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Abstract

This study presents a novel framework for the study of endogenous
network growth subject to constraints. The literature on strategic
network formation analysed the specific case of positive constraints:
in the present work, the model is extended to constraints which can be
negative and change in time depending on the actions of the agents. A
characterisation of stable networks in the static case is provided, and it
is proved that finding them is computationally difficult unless specific
assumptions are made. The framework can be applied to contexts
in which the formation of a link inhibits or implies the formation
of another one, typically due to time, space or capacity constraints.
Two specific examples are investigated, highlighting the importance of
modelling constraints in order to obtain credible simulations and null
models: the network of corporate control and the network of citations
among scientific papers.
Keywords: Network formation, Nash equilibrium, Complexity of
equilibria, Network analysis.
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“Always go to other people’s funerals; otherwise they won’t go to yours.”
Yogi Berra (facing a typical “constrained growth” network)

1 Introduction

In the last twenty years, the theory of networks has been recognised an impor-
tant role in explaining the formation and functioning of social and economic
settings in which relationships among agents are of fundamental importance.
In particular, several models of network formation were developed targeting
the mechanisms by which some characteristics of nodes (typically, the cost of
creating/keeping alive a link, compared to the utility received from becom-
ing - directly or indirectly - connected to some other nodes) endogenously
determine the structure of a network. A stream of literature, starting from
the seminal work of Bala & Goyal (2000), has developed focusing on a non-
cooperative approach, where the choice of adding a link between two nodes is
made independently by only one of them, which bears all the cost - although
other nodes potentially benefit from such link. Based on this framework, a
definition of stability can be given, typically based on the concept of pair-
wise Nash equilibrium (such as in Galeotti, 2006 and Haller et al., 2007),
or some refinement of it (for instance Dutta & Mutuswami, 1997 consider
coalition choices, while the concept of “farsightedly stable networks” formu-
lated by Herings et al., 2009 is based on attributing nodes a longer horizon
of strategical reasoning).

The aforementioned studies share the implicit assumption that links can
be added and destroyed freely (though at some cost). Even experimental
works on endogenous network formation have usually been based on the
assumption that participants can at any point in time - or at least repeat-
edly - decide to create/break a link (Goeree et al., 2009; Kirchsteiger et al.,
2011). This is a natural starting point for several reasons: links in many real
world networks (e.g. computer networks, social relationships. . . ) are indeed
at least potentially volatile, the data available to researchers often describe
some inherently volatile flow (e.g. trade, influence, information) over them,
and even considering networks which are typically characterised by a stratifi-
cation of links over time (such as connections in Internet social networks, or
the network of roads between cities), most databases available to researchers
are snapshots of networks at given points in time, sacrificing information on
their temporal evolution. However, there are several contexts in which the
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process of network formation is profoundly shaped by constraints, and in
which the assumption that links can be freely created is at odds both with
reality and with data available to researchers. Constraints may have different
origins: they can for instance be related to time (e.g. networks where nodes
are scientific papers, patents or other kinds of timestamped objects), space
(e.g. planarity), and rivalry (e.g. cross-ownership networks, nodes affected
by capacity limits): two specific examples will be analysed in more detail in
Section 3. Only recently some form of constrained growth was formalised
in the context of strategic network formation by Haller (2012). His study
provides interesting conclusions concerning networks which grow around an
exogenously fixed subset of links, shown to potentially change drastically the
existence, numerosity, stability and efficiency of stable configurations. An
interesting insight is that such backbone infrastructures, that is, sets of links
which are guaranteed to exist ex ante and independently from individual
incentives, and which hence forbid nodes from playing their individual best
replies, can actually cause global welfare improvements. The present study
generalises the approach to the analysis of repeated addition of nodes and/or
links, under positive and negative constraints. Differently from the work of
Haller, the set of guaranteed/forbidden links will not necessarily be exoge-
nously given, but can come instead from the previous iteration of the network
formation process. This results in a rich framework, which can be specialised
according to the characteristics of the network under analysis.

2 The model

As in the model by Galeotti et al. (2006), a network is composed by N =
{1, . . . , n} nodes: for each pair of nodes (i, j) a cost parameter cij > 0 and
a value parameter vij > 0 are given. A directed network g is formally a
collection of pairs of nodes: if a pair (i, j) is in g, we say that i sponsors a
link to j, and we write gij = 1. ḡ represents the corresponding undirected
network, i.e. the smallest network containing g and also (j, i) for each (i, j)
contained in g. The set of feasible networks is denoted by G.

Each node extracts from the network a benefit which depends on the
values of the nodes it is connected to. That is, denoting as Ni(g) = Ni(ḡ)
the set of nodes j such that the network g contains a path from i to j or
vice-versa, the benefit extracted by i is defined as:
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Bi(g) = Bi(ḡ) =
∑

j∈Ni(g)

vij;

i also pays a cost which is the sum of costs of sponsored (outgoing) links:

Ci(g) =
∑

(i,j)∈g

cij,

and the resulting payoff it extracts from the network is simply the difference
between the benefit and the cost:

Πi(g) = Bi(g)− Ci(g).

Some other standard graph-theoretic concepts and notations will be used.
The letter e denotes the empty network. A set of connected nodes S ⊂ N
is said to be a component if they are not connected to any node outside
S (notice that Ni(g) simply denotes the component which contains a given
node i); a link is said to be a bridge if it connects two otherwise disconnected
components (i.e. if the number of components in the network increases by 1
when removing it). Moreover, the notation

gi = (gi1, . . . , gin) ∈ {0, 1}n

summarises the outgoing links from a given node i in the network g (in the
present work, it is always assumed for simplicity that gii = 0). An action for
a node i is a subset of N (so again, an element of {0, 1}n), determining the
links that i is sponsoring.

2.1 Internal constraints

Haller (2012) enriches this basic model with the presence of constraints: in
his work, they consist in a pre-existing and exogenously given network g ∈ G.
The payoff function is modified by setting the cost of links in g to 0, and as
a consequence such links are always incentive compatible. The aim of the
present section is to generalise this seminal idea with the concept of negative
constraints: a model of network formation will be characterised not only
by g, which will be denoted henceforth as g+, but also by another network
g− (disjoint from g+), containing links which will be absent in any possible
network. Although it is possible to introduce this generalisation by setting
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the cost of links in g− high enough, a more tractable approach is to neglect
their benefits in the payoff function,1 which is hence defined as

Πi

(
g
+, g−, g

)
= Bi

(
g ⊕ g+ 	 g−

)
− Ci (g) for g ∈ G.

where ⊕ and 	 denote respectively the operations of union and difference
between networks.2 It can be easily verified that when g− = e, this coincides
with the payoff function defined by Haller (2012). With all the components
of the model exposed, we can proceed to the generalisation of some of his
results concerning Nash networks - that is, networks which are stable with
respect to individual deviations. As a starting point, let us consider the
following result.

Proposition 1 (Haller, 2012). Consider a strategic model of network forma-
tion with payoff functions Πi(g

+, e, g), g ∈ G, i ∈ N . Suppose that costs are
owner-homogeneous. Then there exists a Nash network g∗.

What follows is a simplified proof of this result. Like the original proof
by Haller (2012), it relies on the observation that the proof of existence
by Haller et al. (2007) does not exploit the homogeneity of costs, only the
owner-homogeneity.

Proof. We start by replacing each link (i, j) ∈ g+ with an “ancillary” node
h “serving” i and j, which has cost ch = 1, vhk = 2 for k = i, j, and
vhk = 0 otherwise. This model has owner-homogeneous costs, so it has a
Nash network g∗′ (Haller et al., 2007). In g∗′, each ancillary node must be
connected (possibly indirectly) to both the nodes it serves. If it is connected
indirectly, we sever the first link of the path (or any other link, if the first
step is a direct connection to the other node it serves) and replace it with
a direct link. Similarly, we sever any other link to any ancillary node and
replace it with a link to any of the two nodes it serves. The result is still a
Nash network (all utilities of “original” nodes weakly increase and their space
of strategies is unchanged, while ancillary nodes have clearly no incentive to
deviate), and if we restrict it to the N original nodes we obtain the desired
g∗.

1As in the approach of Haller (2012), the original cost of links in g+ should be taken
again into consideration when doing comparative statics and welfare analysis.

2With a slight abuse of notation, when the network to be added/removed is composed
of a single link, I will write g ⊕ (i, j) or g 	 (i, j), instead of g ⊕ {(i, j)} or g 	 {(i, j)},
respectively.
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The following result is analogous to the previous except that it now allows
for g− 6= e.

Proposition 2. Consider a strategic model of network formation with pay-
off functions Πi(g

+, g−, g), g ∈ G, i ∈ N . Suppose that costs are owner-
homogeneous. Then there exists a Nash network g∗.

Proof of Proposition 2. I will show that if a Nash equilibrium g∗ exists for
Π(g+, g−, ·), then one also exists for Π(g+, g−⊕(i, j), ·) for any link (i, j) 6∈ g+∪
g−. If (i, j) 6∈ g∗, then g∗ itself is the desired Nash network (i’s strategies set
having being restricted, and all of the others nodes’ ones staying unchanged,
the equilibrium is still such), and hence this step is trivial. So let us assume
that (i, j) ∈ g∗. The link (i, j) is contained in g∗	g+ (since it is by assumption
not in g+), so it must have been convenient for i, i.e. it must be a bridge.
Two cases are possible.

A) There exists another link (h, k)3 from Ni(g
∗ 	 (i, j)) to Nj(g

∗ 	 (i, j))
(see Figure 1) or vice-versa, which is not forbidden ((h, k) 6∈ g−) and is
part of the best response of h to g∗ 	 (i, j), i.e.

ch,k <
∑

k′∈Nk(g∗	(i,j))

vh,k′ . (1)

Figure 1: Link (h, k) replaces link (i, j), now forbidden.

i

h

j

k
Ni(g

∗ 	 (i, j))
Nj(g

∗ 	 (i, j))

B) There is no such pair (h, k).

3Notice that i and h, or j and k, can coincide.
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In the case A, consider the network g∗ 	 (i, j) ⊕ (h, k): for any node
l 6∈ {i, h}, the actions space is unchanged from g∗, as well as the payoffs. For
i, all available strategies now deliver a payoff increased by ci,j (the cost of
connecting the two components now being borne by h), so their preference
ordering does not change. Finally, since costs are owner-homogeneous, h
does not have an incentive to deviate by replacing the link (h, k) with a
different one. In the case B, consider instead the network g∗	 (i, j). For any
node outside Ni(g

∗), the preference ordering of strategies is unchanged. The
same holds for nodes in Ni(g

∗), except for strategies which would connect
the two components; but such strategies are, by assumption (Equation 1 is
not satisfied), dominated. So in both cases we have a new Nash equilibrium.
Since the case Π(g+, e, ·) is proved by Proposition 1, the result is proved by
induction for any possible g−.

Proposition 2 is the natural generalisation of Proposition 1 to the pres-
ence of negative restrictions.4 Analogously, the following result, related to
networks of positive constraints which are (in the unconstrained model of net-
work formation) Pareto optimal, generalises Proposition 2 by Haller (2012).

Proposition 3. Consider a strategic model of network formation with payoff
functions Πi(g

+, g−, g), g ∈ G, i ∈ N . Suppose that the pre-existing network
or infrastructure g+ ∈ G is Pareto optimal. Then the empty network is a
strict Nash network and the only Nash network.

Proof. Let g+ be Pareto optimal. The case g− = e is Proposition 2 by
Haller (2012). When considering g− 6= e, the actions set of some nodes is
restricted, but the links in g+ are left untouched (recall that g+ and g− are
disjoint). Hence, the empty network is still a strict Nash network, because
the preference ordering on available strategies does not change.

Suppose next that some g∗ 6= e is a Nash network. The proof develops as
in the original result: given some pair (i, j) with 1 = g∗ij 6= g+ij = 0, it must

4The assumption that costs are owner-homogeneous is one of the reasons why it is
impractical to define negative constraints just as arbitrarily costly links: if this was the
case, in order for a owner-homogeneous model of network formation to remain such after
the imposition of negative constraints, such constraints could not consist in arbitrary sets of
links, and should rather include all outgoing links from a given set of nodes. Another reason
is that this would make the definition of endogenous negative constraints, as described in
Section 2.3, much more complicated.
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be that g∗i is a best response against g∗−i. But then g∗ is strictly preferred
to g+ by at least i, while it is at least equally preferred by all other agents
(since it contains all links in g+). This contradicts the Pareto optimality of
g+.

The effort in generalising the theory of network extension to the presence
of negative constraints can be motivated with two main arguments:

1. considering negative constraints is important in order to understand
the growth of some real world networks,

2. from a social planner perspective, imposing negative constraints could
in principle improve the beneficial effects of an endogenously formed
network, possibly at a lower cost than through positive constraints.

The first argument has already been mentioned, and will be the motiva-
tion for Section 3. The rest of this section is devoted to the second argument.
Haller (2012) shows several ways in which positive constraints can impact on
the equilibria of a network: examples include a stabilising effect (in some
cases in which Nash equilibria do not exist, they can instead be obtained
by choosing an appropriate g+), a welfare improvement effect (constraints
can raise the overall sum of payoffs in Nash equilibrium), and others. Those
exogenous constraints can hence be imagined as publicly provided infrastruc-
tures which are provided by the social planner. Can some of the described
effects be attained as well through negative constraints - i.e. with a social
planner acting through prohibition of a set of given links? The question is
relevant because in principle it can be much easier for the policy maker to
forbid some given links than to provide others, or obliging the interested
nodes to build them (the problem of contribution to links as public goods is
analysed for instance by Anshelevich et al., 2003).

It is worth starting with an example. The network in Figure 2 does
not admit a Nash equilibrium, since {(2, 1)} is the best response of 2 to
any network which includes (3, 1) (allowing 2 to connect to 3), but (3, 1)
is in the best response of 3 to and only to networks which do not include
(2, 1) (3 prefers to connect to 1 through 2 than directly). However, the
network {(2, 1), (3, 1)} can be made stable both with only positive constraints
(g+ = {(3, 1)}) and with only negative positive constraints (g− = {(3, 2)}).

In general, any network g can be made trivially stable by setting g+ = g
and g− to the complementary of g. At the same time, there are obvious
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Figure 2: An example of the stabilising effect of constraints.

1

2 3

2 3

2

Note: vij = 4 for all i, j except v21 = 1. Numbers next to links refer to their specific

costs, while links which are not drawn are implicitly assumed to cost enough as to make

them trivially non-convenient (only part of dominated strategies).

configurations which cannot be made stable by using only positive or only
negative constraints: consider the case of n = 2, with c12 = 2 and c21 = 4.
If v12 = v21 = 1, the “connected” configuration can only be obtained in
presence of positive constraints, while if v12 = v21 = 3, the “disconnected”
configuration can only be obtained in presence of negative constraints.

Hence, both positive and negative constraints have the sometimes exclu-
sive ability of transforming given network configurations in Nash equilibria.
This symmetry however breaks when we look at the welfare of obtained equi-
libria, as suggested already in the last example proposed, and as formalised
by the following result.5

Proposition 4. Consider a network configuration g which is not a Nash
equilibrium.

a) If g becomes an equilibrium with some g− 6= e, g+ = e, then it is not
Pareto optimal.

b) If g is Pareto optimal, then it can be made an equilibrium with some
g+ 6= e, g− = e.

Proof. It is easy to see that the creation of a new link (i, j), possibly replacing
another link (i, k) to a same component of the network, is always (strictly)
Pareto improving when it is part of the (strict) best reply of i. This is because
it must be convenient for i, and makes two components connected (or keeps
them unchanged, in the replacement case). Now consider case a): since g
becomes unstable once negative constraints are removed, there must be some

5In Proposition 4, as already in Proposition 3, the Pareto optimality of g refers to the
unconstrained setting.
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Figure 3: Summary of equilibria attainable through constraints.

S+S−

PO
N

G = S+−

Note: S− and S+ represent the set of network configurations which can become

equilibria with the appropriate negative only or positive only restrictions, respectively,

while PO represents the set of Pareto optimal configurations, and N of the Nash

equilibria. The set of network configurations which can become equilibria with the

appropriate negative and positive constraints, S+−, coincides with the set of all possible

network configurations.

(i, j) ∈ g− which would be part of the (strict) best reply of i to g, possibly
replacing some (i, k). So g ⊕ (i, j) (or g ⊕ (i, j) 	 (i, k), in the replacement
case) necessarily Pareto dominates g, which is hence not Pareto optimal. For
case b), notice that if g is Pareto optimal, the argument above states that
there cannot be a link (i, j) 6∈ g which is part of a profitful deviation for i,
so to stabilise g it is sufficient to set g+ = g.

Figure 3 summarises the social planner perspective on positive and nega-
tive constraints: the latter can sometimes substitute the former (and assum-
ingly be easier to implement) when the goal is to avoid implicit costs related
to stability, but do not help in reaching Pareto optimality in the sense of the
mere maximization of private values.

2.2 Complexity of finding Nash equilibria

Both the proof of Proposition 2 and the proof by Haller et al. (2007) it
reduces to are constructive proofs, i.e. as long as the required conditions are
satisfied, they provide a recipe for finding a Nash network. Such recipe is
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relatively simple to implement.6

Outside of such assumptions, however (i.e. with non-owner-homogeneous
costs), not only a Nash equilibrium might not exist, but determining if one
exists, and finding it, can be a computationally hard task. What follows
is a more precise characterisation of the computational complexity of such
problem.

First, determining if a given network configuration is a Nash equilibrium
is relatively simple (with or without constraints): it requires only to check
the best response of each of the n nodes, and each of these checks requires
O(n) operations; so the whole verification requires O(n2) operations, and this
locates the problem is in NP, the class of problems a solution of which can
be validated in polynomial time.

The next step consists in showing that the problem of finding Nash equi-
libria is NP-Hard, which means that it is at least as difficult as any other
problem in NP. To do this, it is sufficient to reduce another NP-Hard problem
to it, and a suitable problem in this case is 3-SAT (3 satisfiability).7 Consider
a set of H Boolean variables x1, . . . xH , and a set of K clauses containing each
3 possibly negated instances of such variables, joined by disjunctive opera-
tors (an example of clause is x1 ∨ x2 ∨ x3, where x3 denotes the negation of
x3). The 3-SAT problem consists in stating whether there is an assignment
of Boolean values to each of the variables which makes each clause evaluate
to true.

The reduction of the search of Nash equilibria to 3-SAT is performed by
constructing a network composed of m “variable” components and k “clause”
components, as represented in Figure 4. Notice that the components are
connected among them at the extrema of the links `hT and `hF they share.
In order for a “variable node” vh to become connected to its objective oh, it
needs to sponsor `hT or `hF (and is ex ante indifferent between them). Now,

6The proof by Haller et al. (2007) is composed of n iterative steps, each consisting in
the evaluation of links from a given node to each other connected component. It is easy
to see that for each connected component, the cost of such operation is bounded above
by its size, so the total cost of each step is at most n. The proof of Proposition 2 adds in
principle as many as n2 − n steps (the maximum size of g−). But since the initial g∗ 	 g+
cannot have more than n links (each link must be a bridge), all but at most n of such
steps will be trivial: for instance, if one starts by looking at (i, j) 6∈ g∗, the first steps are
all trivial. So the total cost is still O(n2).

7This choice and the proof which follows are heavily inspired by Anshelevich et al.
(2003), who proved the NP-Completeness of finding Nash networks in a different but
related framework of network formation.
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vh

oh

`hT
1

`hF
1

tk

lk rk

2 3

2

1 1

`1T `2T `3F

Figure 4: Left: “variable” network component corresponding to the h-th
variable; right: “clause” network component corresponding to the k-th clause
(x1 ∨ x2 ∨ x3 in this example). vvh,oh = 4 for all variables h ∈ {1, . . . , H},
vrktk = vlkrk = 4 for all clauses k ∈ {1, . . . , K}, while vij = 1 for all other
drawn links (i, j), and vij = 0 for all remaining pairs. Non-numbered arrows
denote trivially convenient links (dominant strategies), missing arrows denote
trivially non-convenient links (dominated strategies).

the “clause” component is unstable whenever one of the peripheral links is
built (recall the example in Figure 2). It becomes instead a Nash equilibrium
if at least one of the internal paths is built, i.e. if at least one of the variable
nodes chooses the appropriate path/truth value. Hence, the collection of all
clause components (and hence the network) is a Nash equilibrium if and only
if an appropriate assignment of truth values is implemented.

It can be observed that the stability concept being employed is weak :
each variable node vh can deviate and build the other path to its objective oh
without incurring any loss. However it is trivial to make it strict by amending
the definition of vij with the rule that vij = 0.5 if (i, j) = (vh, lk) for some
h,k, and by raising the cost of `hF to 1.1: with these changes, variable nodes
have a strict incentive not to deviate from configurations which satisfy all
clauses, and if this happens regardless from the value of some variable h,
then the variable node vh has a slight preference for building `hT over `hF .

Having shown that the problem of finding Nash equilibria is both in NP
and in NP-Hard, it is hence in NP-Complete, which is defined as the in-
tersection of the two. Notice that the result concerning NP was proven in
the more general case of arbitrary constraints, while the result concerning
NP-Hard was proven again in the more general case of not resorting to con-
straints. So the whole proof of NP-completeness applies both to the original
model by Bala & Goyal (2000), and to the generalised model adopted in the
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present work.

2.3 Repeated internal constraints and
non-decreasing network models

A basic ingredient of virtually any real world process of network formation
is time: as will be exemplified in Section 3.2, it can be a crucial ingredient
in the study of some real world networks. A study of the consequences
of repeated internal constraints, going beyond the analysis of static Nash
equilibria relative to exogenous constraints, is hence a natural development
of the theory exposed so far. In what follows, I will assume that the formation
of the network happens in a discrete time setting. For each t = 1, 2 . . . , I
will define as gt

+
and gt

−
respectively the positive and negative constraints

at that time period. At each time, the best reply of each node is the one
maximizing Πi(g

t+ ; gt
−

; ·).8 The outcome, if any, of the step t, denoted as gt,
will hence be a Nash equilibrium for these payoffs functions. Clearly, such
outcome needs not be unique, and neither it necessarily exist: if it does not,
the network formation process terminates at time t.

The introduction of endogenously determined, time dependent constraints
is a powerful conceptual tool, but it increases considerably the amount of
degrees of freedom, so the model is of limited utility unless one restricts
to specific classes of rules which have a particular economic meaning. The
result which follows considers the class of non-decreasing network models,
defined as those for which gt

+
= gt−1 (the positive restriction coincides with

the outcome of the previous step of the process): such class naturally maps
to several real world contexts, including the case of bibliometric networks
analysed in Section 3.2. A peculiarity of non-decreasing network models is
that, since the number of links present at time t is (weakly) increasing in t
itself, and since it can never exceed n2 − n, it must, for some t, terminate
or stabilise in some configuration, which I will call a limit network. A limit
network will then be defined as strict if there is no other limit network
composed by a subset or a superset of its links.

Proposition 5. If gt
−

is constant, then the set of (strict) limits of the non-
decreasing network model corresponds to the set of (strict) Nash equilibria of
the static model associated to the payoffs function Πi(g

1+ ; g1
−

; ·).

8Clearly, the framework could also be an ideal context for the study of a less myopic
type of rationality, such as the farsightedly stable networks (Herings et al., 2009).
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Proof. Consider a (strict) Nash equilibrium g∗ of the model associated to
payoffs functions Πi(g

1+ ; g1
−

; ·). By, definition, it is also a (strict) Nash equi-
librium for the first step of the non-decreasing network model. In order to
prove that it is a limit network, it is hence sufficient to show that it is still a
(strict) Nash equilibrium for Πi(g

∗; g1
−

; ·). Assume it is not: this means there
is some i which (weakly) prefers some g′i ⊃ g∗i . But then, g∗ was not a (strict)
Nash network in the first place. The same applies hence for t = 2, 3 . . .

Now assume g∗ is a (strict) limit for the non-decreasing network model,
reached at some time t∗. By construction, g∗ is a union of t∗ subsequent ex-
tensions (some of them possibly empty) each of which lead to Nash equilibria
subjected to the constraints originating from the previous period. Hence,
each of the link they contain must be a bridge between two otherwise dis-
connected components (as in the proof of Proposition 2). Given any time
period t and any link (i, j) in gt 	 gt+ , let ∆t

i,j be the profit which the link
(i, j) yields to i in gt, that is,

∆t
i,j = Π(g1

+

, g1
−
, gt)− Π(g1

+

, g1
−
, gt 	 (i, j)).

This profit is necessarily (strictly) positive, since the node is part of the
best reply of i. Any ∆t′

i,j with t′ > t will also be positive - all new links
are bridges, and so the connected component of j can only grow, while no
paths from i to j alternative to (i, j) can appear. So no node has a (weakly)
positive individual incentive to simply break one or more existing links in
gt. If g∗ is not a (strict) Nash equilibrium of Πi(g

1+ ; g1
−

; ·), then necessarily
some node has a (weakly) positive individual incentive to add some link, or
to replace some link with some other. The first case is impossible: since gt

−
is

constant, this would make g∗ unstable also at time t∗. But the second is also
impossible: since Πi(g

1+ ; g1
−

; ·) is positive, the new link should still connect
i to Nj(g

∗ 	 (i, j)). So to be incentive compatible, it should cost less than
(i, j). But then, it would have been chosen at time t in its place.

Proposition 5 in particular implies that when no Nash equilibrium exists,
no limit network exists. An interesting implication is that network models
satisfying only the more general condition gt+ ⊇ gt−1 do not exhibit richer
limit structures than non-decreasing network models: imposing (i, j) ∈ gt+

would not make a change, in terms of limit networks, compared to imposing
(i, j) ∈ g0+ . Richer dynamics could instead be expected when

1. considering partially non-decreasing network - networks in which some
previously provided links can be destroyed, or

14



2. introducing time-dependent negative constraints - for instance, real
world networks with a population of nodes which increases over time
can conveniently be modelled through appropriate negative constraints
which decrease over time.9

The growth of the network of citations, described in Section 3.2, falls in
this second case.

3 Applications

Several examples have been mentioned in Section 1 of real world networks the
growth of which is significantly affected by positive or negative constraints.
The present section goes more in depth in two of them in order to highlight
the importance of taking into account such constraints when modelling them.
The two case studies also make prominent the fact that modelling constraints
inside a model of strategic network growth can result in interesting economic
insights even when the distributions of costs cij and vij are only partially
known, or entirely unknown.

3.1 The network of corporate control

Chapelle & Szafarz (2005) have modelled the network of control among cor-
porations, and Vitali et al. (2011) have studied empirically the international
network of corporate control, characterising its topological structure and
identifying a strong concentration of power in the hands of a small core
of actors. For simplicity, in the present context we can define control as be-
ing the largest shareholder, with a share of equity above a given threshold.10

Being part of a single group, which acts in a strategically coherent way, can
clearly present benefits to member institutions, e.g. in terms of vertical inte-
gration. This relation of control among institutions is then subject to both
natural and policy constraints.

� The main natural constraint consists in the fact that control is clearly
exclusive, i.e. if firm A controls firm B, firm C cannot control firm B.

9I thank an anonymous reviewer for this remark.
10In the aforementioned studies, such share is 50%, but it is commonly acknowledged

(Barclay & Holderness, 1989) that the largest shareholder can attain de facto control even
with a smaller share.

15



� A typical example of policy constraints is represented by antitrust poli-
cies, e.g. the European Commission forbidding the acquisition of a firm
D on behalf of some holding E which already owns a competitor F .

Notice that both kinds of restrictions are endogenously determined, i.e.
they depend on the current network configuration. In the first case, firm C
might get control of firm B if firm A decided to sell enough shares; in the
second case, firm E might get control of firm D if it first sold its shares of
F . Equally important is that the formalisation of both types of restriction
must take into account indirect ownership. For instance, in the example of
antitrust constraints, if E is forbidden from acquiring a majority share of
F , it should as well be forbidden from acquiring a majority share in each of
two other entities G and H each owning 30% of the shares of F . In general,
defining restrictions which implement even relatively simple principles (e.g.
an upper bound to market share controlled by a single entity) can result in
complex rules.

While the restrictions described above are irrelevant for a mere charac-
terisation of the network under study (i.e. quantifying the power of a core
of firms), they become important in order to measure specific features rela-
tive to appropriate null models, resulting from simulations with endogenous
incentives. For instance, an apparently low level of clustering (the tendency
of nodes to link to neighbours of their neighbours) could be a consequence
of the simple fact that ownership is exclusive, while a low assortativity (the
tendency of nodes to link to similar links) might be due to local antitrust
authorities limiting the control power of a single firm in a given national
economy/sector. Running simulations which take into account such aspects
becomes simple by resorting to the appropriate constraints, which in this
case are only negative.

Interestingly, the cost of building links in the network being analysed co-
incides at a first approximation with the market value of the (voting) shares
needed to control the target firm, which in turn is independent from the iden-
tity of the buying firm.11 This suggests that the case of target-homogeneous
costs could be important to investigate (while the literature has so far mostly
focused on owner -homogeneous costs - see Proposition 1).

11This is clearly an oversimplification made for illustrative purposes - the buyer entity
could already be owning some amount of shares, and most importantly the price of the
shares could reflect the interest in them on the behalf of the buyer.
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3.2 The network of citations between scientific papers

The network of citations between scientific papers is a prominent example
of an endogenously formed network in which the time component is not
just crucial for the endogenous growth mechanism, but also easily observ-
able in the data typically available to researchers. Indeed, scientific papers
have well defined publication dates, which impose a clear temporal hierarchy
among them and hence strong restrictions to the set of “actions” - that is,
of citations - they can make: these observation, together with the specific
constraints the network is subject to, are exploited by Battiston (2014) to
provide a measure of the so-called “Matthew effect” (Merton, 1968) in shap-
ing citations flows, and hence bibliometric indicators. The Matthew effect
consists in a cumulative advantage by which papers or authors which already
received many citations in the past tend to be more cited in the future, even
if hypothetically controlling for quality, originality and age.

The non-cooperative approach à la Bala & Goyal (2000) is the most ap-
propriate for the setting being discussed because a citation is a purely one-
sided sponsored kind of relation: an author can very well find out ex-post (if
ever) that some paper of her has been cited by some other paper in the liter-
ature. The fact that being cited can, at least in some cases, represent a gain
for a researcher is unanimously recognised, and is part of the reason why the
network of citations is interesting to bibliometric scientists. Less intuitive is
the evaluation of the utility obtained from making a citation, but the mere
fact that the overwhelming majority of scientific articles have a list of bibli-
ographic references is an obvious sign of such implicit benefits. Notice that,
coherently with the non-cooperative approach, a paper cannot create ingoing
links.12 Although there is apparently no cost involved in “sponsoring” a cita-
tion, it is evident that the number of bibliographic references contained into
a single scientific work is limited: many authors, starting with de Solla Price
(1965), have analyzed different aspects of its distribution, evidencing a strong
concentration for small values. While this evidence does not help in quanti-
fying the implicit costs born by authors in making citations, which may be
due partly to editorial/formatting choices and partly to the work involved in

12This description of the network of citations excludes on purpose “spurious” effects due
environmental constraints, such as the role that the fame of an author or the prestige of a
journal can have in influencing the amount of citations to a given piece of research. This
modelling decision is instrumental in building a null model which allows Battiston (2014),
to find evidence of such spurious effect ultimately resulting in the desired measure.
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processing the literature to be cited, it does provide clear evidence of some
implicit costs. Finally, as best exemplified by the phenomenon of literature
reviews, it is very natural to assume that the benefit of a citation to a given
paper depends in turn also on the citations included in that paper. The hy-
pothesis of perfectly reliable links - meaning that being connected to another
paper through an arbitrarily long path is equivalent to being directly con-
nected - is instead a non-harmful approximation of reality for the analysis by
Battiston (2014): it does not affect its qualitative results, and on the other
hand an alternative specification would make the model much more complex
and require some arbitrary choices.

Given a set of n scientific articles (i.e. composed of all papers published
in a given time span), it can be assumed for simplicity that there is a one-
to-one relation between each node i and the time ti at which it is published.
The negative restrictions are then defined as follows:

g
t−i = {(j, k) : j 6= i or tk > ti}

which means that at each instant in time, only the scientific publication
being published can establish links, and it cannot cite works which are yet to
be published (Figure 5).13 Differently from the case of corporate control, the
network of citations among scientific papers is also characterised by positive
restrictions: namely, gt

+
i = gt−1, i.e. once a citation is established, it “lasts”

forever. The structure of negative constraints is then peculiar in the fact that
it is decreasing over time: no link to or from a node h can be built before th,
and so the model describes a growing network.

In Section 2.3, the fundamental building block of the development of
a network with repeated internal constraints was assumed to be the Nash
equilibrium of a given step t. Under the specification given for the network
of citations, in which at each step only one node is active, such a Nash
equilibrium degenerates to the best response of such node. The hypothesis
of all nodes existing since time 0 does not influence the strategic choice, which
is determined simply as a best response among allowed links - because of the
direction in which value “flows”, later links are irrelevant.

13In principle, given the typical publication process, which goes through a period of open
discussion in seminars/workshop, an often lengthy referral process, and finally a delay from
the definitive acceptance to the publication, it can easily happen that two papers i and j
cite some version of each other. This very special case, which is not admissible under the
simplified settings just described, would possibly deserve a specific analysis.
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Figure 5: Examples of allowed and forbidden links at time ti.

i
Time

ti

Note: Allowed links in black, forbidden links in red.

4 Conclusions

The evolution of many economic and social networks is characterised by
constraints which delimit the action space of single nodes, in terms of links
they can build and severe. This paper provides a general framework for
introducing such constraints in models of strategic network formation where
links are sponsored by individual nodes.

Previous results by Haller (2012) on the existence of Nash networks are
extended to the presence of negative constraints; moreover, Pareto optimality
of network configurations is put in relation with the constraints needed to
transform them into equilibria: in general, negative constraints do not share
the welfare benefits of positive ones, but they can provide a tool to guarantee
the existence of equilibria. It is then shown that finding Nash equilibria, and
even just asserting whether they exist, can be computationally unfeasible
(NP-complete) if the cost of building new links is not owner-homogeneous.

Two prominent examples were presented of the importance of taking into
account constraints in models of endogenous network formation. In the case
of the network of corporate control, the constraints can be both natural (con-
trol is exclusive) and regulatory (e.g. antitrust); in the case of bibliometric
networks, they are mainly related to the time factor (links are established
at the time of publication, and only go backwards). The theoretical model
can be specialised to study many other kinds of social networks, and provide
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empirical researchers with tools that go beyond what the mere static analysis
of networks allows to identify. For instance, such restrictions should be taken
into account when simulations of endogenous network formation are used to
build null models against which to compare relevant features of real world
models.

The literature has explored other kinds of strategic network formation:
two examples of deviations from the basic assumptions by Galeotti et al.
(2006) are network models in which links allow a one-way only flow of value
(Galeotti, 2006), and models in which the transmission of value over links
is imperfect, and hence length of paths is relevant (Billand et al., 2010).
The concept of constraints can be straightforwardly applied to these and
other frameworks, but understanding which of the results exposed in the
present paper extend to some extent to those other models might prove to
be challenging, and is a stimulating direction for further research.
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