 33 sequences in respect to the 311 
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whole library and according to the 5 hierarchies obtained in the five independent screenings 312 

gave the enrichment capacity of the method used. The strongest sequences (i.e. the 9 313 

sequences with an IC50 < 1 µM) were in the output’s top-ranked 7% in at least one of the 5 314 

independent screenings run, while the 94% of those with IC50 < 3 µM (i.e. 31 out of 33 315 

sequences) were in the top-ranked 10% in at least one of the 5 independent screenings. This 316 

outcome confirmed the efficacy of the multiple-model scoring screening method applied to 317 

identify enrich the top-ranked hierarchy with highly active tripeptides (Figure 1).  318 

3.1.2 Heuristic definition of the chemical space to analyze via molecular modeling 319 

The next step of computational analysis was the 3D molecular modeling of the most 320 

promising sequences highlighted by virtual screenings to better estimate their capability to 321 

interact and inhibit ACE. 322 

Once ascertained the capability of the procedure to enrich the top-ranked positions of 323 

virtual screening outcomes with potent ACE inhibitory peptides, aA knowledge-based 324 

approach to resize reduce the number of sequences to analyze via the chemical space to 325 

search with molecular modeling was applied. This step was necessary due to the higher 326 

computational cost demand of 3D modeling compared to the ligand-based screening that 327 

prevented that made unfeasible its application on the whole virtual entire library. The 328 

analysis of the most active sequences reported in the reference database provided the 329 

rational basis to identify a small set of  resize the number of sequences to a set suitable for 330 

being analyzed viaanalyze using molecular modeling. As shown in Table 1, the 13 most 331 

active tripeptides (IC50 ≤ 1 µM) had in the position 1 and 3 hydrophobic residues, with the 332 

exception of only one sequence with an arginine in position 3 (IVR). Specifically, I and L were 333 

prevalent in the first position while P was prevalent in the third position. Conversely, it was 334 

not possible to define a specific characteristic feature for the second position as both 335 

hydrophobic and hydrophilic residues were observedfound there. Therefore, it was inferred 336 

that branched hydrophobic amino acids in the first position with a proline in the third 337 

position are suitable important characteristic chemical features for of strong inhibitory 338 

peptides, in agreement with previous studies (Wu et al., 2006). 339 

On this basis, all the sequences in the library under analysis with a leucine and proline in the 340 

first and third position, respectively, were considered for the 3D modeling (19 tripeptides in 341 

total; Table 2). Among those, nine sequences were found in the list of tripeptides already 342 
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characterized and listed in BIOPEP-UWM or AHTPDB and therefore they were not 343 

exincluded from in the analysis. The remaining nine sequences, never tested before to the 344 

best of our knowledge for ACE inhibitory activity, underwent the virtual screening procedure 345 

to identifying the most promising sequences to analyze with 3D molecular modeling. As 346 

shown in Table 3, the three best ranked sequences (i.e. LIP, LTP and LMP) according to the 347 

average rank out of the 5 independent virtual screenings (i.e. LIP, LTP and LMP) underwent 348 

docking analysis. In agreement to previous studies, docking simulations may  to better 349 

evaluatee their capability of tripetides to interact with both the C- and N-terminal domain of 350 

ACE, in agreement with previous studies (Dellafiora et al., 2015; Dellafiora et al., 2020). The 351 

structurally related tripetide LKP, which was already characterized and annotated in the 352 

BIOPEP-UWM among the strongest sequences (IC50 of 0.3 µM), was used as also included in 353 

the analysis as a reference peptide.   in the light of its structural analogy. 354 

Keeping in mind that the docking scores may be proportionalcorrelate with  to the 355 

theoretical strengthen of ligand-pocket interaction, LMP was deemed the most promising as 356 

it recorded scores significantly higher than LIP and LTP (p < 0.05) in both ACE’s domain. 357 

Comparing LMP and LKP, the respective scores were not significantly different (p=0.57 and 358 

p=0.09 in N- and C-domain, respectively) and for them a similar interaction could be 359 

hypothesized. The calculated binding poses were then analyzed in the light of the 360 

pharmacophoric fingerprint of ACE’s pockets. Although the two pockets differ for some 361 

residues, they have a very similar pharmacophoric fingerprint, as previously described 362 

(Dellafiora et al., 2015). The small differences were found not relevant for the sake of this 363 

study and therefore only results concerning the C-terminal domain are presented for 364 

simplicity. As shown in Figure 2A, all the four tripeptides analyzed had the amino and 365 

carboxy termini engaged in polar contacts with the ACE binding site. Of note, tThe diverse 366 

capacity of the side chain in position #2 to satisfy the pharmacophoric requirements of the 367 

pocket could explain the diverse scores collected for LKP, LMP, LIP and LTP. Specifically, the 368 

space of the pocket receiving the side chain of residues in position #2 is mainly hydrophobic 369 

with a polar upper terminus part able to receive polar groups like hydrogen bond donors or 370 

positively charged bases. In this respect, the methionine of LMP was found better 371 

embedded into the hydrophobic space of the pocket compared to the isoleucine and 372 

threonine of LIP and LTP, respectively. This could determine a higher hydrophobic 373 

contribution to the binding event. LTP recorded the theoretically worst interaction as it 374 
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arranged into such a hydrophobic region the hydrophilic moiety of its threonine residue 375 

(i.e., the hydroxyl group of the 3-hydroxybutanoic side chain). Concerning LKP, the lysine 376 

side chain was found able to satisfy the hydrophobic region, but also to use the amino group 377 

to form additional polar interactions with the upper hydrophilic portion mentioned above. 378 

This additional contact, which is missing in the other 3 tripeptide analyzed, could suggest a 379 

potentially stronger interaction compared to LIP, LTP or LMP that mightpossibly resulting in 380 

a stronger inhibitory activity. 381 

On this basis, LMP was deemed the most promising among the set under investigation and 382 

it was further analyzed, in comparison with LKP, in molecular dynamic studies to check the 383 

geometrical stability of ACE-peptide complexes over the time, in agreement with a previous 384 

study work (Dellafiora et al., 2020). As shown in Figure 2B, according to the root-mean 385 

squared deviation, the geometrical stability of ACE-LKP complex was found constant over 386 

the time and similar to that of ACE-LKP complex. Therefore, molecular dynamics confirmed 387 

the capability of LMP to stably interact with ACE possibly determining a certain degree of 388 

inhibition., and likely inhibit ACE.  389 

3.2. Experimental assessment of in vitro and cellular ACE inhibitory potential of LMP  390 

The in vitro biological assessmentACE inhibitory potential of LMP on the in vitro ACE activity 391 

wasere evaluated using the porcine kidney recombinant form of the enzyme, using in 392 

comparison with LKP, as reference peptide. Both peptides efficiently inhibited the ACE 393 

activity by 97.4± 0.15 % and 89.8 ± 0.12 %, respectively, at 250 µM. In addition, LKP displays 394 

an IC50 value equal to 9.23±0.6 µM, whereas LMP equal to 15.8±0.2 µM (p<0.001,  (Table 4).  395 

Before cellular evaluation, however, it was necessary to perform MTT experiments to 396 

exclude any potential cytotoxic effect in the test system used (i.e., human intestinal Caco-2 397 

cells). Results suggested that in the range of concentration 0.1– 100 µM, no cytotoxic effects 398 

were observed for both peptides (Figure S1; Supporting material). Therefore, to evaluate 399 

their effects on the ACE activity expressed at a cellular level, human intestinal Caco-2 cells 400 

were treated with LKP and LPM in the range of concentration 0.1– 100 µM for 24 h. After 401 

cell lysis, the ACE activity was measured in the presence of a fluorescent substrate. In this 402 

assay, LKP and LMP inhibited the cellular ACE activity with a dose-response trend and IC50 403 

values equals to 3.8±0.23 and 6.8±0.34 µM, respectively, without significant difference  404 

(Figure 3).  405 
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 406 

3.3 Bioinformatic search of possible food-related sources of LMP 407 

As a proof of principle, Once ascertained in vitro the activity of LMP as potent ACE inhibitory 408 

tripeptide, tthe existence of possible food-related sources of LMP was search investigated 409 

through using a bioinformatics approach searching the presence of LMP sequence. In 410 

particular, LMP was searched into the proteome of chickens, peas and Spirulina platensis, as 411 

a proof of principle.  412 

As reported in Table 2S and 3S, 65, 12 and 1 LMP-containing proteins were identified in 413 

chicken, peas and S. platensis, respectively. The relevance of LMP-containing proteins of 414 

peas and S. platensis as a possible source of LMP could not be easily inferred due to the 415 

shortage of data on their actual abundance in food. Conversely, among the 62 proteins of 416 

chicken, 2 were deemed relevant as a possible source of LMP from a real world perspective 417 

(i.e. vitellogenin-1 and vitellogenin-2; UniProt ID P02845 and P87498) based on due to their 418 

abundance in importance in eggs being precursors of the major yolk proteins lipovitellins 419 

and phosvitin (Wang et al., 2020). In addition, based on the computational prediction of 420 

peptidase-mediated hydrolysis of those proteins, LMP was found possibly released from 421 

vitellogenin-2 upon cleavage by chymotrypsin and thermolysin. This evidence further 422 

supported the possible importance of this protein as a source of LMP.  423 

 424 

4. Discussion 425 

Bioactive peptides have gained a growing interest in the past years thanks to their potential 426 

to counteract mild metabolic disorders. From a food science standpoint, the identification of 427 

bioactive peptides from food sources still poses a major challenge thought their systematic 428 

identification is a key piece of information to rationalize the some biological effects 429 

outcome of certain foods or to design specific diet. Nowadays, “bottom-up” approaches are 430 

primarily used in the research ofto bioactive sequences of food origin. Although they may 431 

ensure the identification of potent bioactive sequences made available upon digestion, they 432 

can’not guarantee neither the identification of most active sequences nor the totality of 433 

bioactive peptides encrypted in a given sourcematrix. Conversely, T”top-down” approaches 434 

refers instead to as searching methods that are typically matrix-independent and they may 435 
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provide. These methods may complement the canonical bottom-up analysis providing a 436 

high-throughput platform to mine very potent bioactive sequences integrating the canonical 437 

bottom-up analysis. regardless the source they may be included in. In this context, as a 438 

proof of principle, the present work, as a proof of principle, dealt with a matrix-independent 439 

computer-assisted study where a semi-combinatorialy virtual library of 6840 tripeptides was 440 

screened to identify novel very potent in vitro ACE inhibitory sequences. The focus on 441 

tripeptides was based on the evidence that short sequences may have a higher epithelial 442 

permeability and bioavailability compared to longer sequences (van der Wielen et al., 2017).  443 

Computer-supported methods are nowadays well consolidated means to study the 444 

bioactivity of peptides, as previously described also for ACE inhibitory peptides. However, 445 

wide libraries of peptides are rarely investigated although their screening already identified 446 

proved to be an effective mean to identify novel bioactive peptides (e.g. (Chen et al., 2021)). 447 

Of note, ACE inhibitory peptides do not cause the possible adverse effects of ACE inhibitory 448 

drugs, although they typically a have less potent activity. As an example, captopril shows 449 

IC50 values in the nM range (Li et al., 2019)) while inhibitory peptides are typically active in 450 

the µM range. Keeping in mind that the most potent ACE inhibitory peptides identified so 451 

far showed activity in the low µM range, as per LKP (IC50 0.4 µM according to BIOPEP-452 

UWM), VPP and IPP (IC50 9 and 5 µM, respectively) (Li et al., 2019), the workflow 453 

succesuccessfully eded to identifiedy a novel and very potent ACE inhibitory sequence. 454 

Indeed, LMP was described for the first time to the best of our knowledge as a potent ACE 455 

inhibitory peptide with an observed IC50 in cell-free and cell-based assays of 15.8 and 6.8 456 

µM, respectively. LKP was included in this study as a reference compound, since its 457 

hypotensive effect has been previously characterized (Majumder et al., 2015; Majumder 458 

and Wu, 2010). Notably, LKP, which can comes be released from by the enzymatic digestion 459 

of egg white protein ovotransferrin and it proved to reduce , is a tripeptide that through the 460 

inhibition of ACE activity led to a significant reduction of the blood pressure (~30 mmHg) 461 

after orally administration in spontaneously hypertensive rats (SHRs) after oral 462 

administration via ACE inhibition. Interestingly, the change in blood pressure was 463 

accompanied by the preservation of nitric oxide (NO) dependent vasorelaxation and 464 

lowering of plasma angiotensin (Ang) II levels (Majumder et al., 2015). On the basis of the 465 

strong structural analogies between LKP and LMP, a certain di degree of activity in vivo can 466 
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be reasonably expected for LMP as well that is worth of further investigations with priority 467 

deserving further dedicated investigations. 468 

Of note, iIn the present study, LKP gave IC50 values slightly higher than thatat reported in 469 

BIOPEP-UWM (i.e. 9.2 and 3.7 µM obtained at in cell-free and cell-based trialsin vitro and 470 

cellular level, respectively, against 0.4 µM as per BIOPEP-UWM). This discrepancy could be 471 

due to the diverse experimental asset setup used, in agreement with a previous study, 472 

which suggesting that in vitro assays carried out with different methods may give slightly 473 

different numerical results, even though they are in the same range and therefore, 474 

comparable (Hernandez-Ledesma et al., 2003). In facts, the IC50 reported recorded by in 475 

BIOPEP-UWM was calculated obtained using the in vitro using assay in which the 476 

recombinant enzyme from rabbit lung was employed (Majumder and Wu, 2010), on the 477 

contrary,while in the present study, the recombinant porcine kidney enzyme was used in 478 

the present study. This difference could partially explain the small difference observed.  .  479 

Notwithstanding the different experimental protocolNevertheless, LKP was confirmed as a 480 

very potent ACE inhibitory peptide with an observed IC50 in the low µM range. In addition, 481 

its ACE-inhibitory mechanism of action was also investigated in a more realistic way using an 482 

assay based on human intestinal Caco-2 cells, which was recently optimized and successfully 483 

applied to study other food derived peptides (Lammi et al., 2020; Li et al., 2021). 484 

The significantly higher potency of LKP compared to LMP observed in cell-free assay and (p < 485 

0.001), which was not however significantbut not in cell-based trials experiments, in vitro 486 

and in ce, lls(p < … and …, respectively) could be partially explained in the light of the 487 

pharmacophoric analysis of docking poses. In this respect, the importance of both 488 

hydrophobic and polar interactions at the second amino acid position was defined on the 489 

basis of distribution of hydrophobic and hydrophilic characteristics of the space able to 490 

receive the amino acid side chaindescribed. Specifically, the lysine of LKP was found able to 491 

satisfy both those these key interactions.  using the polar side chain terminal to engage with 492 

polar contact the ACE binding site. Conversely, LMP’s methionine, which has no polar group 493 

in the side chain, could interact only via hydrophobic-hydrophobic interactions. This line of 494 

interpretation could also provide a mechanistic explanation to the high variability of 495 

residues observed in position 2. Indeed, both hydrophobic and hydrophilic side chains can 496 

contribute to the binding event whenever they can provide a proper geometry of 497 

interaction  avoiding hydrophobic-hydrophilic interferencematching the pharmacophoric 498 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

properties of that pocket region and avoiding polar-hydrophobic interferences. In this 499 

respect, LTP gave the worst computational records as it arranged the hydrophilic threonine 500 

hydroxyl group of threonine into the hydrophobic region of the pocket. In line with this 501 

interpretation, all the tripeptides listed in BIOPEP-UWM and AHTPDB with a threonine in 502 

position 2 had relatively worse IC50 values worse compared tothan LKP. 503 

On this basis, this manuscript provided a compelling line of evidence pointing suggesting the 504 

relevance of to the effectiveness of the workflow presented for the sake ofto identifying 505 

potent bioactive peptides. Moreover, the 3D modeling provided a mechanistic 506 

interpretation for the data collected to further understand the structural requirements of 507 

ACE inhibitory peptides.   508 

Concerning the identification of possible LMP sources, chickens and related products were 509 

described as potential candidates, although the relevance of peas and S. platensis could not 510 

be excluded completely. Indeed,, LMP was found in chicken vitellogenin-1 and vitellogenin-511 

2, among the others. These are precursors of the main yolk proteins of chicken eggs 512 

lipovitellins and phosvitin. Therefore, chicken egg yolk has been identified as a possible 513 

source of LMP worthy of beingdeserving further dedicated studied further. In this 514 

respectSpecifically, based on computational predictions, LMP was found potentially 515 

released from vitollogenin-2 upon cleavage by chymotrypsin and thermolysin. This evidence 516 

suggested that the release of LMP from vitellogenins and derived proteins might happen 517 

either during the gastrointestinal digestion (e.g. due to chymotrypsin action) or upon a 518 

certain food processing as thermolysin is a bacterial peptidase with a potential multi-519 

purpose use in food technologies (Ke et al., 2013; Tavano et al., 2018). Notably, the release 520 

of ACE-inhibitory peptides upon cleavage by thermolysine of food matrices has been 521 

previously reported (Tavano et al., 2018). In this respect, it must be noted that the 522 

hydrolysis yield of yolk proteins, including those containing LMP, could be purposely set 523 

acting on processing and treatment conditions to maximize the release of LMP.  524 

Moreover, yolk oligopeptides have been described to have an anti-hypertensive action 525 

(Grootaert et al., 2019). It is interesting to underline the potential synergistic activity of both 526 

LKP and LMP after egg protein consumption for lowering blood pressure.  Specifically, the 527 

release of LMP among the fraction made disposable to living organisms might have a role to 528 

determine the anti-hypertensive effects and it deserves further specific studies to better 529 

understand the biological impact of egg proteins. In addition, although the epithelia 530 
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abdsorption and the actual internal disposability need to be assessed in further studies, the 531 

data collected in experimental trials support the possible relevance of LMP to the in vivo 532 

situation as it showed a potent inhibitory activity (IC50 of 6.7 µM) against the human enzyme 533 

expressed by Caco-2 cells.  534 

 535 

5. Conclusion  536 

Generally speaking, tThis study described an effective knowledge-based method that took 537 

advantage of the bulk of bioactivity data reported in reference databases to support the 538 

design of analytical strategies to mine highly active sequences against a specific biological 539 

endpoint. Specifically, LMP was mined from a virtual library of 6840 sequences and 540 

described for the first time as a potent and novel ACE inhibitor with IC50 values in the low 541 

µM range. The procedure provided a three-tier approach where experimental confirmations 542 

followed fast ligand-based screenings and slower molecular modeling studies, which  543 

providinged  mechanistic information to better understand the in vitro data from a 544 

molecular point of view. The inhibition of ACE was used as a proof of principle, but the 545 

reference database used here list some additional biological activity including antibacterial, 546 

hypocholesterolemic and antidiabetic activity. Therefore, the workflow presented could be 547 

easily moved to other types of activity and extended to longer peptide sequences. In 548 

addition, the search of possible protein sources, which have been showcased here for few 549 

proteomes as a proof of principle, can be implemented in systematic, recursive and high 550 

throughput searching methods to mine the sequences of interest from difference data 551 

sources.  Food proteins, proteins from food waste or alternative protein sources (i.e. 552 

proteins not related to food production) are some possible examples. Therefore, the 553 

method presented may represent a powerful and versatile framework for a systematic, 554 

high-throughput and top-down identification of bioactive peptides. In this respect, search 555 

strategies are advised to be performed on well-characterized proteomes and for species 556 

with a deep understanding of protein expression level in the various tissues and organs to 557 

maximize the search success. 558 
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Table 1. Heuristic selection of Visual inspection of most active sequences for visual inspection in from 
those reported in the reference databases *1  

Sequence  IC50 (µM) 2 1st Position 2nd Position 3rd Position 

LRW 0.2 L R W 
IKW 0.2 I K W 
GEP 0.3 G E P 
LKP 0.4 L K P 
MKP 0.4 M K P 
IVY 0.5 I V Y 
MRW 0.6 M R W 
IRY 0.6 I R Y 
IRW 0.6 I R W 
LGP 0.7 L G P 
LIY 0.8 L I Y 
MAP 0.8 M A P 
IVR 0.8 I V R 
VHW 0.9 V H W 
LRP 1.0 L R P 

 Polarity All hydrophobic Mixed Mainly hydrophobic 
 Residues V/L/I/G/M R/K/E/V/G/I/H W/P/Y + R 

 Prevalence I/L --- P 

*1 BIOPEP-UWM (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) and;   AHTPDB 

(https://webs.iiitd.edu.in/raghava/ahtpdb/index.php) 
2 IC50 stands for the half maximal inhibitory concentration 
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Table 2. List of library’s tripeptides from the in-house virtual library with leucine and proline in first and 
third position, respectively 

Sequence  Already Previously reported inhibitory 
activity characterized* 1 

Experimental activity 2IC50 (µM)* 

LVP Yes 9.9 
LIP No Not reportednr 
LTP No Not reportednr 
LEP No Not reportednr 
LAP Yes 3.5 
LQP Yes 1.9 
LKP Yes 0.3 
LRP Yes 1.0 
LDP No Not reportednr 
LSP Yes 1.7 
LMP No Not reportednr 
LGP Yes 0.7 
LNP Yes 43.0 
LCP No Not reportednr 
LHP No Not reportednr 
LFP No Not reportednr 
LYP Yes 6.6 
LWP No Not reportednr 
1* According to the data reported in the publicly available database BIOPEP-UWM 

(http://www.uwm.edu.pl/biochemia/index.php/en/biopep) or AHTPDB 
(https://webs.iiitd.edu.in/raghava/ahtpdb/index.php); nr → not reported 
2 Experimental activity, expressed as IC50 (half maximal inhibitory concentration), reported in the publicly 

available database BIOPEP-UWM (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) or AHTPDB 
(https://webs.iiitd.edu.in/raghava/ahtpdb/index.php) 

 700 

Table 3. Multiple-model virtual screening (VS) results of tripeptides developed using IVR, LRW, IVY and GEP 
tripeptides or captopril as template molecule  

Sequence 
VS with IVR VS with captopril VS with LRW VS with IVY VS with GEP 

Average rank 
VS score Rank VS score Rank VS score Rank VS score Rank VS score Rank 

LIP* 0.76 1 0.46 3 0.57 1 0.68 1 0.67 1 1 

LTP* 0.72 2 0.48 2 0.54 2 0.65 2 0.69 2 2 

LMP* 0.66 4 0.48 1 0.54 3 0.59 3 0.62 3 3 

LEP 0.68 3 0.44 5 0.51 4 0.61 4 0.84 4 4 

LCP 0.65 6 0.46 4 0.49 6 0.58 6 0.61 6 6 

LHP 0.61 7 0.38 7 0.50 5 0.54 5 0.62 5 6 

LDP 0.65 5 0.41 6 0.49 7 0.58 7 0.80 7 6 

LWP 0.54 9 0.33 9 0.45 8 0.49 8 0.55 8 8 

LFP 0.59 8 0.37 8 0.45 9 0.53 9 0.55 9 9 

* indicates the three best sequences according to the average ranking out of the five independent screening applied 
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 703 

Table 4. Docking results scores and half maximal inhibitory concentration (IC50 ) of the in vitro ACE-inhibitory activity 

Sequence 

N-domain C-domain Experimental assessment 

Run 1Run 2Run Docking scores 
Mean ± SD1 

Run 1Run 2Run 3Docking 
scores Mean ± SD1 

IC50 (µM) 2 

LMP 76.577.076.576.6 ± 0.3  91.490.389.090.2 ± 1.2 15.8±0.2 

LTP 72.972.673.973.1 ± 0.6 81.383.982.782.3 ± 1.4 nd*Not determined 

LIP 70.573.071.971.8 ± 1.3 75.667.076.6736.1 ± 0.5.3 Not determinednd* 

LKP 75.777.375.576.2 ± 1.0 94.592.398.895.2 ± 3.3 9.23±0.6 # 

1 Docking scores are expressed as mean values ± standard deviation of three independent docking simulations   
2 IC50 stands for the half maximal inhibitory concentration and it is expressed as a mean value of four independent experiments 
in triplicate ± standard deviation   
# Statistical differences between the two treatments at each time-point were calculated by Student’s t-test (***p < …0.001)* nd 

stands for not determined in the present study 
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Figures 

 

Figure 1. Enrichment plot of already characterized potent ACE inhibitory tripeptides (i.e. IC50 < 3 

µM) in the top-ranked region of library hierarchization according to at least one of the five 

independent screening. 
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Figure 2. Results of Mmolecular modeling results. A. Binding poses of LKP, LMP, LIP and LTP at 

the binding site of C-terminal domain of ACE. Polar contacts are represented by yellow dotes 

lines, while the black dashed box indicates the improper arrangement of threonine’s hydroxyl 

group into a space energetically suitable to receive hydrophobic groups (represented by cyan 

spheres). The protein is represented in white cartoon, peptides are represented in sticks and 
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the catalytic Zn ion is represented by the grey sphere. B. Molecular dynamic results of LMP and 

LKP. The RMSD plot of LMP’s backbone in complex with the N- and C-terminal is shown. 

 

Figure 3. Evaluation of the inhibitory effects of LKP (blue line) and LMP (green line) peptides on 

ACE expressed by Caco-2 cell membranes. Each point represents the mean ± sd of four 

independent experiments in triplicate. 
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