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Applying data mining technique to disassembly sequence planning: a 

method to assess effective disassembly time of industrial products 

Design for end-of-life and design for disassembly are enabling design strategies for 

the implementation of business models based on the circular economy paradigm. 

The paper presents a method for calculating the effective disassembly sequence and 

time for industrial products. Five steps support designers in defining liaisons and 

related properties and precedence among components with the aim to calculate the 

best disassembly sequence and time. The effective disassembly time is computed 

considering the actual conditions of a product and its components (e.g., deformation, 

rust, and wear) using corrective factors. This aspect represents the main contribution 

to the state of the art in the field of design for disassembly. The corrective factors are 

derived from a specific data mining process, based on the observation of real de-

manufacturing activities. The proposed approach has been used for calculating the 

disassembly times of target components in a washing machine and in a coffee 

machine. The case studies highlight the method reliability of both: definition of 

time-effective disassembly sequences and assessment of effective disassembly times. 

In particular, a comparison of experimental tests shows a maximum deviation of -6% 

for the electric motor of the washing machine and -3% for the water pump of the 

coffee machine.  

Keywords: Design for disassembly, Disassembly planning, Data mining, Estimated 

disassembly time, De-manufacturing, Target disassembly. 

1 Introduction 

Circular economy (CE) is today considered a new business model oriented to increase 

economic opportunities against resource shortages and waste. Industries and enterprises are 

supporting the CE perspective by adopting closed-loop life cycle models for the 

development of new products and services. Recycling, remanufacturing and reusing 

represent possible scenarios in dealing with this new paradigm. 

In this context, product disassembly plays a critical role. Disassembly can be 

defined as a systematic method for separating a product into its constituent parts, 

components and subassemblies (Mitrouchev et al. 2015). Disassembly processes are 



classified into the following categories: (i) complete product dismantling and (ii) selective 

disassembly of target components (Lambert and Gupta 2008). In particular, selective 

disassembly is mostly adopted for maintenance/service and for recovery of product 

components during de-manufacturing operations (Yi et al. 2008). 

Product disassembly generally occurs in the last part of the product life cycle, but it 

originates in the preliminary phases of product design. The analytical assessment of 

product disassemblability is a key aspect in implementing design for disassembly (DfD) 

strategies. This analysis is characterized by the definition of elementary activities required 

to remove components from a product and the definition of best disassembly sequences for 

each target component. In the design scenario, a metric is necessary to solve the 

disassembly sequence planning (DSP) problem and thus to compare design alternatives. 

The paper proposes a method to solve the DSP problem of complex assemblies 

using effective disassembly time as a metric for the final assessment. The method is 

developed according to well-known theories and techniques in this field, and it is grounded 

on an innovative procedure to calculate the effective disassembly time. In particular, the 

main novelty proposed by this study is the use of data mining (DM) techniques to define 

corrective factors used to calculate the effective disassembly time. These factors mainly 

depend on the liaison features, disassembly tools and the overall condition of the product at 

the moment of disassembly (wear and rust). Disassembly times have been sampled by the 

direct observation of de-manufacturing activities at dismantling centres and opportunely 

clustered and elaborated to obtain standard disassembly times and corrective factors. A 

specific repository (called Liaison_DB) has been developed to collect all relevant data.  

The possibility of achieving a reliable estimation of the effective disassembly time 

for each sequence and target component represents the main contribution to the state of the 

art in the field of DfD. The time-based method can be used by designers and engineers 



during product development to conceive the correct product architecture or to choose the 

most appropriate joining methods. The aim is to improve the disassemblability of specific 

parts, thus favouring the implementation of closed-loop strategies (e.g., remanufacturing). 

The paper is structured as follows. Firstly, an overview of the state of the art in 

design for disassembly methods is given, highlighting the limitations of current methods. 

Secondly, the method and the related algorithms are presented, including the data mining 

approach for the classification of disassembly information stored in the Liaison_DB 

repository. Lastly, the paper presents the analysis of two different household appliances 

(washing machine and coffee machine). The proposed examples demonstrate the 

usefulness and effectiveness of the proposed approach in real contexts not only for the 

assessment of the time-effective disassembly sequence but also in the disassembly time 

estimations’ reliability. 

2 Research background 

Design for disassembly studies began in the early 1990s when environmental concerns 

related to the disposal of industrial products became a new world challenge (Dewhurst 

1993). The literature base is particularly broad due to the multi-disciplinary nature of this 

topic, including DfD rules and guidelines, DSP, disassembly optimization algorithms, and 

materials/components recovery (Santochi et al. 2002; Lambert and Gupta 2016). From the 

perspective of product development (design phase), DSP is considered as a fundamental 

task to judge the component or subassembly accessibility, as well as the disassembly paths, 

which give a quantitative measurement of product disassemblability (Favi et al. 2012b). 

Despite that the final goal of a DfD design project is the minimization of the disassembly 

time and cost, several objective functions are considered by researchers, such as the 

shortest disassembly path (minimum number of disassembly operations), minimum 

number of components to remove, and maximum recycling ratio (Yi et al. 2008). 



2.1 DSP methods 

Several research activities focus on the development of algorithms and procedures to find 

the best disassembly sequence for target components in an industrial product. Two main 

categories of DSP methods can be defined: (i) exact methods (EM) and (ii) 

heuristic/metaheuristic methods (HM). 

Research works based on EM guarantee finding the global optimum in a 

disassembly problem. Product architecture is first investigated as the basis for the 

definition of exact disassembly algorithms (Dewhurst 1993; Ong and Wong 1999). Other 

exact algorithms have been defined based on the branch-and-bound concept (Gungor and 

Gupta 1998; Gungor and Gupta 2001; Zhang and Zhang 2010), as well as the wave 

propagation model (Srinivasan et al. 1997; Mascle and Balasoiu 2003). Most of the 

mentioned methods aim to find the global optimum in the complete disassembly planning, 

which is not the goal of selective disassembly. In addition, EM are time-consuming and of 

limited feasibility when the number of product components or sub-assemblies increases, 

because of the combinational nature of the problem. 

On the other side, research works based on HM were developed proposing the use 

of genetic algorithms (Galantucci et al. 2004; Kongar and Gupta 2006; Giudice and 

Fargione 2007; Hui et al. 2008; Tseng et al. 2009; Kheder et al. 2017; Meng et al. 2016) or 

Petri nets (Tiwari et al. 2002; Rai et al. 2012; Kuo 2013) to determine the optimal 

disassembly sequence of a given product. Another way to reduce the complexity of the 

DSP problem and its representation consists of using simplification methods, such as 

graphs and matrices. Diagrams and graphs, such as AND/OR diagrams (Kara et al. 2005), 

Precedence graphs (Johnson and Wang 1998; Lambert and Gupta 2008), Connection 

graphs (Dong at al. 2006) and Extended process graphs (Lambert 2007), were used to 

represent the DSP problem. Likewise, Transition matrices (Lambert 2003; Kang et al. 



2010), Precedence matrices (Tang et al. 2002) and Interference matrices (Ong and Wong 

1999) allow to mathematically solve the mentioned representations. Heuristic and 

simplified methods seem beneficial in terms of computational time, as they search the best 

sequence without analysing all the possible alternatives. However, exact, heuristic and 

simplified approaches aim to solve the disassembly problem using the number of 

disassembly operations or the number of components to remove as an objective function. A 

literature analysis of DSP methods highlights a lack of information concerning the 

estimation of disassembly time. The developed methods consider disassembly time as a 

known input for the final assessment of DSP without exploring the way to quantify and to 

formalize this input.  

2.2 Disassembly time estimation methods 

A large set of equations and methods to estimate the assembly time considering the liaison 

features were developed in the past, starting from the representation of the product 

architecture (Boothroyd et al. 2010; Mathieson et al. 2013). However, disassembly is not 

the reverse process of assembly, and the assessment of disassembly time can be drastically 

different compared with the assembly time of a specific component (Lambert and Gupta 

2016; Wang et al. 2017). 

Disassembly time depends on several factors, such as component shape, size and 

weight, joining elements, joining directions, disassembly tools, and equipment (Kondo et 

al. 2003). It is influenced by the product work load (life cycle stress), working 

environment, chemical and physical degradation (ageing), deformation, cleanliness, 

material type, and coating/painting process (Yi et al. 2003). The condition of the product 

and its constituent components could be uncertain when disassembly occurs, and this kind 

of information needs to be processed systematically in order to develop any realistic and 

credible disassembly plan (Zhu and Roy 2015). With such hypotheses, the disassembly 



time of target components cannot be assessed using the assembly information; however, 

the evaluation is generally performed at the de-manufacturing centres (Favi et al. 2016). 

This is the main issue to face if designers want to use disassembly time data when the 

product is conceived (Favi et al. 2012a). On the other hand, a large amount of information 

is currently available at dismantling centres, and this information can be sorted and 

clustered by using DM techniques, with the aim of specifying a disassembly time 

associated to a specific disassembly task or liaison. DM allows extracting valid, previously 

unknown, comprehensible information from large databases (Fayyad et al. 1996; Nettleton 

2014). DM has been used in design-for-X (Braha 2001) applications, such as design for 

manufacturing (Bae and Jinhwa 2011) and design for assembly (Kretschmer et al. 2017). 

The application of DM techniques in DfD has not yet been investigated, and it requires an 

initial collection and classification of de-manufacturing operations. 

A possible classification for mechanical connections and part interfaces was 

proposed (Matsumoto et al. 2009; Jeandin and Muscle 2016). Whilst the proposed 

classifications can be considered as the basis for the development of a complete 

characterization of assembly/disassembly liaisons, they have some limitations. Firstly, they 

are incomplete and do not propose an effective disassembly time for each specific category 

or item. Secondly, they do not consider the ageing effect caused by the product lifecycle in 

terms of corrosion and parts deformation. Lastly, they are based on a theoretical 

framework and not on experimental measurements and data processing. Some of these 

limitations have been recently addressed by Mandolini et al., (2018), who proposed a time-

based disassembly method, including a preliminary classification of disassembly times for 

standard assembly components (screws, nuts, etc.) and corrective factors considering life 

cycle conditions (ageing, deformations, etc.). However, the way of retrieving and 

clustering disassembly times is not mentioned and argued. This study wants to overcome 



the state of the art on this topic by proposing a method for estimating the “effective” 

disassembly time, based on observation/classification/elaboration of data gathered from 

real de-manufacturing activities. 

3 Materials and methods 

The objective of the proposed method is to calculate the disassembly time by using an 

exact DSP approach and a structured repository (called Liason_DB) of knowledge about 

elementary disassembly tasks. Section 3.1 describes the steps required for assessing the 

time-based disassembly sequences starting from the identification of the target components 

as well as the effective disassembly time. The complete description of the method can be 

found in Mandolini et al. (2018), while only a summary and a demonstrative example are 

reported in the present paper. Section 3.2 presents the full details of the data mining 

approach followed for establishing the corrective factors used for estimating the 

disassembly time of a single disassembly operation. This contribution represents the main 

novelty of this study. 

3.1 Proposed disassembly time calculation method 

Figure 1 depicts the steps foreseen by the proposed method, which are described in detail 

in the next five subsections. 

Enter Figure 1 here 

3.1.1 1st step – Detection of target components from the general assembly 

The approach begins by defining the target components of the disassembly analysis. Target 

components are single components or assemblies (group of components). A target 

component can be established according to its compliance with the maintenance/service 

plan during the use phase or compliance with EoL regulations/directives. Furthermore, the 



definition of the target component can be influenced by the reusing, remanufacturing or 

recycling strategies of a company, deployed for developing new business models.  

3.1.2 2nd step – Analysis of the virtual product model 

The second step of the method aims to analyse the product structure starting from the 

virtual model with its geometrical presentation using a CAD model or without it using the 

bill of materials (BOM). The following information can be extracted analysing the virtual 

model: quantity and name of components, general arrangement and physical obstructions 

among components and subassemblies, and geometrical features of components and 

subassemblies (e.g., dimensions, weights, materials, cutting edges, holes, and tapered 

geometry). 

3.1.3 3rd step – ‘Level’ matrix and liaison types 

The third step aims to define the disassembly levels, precedence relations and liaisons 

among components and subassemblies. Starting from the component list, extrapolated 

during the 2nd step of the method, the ‘level’ matrix template is initialized (NxN square 

matrix, where N is the total number of components). Liaison and joining elements (e.g. 

screws, rivets, and connectors) do not contribute to the definition of the ‘level’ matrix. 

3.1.3.1 Definition of ‘level’ matrix and disassembly levels 

The approach leads with the disassembly level concept, defined as ‘the level in which one 

or more components/subassemblies connected to other components/subassemblies can be 

disassembled without any physical obstruction.’ By defining the disassembly levels of a 

product, it is possible to reduce the number of feasible paths for the selected target 

component, avoiding time-consuming calculations of non-optimum disassembly sequences 

(i.e., sequences with higher disassembly time). 

The 'level' matrix development is performed considering two hypotheses. 



 Hypothesis #1: If component A obstructs one or more components (e.g., 

component B) that are in relation only with component A, and in case 

component A is removed at level n, the other components (e.g., component 

B) are free to be removed at level n+1. 

 Hypothesis #2: If component C obstructs component B and component B 

obstructs component A, then component A is free to be removed after 

component B (direct precedence) and component C (inherited precedence). 

According to the first hypothesis, level 0 contains all the components that can be 

disassembled from the general assembly, without any precedence. The components 

belonging to level n can be removed only after removing one or more components of level 

n-1. The method does not foresee the assignment of the level for all of the components 

because the procedure can be stopped when all of the target components have been 

reached. 

Figure 2 shows a 3D representation of a simple example (gear reducer) used to 

explain the application of such rules and the related definition of disassembly levels and 

‘level’ matrix.  

Enter Figure 2 here 

In this example, the gear reducer is composed of twelve components: 

① - Housing 

② - Worm Gear 

③ - High speed shaft 

④ - Roller bearing 1 

⑤ - Roller bearing 2 

⑥ - Motor adaptor 



⑦ - Slow speed shaft 

⑧ - Retaining plate 1 

⑨ - Roller bearing 3 

⑩ - Roller bearing 4 

⑪ - Bearing cap 

⑫ - Retaining plate 2 

Figure 3 shows disassembly levels and those components or sub-assemblies that can be 

removed in each level for the gear reducer example. 

Enter Figure 3 here 

The identified precedence relations among the product components are used to fill the 

‘level’ matrix template. In the ‘level’ matrix, each cell identifies the relation between two 

components/subassemblies of the general assembly. The cells of the matrix are filled using 

two possible values as follows: 

 ‘1’ for those components in the column that require disassembly before the 

component in the row being analysed; 

 ‘0’ for all other cases. 

For example, if component A is not related to component B, the cell in row A and column 

B is set to ‘0’ (as well the cell in row B and column A). If component A must be removed 

after component C, the cell in row A and column C is set to ‘1’. 

An example of a ‘level’ matrix for the gear reducer is proposed in Figure 4. The 

‘level’ matrix can be easily read by following each row. For instance, component ⑦ in the 

matrix in Figure 4 can be removed after the disassembly of two components positioned in 

level 2 (components ⑨ and ⑩), as well as the two components inherited from level 0 



(components ⑧ and ⑫). On the other hand, component ⑤ can be removed after the 

disassembly of only one component (component ⑥) that is positioned at level 0. An 

important consideration is that the sum of the items in each row identifies the number of 

components/subassemblies to remove before reaching the target component. This sum is 

called ‘disassembly depth’. 

Enter Figure 4 here 

3.1.3.2 Definition of liaison types 

The assignment of liaisons types between components is another task of the third step. A 

liaison is defined as ‘the type of connection (mechanical and electrical) between two 

components that can be removed by a specific disassembly operation’.  

This step leverages a comprehensive database (Liaison_DB) containing the typical 

liaisons (assembly connections) that are properly classified and characterized with the 

relative standard disassembly times (Favi et al. 2016). Liaisons are classified in classes 

(e.g., screwed liaisons and electrical liaisons) and types (e.g., screw, threaded rod, and nut). 

An example of this classification for the ‘screw’ liaison type of a ‘threaded’ liaison class is 

illustrated in Table 1. 

Enter Table 1 here 

Each liaison type, which refers to a disassembly task, has a specific standard disassembly 

time. This value refers to a liaison in standard conditions (length, diameter, and tool) and 

undamaged. The last assumption is important because the purpose of selective disassembly 

is to recover components without destroying them. For instance, the standard condition for 

a screw refers to a new screw (not used or damaged) with a hexagonal notch head, a length 

of 20 mm or less, a diameter between 4 mm and 12 mm and disassembled with a 



pneumatic screwdriver. In this case, the standard disassembly time (4 seconds) equals the 

assembly time. 

However, the conditions of the liaison (worn, rusted, and deformed) and the tools 

used to perform the disassembly task influence the effective disassembly time. Indeed, if 

the product service life is particularly long and perhaps also in a severe working 

environment, rust and oxides formation, and wear deposition can increase the disassembly 

difficulties and subsequently the time necessary for the specific activity (e.g., unscrewing). 

Each deviation from the standard condition must be addressed while calculating the 

effective disassembly time. Variation in geometrical features (screw length, screw 

diameter, and screw head type) and variation in assembly/disassembly tools available 

during the disassembly operations (manual screwdriver and Allen key) are typical 

examples of corrective factors to be considered. These values are used to adjust the 

standard disassembly times and thereby obtaining the effective disassembly times, 

according to equation (1): 

𝑇𝑒 = 𝑇𝑠 ∙ ∏ 𝐶𝐹𝑘𝑘   

 (1) 

where 

 Te is the effective disassembly time,  

 Ts is the standard disassembly time, and  

 CFk is the corrective factor for the k-th liaison property related to the chosen de-

manufacturing conditions. 

A complete example of the corrective factors defined for the screw liaison types and 

features is proposed in the Table 1 (the procedure for calculating corrective factors is 

available in section 3.2). An example of a rusted screw is reported below to better 



understand the influence of corrective factors. For this liaison type, the parameters are as 

follows: 

 Standard disassembly time (Ts) = 4 [s] 

 Liaison properties: 

 Head type: cylindrical with notch → CF1 = 1 

 Length: > 20 mm, < 40 mm → CF2 = 1.1 

 Diameter: < 4 mm → CF3 = 1.2 

 Wear: partially worn / rusted → CF4 = 1.3 

 Deformation: not deformed → CF5 = 1 

 Tool: spanner → CF6 = 1.2 

 Effective disassembly time (Te) = Ts * CF1 * CF2 * CF3 * CF4 * CF5 * CF6 = 8.24 

[s] 

The deviation between the standard and the effective disassembly times justifies the 

importance of defining corrective factors for each type of liaison. This is an essential 

feature of the proposed approach for guaranteeing a high reliability in the time estimation.  

3.1.4 4th step – Calculation of feasible disassembly sequences 

Disassembly ‘level’ matrix and disassembly levels are the two mathematical models 

required for the definition of feasible disassembly sequences. The fourth step is based on 

the following hypothesis: 

 Hypothesis #3: Considering a generic level n, only components belonging to the 

same level (n) or to the subsequent level (n+1) are considered for the calculation of 

the feasible disassembly sequences. After the removal of a component at level n, 

the removal of components which belong to level n-1 is not considered in the 

calculation. 



This rule allows discarding some sequences from the combinatorial calculation, thus 

permitting a drastic reduction of the computational time, while keeping the quality and the 

accuracy of the result. 

As reported in Figure 3, the disassembly levels for the gear reducer example are the 

following: 

 Level 0: components ⑥, ⑧, ⑪ and ⑫; 

 Level 1: components ④ and ⑤ and sub-assembly ②⑦⑨⑩; 

 Level 2: components ①, ③, ⑨ and ⑩; 

 Level 3: components ② and ⑦. 

The knowledge of the disassembly levels allows calculating the feasible disassembly 

sequences to reach each target component. Three feasible disassembly sequences for the 

gear reducer, considering ③ as the target component are reported here below: 

 ⑧  ⑪  ④  ⑥  ⑤  ⑫  ③ 

 ⑧  ⑫  ⑪  ⑥  ④  ⑤  ③ 

 ⑥  ⑤  ⑪  ④  ⑫  ⑧  ③ 

In the previous list, each arrow identifies a disassembly operation, i.e., the process to 

disassemble one component, by removing all the liaisons that link the analysed component 

with the rest of the assembly. The effective disassembly time for each operation consists in 

summing the disassembly time for all the liaisons of a component. The disassembly time 

for each feasible sequence is then calculated as the sum of the different disassembly 

operations involved in a specific disassembly sequence (equation 2). 

𝑆𝑒𝑞_𝑖𝑇𝑥 = ∑ 𝑂𝑝_𝑚𝑇𝑥𝑚   

 (2) 



where 

 Seq_iTx is the disassembly time of the i-th sequence to reach the target component 

Tx, and  

 Op_m is the disassembly time of the m-th operation belonging to the Seq_iTx 

sequence. 

3.1.5 5th step – Calculation of the best disassembly sequence 

The fifth step aims to find the disassembly sequence with the lowest time. It is important to 

notice that, for complex products, the shortest path (i.e., minimum number of disassembly 

operations) is not always the best way to reach the target (i.e., minimum disassembly time). 

The mathematical model used for determining the best disassembly sequence is a 

pairwise comparison among the feasible disassembly sequences, realized step by step 

during the calculation of each feasible disassembly sequence (equation 3). 

𝐵𝐷𝑆𝑇𝑥 = min(𝑆𝑒𝑞_1𝑇𝑥 , 𝑆𝑒𝑞_2𝑇𝑥 , 𝑆𝑒𝑞_3𝑇𝑥 , …  𝑆𝑒𝑞_𝑖𝑇𝑥 , …   𝑆𝑒𝑞_𝑛𝑇𝑥) (3) 

where  

 BDSTx is the Best Disassembly Sequence for the target component Tx, 

 Seq_iTx is the i-th feasible disassembly sequence for the target component Tx, and 

 n is the overall number of feasible disassembly sequences for the target component 

Tx. 

3.2 Data mining process for calculating corrective factors 

The corrective factors used for calculating the effective disassembly time have been 

defined using a DM approach. As highlighted in the literature, information extracted from 

data mining processes can be used as knowledge patterns and rules to propose possible 

suggestions and solutions during product design and product development process (e.g., 



knowledge-based systems, rules and guidelines for design-for-X). In this case, the process 

for defining the corrective factors for calculating the effective disassembly times have been 

defined in accordance to the Fayyad et al. (1996) approach, based on five steps, hereafter 

described. 

3.2.1 Definition of the Business Objectives 

This step defines a Data Mining project by setting the motivation, benefits and the business 

objectives. 

a. Motivation: define corrective factors for calculating the time for disassembly 

operations starting from the time for standard conditions. The corrective factors 

have to consider the liaison conditions at the time of dismantling or during 

maintenance operations. 

b. Benefits: support designers in developing products easy to disassemble and make 

them aware about difficulties in de-manufacturing. 

c. Business objective: increase competitiveness of products to foster the 

implementation of the circular economy and/or product service system (e.g., take-

back systems). 

3.2.2 Data preparation 

This step aims to define the source of data and information. Listed below are the activities 

required in this step. 

a. Parameters to analyse: definition of the parameters that could affect the 

disassembly time. Such parameters have been classified in three levels: base 

parameters (e.g., operating environment, deformation, and weight), liaison 

class-related parameters (e.g., wear) and liaison type-related parameters 

(e.g., head type, length, diameter, and unscrewing tool). 



b. Selection of product categories to analyse: identification of products to be 

used for gathering disassembly time (mainly mechatronic products in this 

work). 

c. Classification of the products to disassemble: the products have been 

classified for decoupling the relationship among base, liaison class and 

liaison type parameters. For example, the type-related parameters of a screw 

have been evaluated primarily considering products that are not worn out, 

used in a clean and dry environment and not deformed.; 

d. Selection and training of dismantlers and maintainers: identification of 

dismantling centres and maintainers for this kind of product. General 

training about the method to use for collecting data. 

e. Definition of disassembly procedures: definition of templates used by 

dismantlers and maintainers for classifying and characterising liaisons and 

collecting disassembly times. Definition of equipment used for 

disassembling products. Definition of documentation used by dismantlers 

for establishing the value for the analysed parameters (e.g., what is the 

meaning of ‘not deformed’, ‘partially deformed’ and ‘deformed’ for the 

parameter ‘deformation’?). 

f. Disassembly time gathering: collection of disassembly times and liaisons 

parameters for the following data analysis. Direct observation/video 

recording of dismantling operators’ activities have been used to collect 

relevant knowledge about liaisons (duration of each disassembly task, needs 

of special tools, difficulties of the disassembly or extraction operation). 



Spreadsheets have been used to collect conditions and disassembly times for 

the components and products analysed. 

3.2.3 Data analysis 

This step aims to define the most common types of data analysis for data mining, which 

are listed below for the scope of this work. 

a. Clustering of the parameters: parameters can be classified in two 

categories, discrete (e.g., screw head type, screwing type) and continuous 

(e.g., screw length, screw diameter). The first typology of parameters are 

clustered by definition. Indeed, regulations, unifications or equipment often 

define predetermined values (e.g., hexagonal head for screws). Continuous 

or semi-continuous parameters should be clustered for a correct data 

modelling. The adopted clustering algorithm is the ‘k-means’ whose aim is 

to partition n observations into k clusters and in which each observation 

belongs to the cluster with the nearest mean, thereby serving as a prototype 

of the cluster. The ‘elbow’ method was then used to define the optimal 

number of clusters for each parameter. The elbow method considers the 

relation between the total within-cluster sum of squares (WSS) and the 

number of clusters. The optimal number is defined so that adding another 

cluster does not much improve the total WSS. Figure 5 shows the WSS for 

the screw diameters clustering process. 

Enter Figure 5 here 

The number of clusters has been defined for a WSS reduction of 10%. 

Figure 6 presents the results of the screw head diameter clustering process. 

The clustering process is performed on the corrective factors for isolating 

the contribution of the analysed parameter on the disassembly time. 



Enter Figure 6 here 

b. Selection of the parameters that influence the disassembly time. A 

parameter influences the disassembly time under the following conditions: 

i. The coefficient of determination (R2) between disassembly time and the 

investigated parameter is greater than 0.8. A coefficient of determination 

below this threshold means a poor correlation between the observed 

parameter and the disassembly time. 

ii. There exist two or more clusters (disassembly time vs parameter) whose 

mean values (disassembly time for each cluster) deviate no more than 

5% from the average disassembly times measured for each value of the 

observed parameter (e.g., screw head diameter). 

3.2.4 Modelling 

This step aims to extract patterns from the source data and present results in a user-

readable manner. 

a. Analysis of the disassembly times for defining the corrective factors for 

each parameter. The definition of the corrective factors for each parameter 

is performed considering a parameter at a time. Listed below are the six data 

modelling process steps for determining the corrective factors for the screw 

head type (Figure 7).  

i. STEP A: Plot the average disassembly times measured for specific 

combinations of disassembly parameters related to a specific liaisons 

type or class (i.e., unscrewing tool, screw length, screw diameter and 

screw head type). The table consists of n rows (e.g., cylindrical with 



hexagonal notch and hexagonal) as the number of clusters for the 

parameter to be investigated (i.e., screw head type). 

ii. STEP B: Calculation of the average disassembly time for the 

combination of the other parameters characterizing the liaison. This 

value defines the impact of the other parameters on the disassembly 

time. 

iii. STEP C: Normalization of the disassembly time measured for each 

combination of parameters with the average disassembly times 

previously calculated (Step B). This is the first definition of 

corrective factor. 

iv. STEP D: Average the previous calculated corrective factors (Step C) 

for each cluster of the parameter under investigation (i.e., screw 

head type). This is necessary for evaluating an average behaviour of 

the corrective factor for the analysed parameter. 

v. STEP E: Assessment of the minimum corrective factor among the 

factors previously calculated (Step D). The minimum corrective 

factor refers to the optimal disassembly condition for a specific 

parameter (a screw with a notched cylindrical head is more easily 

disassemble than the other head types, as seen in Figure 7). This is 

required for normalizing the same factors. 

STEP F: Calculation of the normalized corrective factors based on the easiest to 

disassemble screw head type (Figure 8Figure 7. Data modelling process for calculating the 

corrective factors. 

vi. Figure 8). 



b. Analysis of the distribution fitting for the corrective factors: validation of 

the corrective factors previously calculated (Figure 9). 

Enter Figure 7 here 

Enter Figure 8 here 

Enter Figure 9 here 

3.2.5 Deployment 

At this stage, the normalized corrective factors previously calculated are ready to be 

deployed within the formulas for calculating the effective disassembly time (equation 1). 

4 Test cases and results discussion 

Two household appliances (Figure 10) have been used to test different aspects of the 

proposed approach. Section 4.1 reports the complete analysis of an old washing machine 

(Figure 10 A) with the aim to verify the effectiveness of the method in calculating the 

feasible disassembly sequences, estimating the relative disassembly times and identifying 

the best disassembly paths for the selected target components. Section 4.2 reports the 

reliability analysis of disassembly time estimation with respect to real de-manufacturing 

operations and involves the same model of washing machine (Figure 10 A) and a new 

model of coffee machine (Figure 10 B). 

Enter Figure 10 here 

4.1 Testing of the method effectiveness: the washing machine case study 

The analysed product is an old washing machine with a lifecycle of more than 15 years. Its 

intensive use in wet environments caused the formation of rust in the external cabinet and 

in several screws and fasteners (Figure 10 A). A step-by-step procedure is presented to 



show how the approach can be practically implemented. 

The Detection of Target Components from the general assembly (1st step of the 

method) have been carried out to choose the targets of the disassemblability analysis, 

according to specific EoL or maintenance aims. The following Table 2 reports the five 

target components considered for the analyses, together with the motivations that justify 

the choice. 

Enter Table 2 here 

The Analysis of the Virtual product Model (2nd step of the method) allowed to extrapolate 

the list of the 20 components/subassemblies composing the washing machine. Those 

components have been labelled, by using a letter from A to T, and successively used to 

initialize the 20x20 ‘level’ matrix template. 

The ‘Level’ Matrix, Disassembly Levels and Liaison Type (3rd step of the method) 

is characterized by two tasks. The first task (Definition of Level Matrix and Disassembly 

Levels) is related to the setting of the precedence relations among the 20 product 

components that allow filling the 20X20 ‘level’ matrix (Figure 11 A). An interesting piece 

of information can be easily derived from this matrix: values reported in the right-hand 

column represent the disassembly depth of each component/subassembly (i.e., minimum 

number of disassembly operations before removing the component). For instance, in the 

case of the analysed washing machine, the component D (Electric motor) has a 

disassembly depth of 13 that means it has to give precedence (direct or inherited) to 13 

other components/subassemblies (the 13 components with a ‘1’ in the relative column). In 

addition, components B and T (highlighted in green in Figure 11 A) have a disassembly 

depth equal to 0, which means they can be disassembled first and belong to level ‘0’. 

Therefore, all the disassembly sequences necessarily begin with one of those level 0 



components. Considering the washing machine example, the Wood panel (component F) 

that belongs to level ‘1’ has to give precedence to both the components of level ‘0’ (TOP 

back cover and Back cover); thus, its disassembly can be performed after the disassembly 

of the components B and T. 

The second task (Definition of Liaison Type) regards the definition of liaisons 

between components, which can be performed concurrently with the definition of 

precedence relations (first task of the 3rd step of the method) in order to reduce the 

method’s implementation time with real products. The table contained in the Appendix 

(Mandolini et al., 2018) reports the complete set of the defined precedence relations, 

liaisons between components and related features and conditions to reach the Electric 

motor of the analysed washing machine.  

Using the defined disassembly precedencies contained in the disassembly ‘level’ 

matrix (Figure 11), the 4th step of the method (Calculation of Feasible Disassembly 

Sequences) can be performed to generate the disassembly paths for the chosen target 

components (Table 2). The iterative process for the sequence generation begins 

considering the initial input information previously extrapolated from the ‘level’ matrix: all 

the disassembly sequences have to start with components B or T. For instance, starting 

with the disassembly of the TOP back cover (component B), the complete washing 

machine ‘level’ matrix can be reduced (Figure 11 B) by eliminating the row and column 

corresponding to component B and updating the disassembly depth values (calculated by 

summing the ‘1’ in each row). After the TOP back cover disassembly, the only 

component/subassembly candidate to be disassembled is the Back cover (component T) 

that has disassembly depth equal to ‘0’ (in the reduced ‘level’ matrix, Figure 11 B). The 

disassembly of component T (2nd disassembly operation) releases the Wood panel 

(component F) that, after the second reduction of the ‘level’ matrix, has disassembly depth 



equal to ‘0’ (Figure 11 C). Following this procedure, all the feasible disassembly 

sequences that respect the precedence constraints can be derived. 

Enter Figure 11 here 

In parallel, by considering the data stored in the Liaison_DB (i.e., standard disassembly 

time for liaisons, liaison conditions, corrective factors, and disassembly tools), it is 

possible to calculate the disassembly time and thereby step-by-step discard the non-

optimum paths. This is the 5th step of the method (Calculation of the Best Disassembly 

Sequence) that allows to derive the best disassembly sequence for each target component 

previously identified. As an example, Table 3 reports the best disassembly sequence 

calculated for the Electric motor, together with the details of the disassembly operations 

and removed liaisons. By evaluating the output results, it is possible to establish the most 

critical disassembly operation that is related to the disassembly of the Electro-mec 

Assembly (operation #10) in this case and in particular, to the presence of 30 electric 

plugs. If used during the product design process, the method appears to be useful in 

improving product maintenance/EoL performance. 

Enter Table 3 here 

4.2 Testing of the method reliability: manual disassembly of the washing 

machine and coffee machine 

The old washing machine model previously introduced (Figure 10 A) and a new coffee 

machine for domestic applications (Figure 10 B) have been used to test the reliability of 

the disassembly times estimated through the proposed method and database. In the case of 

the coffee machine, the selective disassembly aims to reach the following target 

components: 



 Water pump, which could be maintained/substituted during the product lifecycle, 

and has to be separated at EoL and then potentially remanufactured; 

 Electronic board, to treat separately at EoL; 

 Boiler, which is important for maintenance reasons (i.e., possible substitution 

during the useful life). 

As was done for the washing machine case study, the time-based disassembly method has 

been applied for the target components of the coffee machine to estimate disassembly time. 

Since the approach implementation procedure is the same one illustrated in the context of 

the washing machine case study (section 4.1), the step-by step analysis is not detailed in 

the case of the coffee machine and only the final results are reported (Table 4).  

Non-destructive manual disassembly operations have been carried out in 

collaboration with an authorized WEEE dismantling centre for both appliances, to measure 

the disassembly time of real de-manufacturing operations. A skilled operator, equipped 

with a full-range of tools (e.g., electric screwdrivers, keys, Allen keys, and pliers) and 

knowledge of the disassembly sequences to follow for each target component, simulated 

the real disassembly procedures. During this task, disassembly times are measured one step 

after another with a stopwatch, and every step is documented to provide detailed feedback 

on each disassembly operation in terms of time, observed difficulties and notes. Table 4 

reports a summary of the obtained results for each target component of both the washing 

machine and the coffee machine. 

Analysing the estimation errors, the gap between the measured and estimated times 

is in the range 4-10% for all the disassembled target components. The experimental times 

are systematically higher than the estimated ones, as reported in Table 4. Figure 12 reports, 

in greater detail, the cumulative disassembly time graph and the step-by-step comparison 



between the estimated and measured times for the washing machine electric motor (graph 

on the top) and for the coffee machine water pump (graph on the bottom). 

Enter Table 4 here 

Enter Figure 12 here 

The observed errors for the single disassembly operations are lower than ±15%, which can 

be considered an acceptable error during the design process. Indeed, the proposed method 

does not intend to provide an extremely precise estimation of the disassembly time. It 

mainly aims to guide the decision-making during design activities (e.g., identification of 

product criticalities and setting a redesign strategy to improve product EoL performance). 

In both the cases in Figure 12, the graphs of the estimated and measured cumulative 

disassembly times have a comparable shape and a comparable slope in the most critical 

point (e.g., disassembly of the Electro-mec Ass. in the washing machine), indicating that 

the method can be considered sufficiently reliable to support the identification of 

criticalities and re-design activities. 

A reason for the observed inaccuracies is very likely the difficulty to model the 

heterogeneous wear conditions of components/liaisons through a limited set of corrective 

factors. This is confirmed by the higher estimation errors observed in the case of the 

washing machine that was disassembled after 15 years of use, while for the new coffee 

machine, errors for single operations are lower than ±8%. Moreover, the corrective factors 

do not account factors related to the operator, such as his/her skills (i.e. experience in 

disassembling specific products or target components acquired with training courses or 

experience) and the working environment (i.e. physical ergonomics of the operator when 

interacting with the product). The lack of such factors represents a limitation of the 

proposed approach that contributes in underestimating the disassembly times of the target 



components. Another source of error in the method is related to the prediction of 

accessibility problems due to component obstruction, product re-orientation or the use of 

large disassembly tools. 

5 Conclusions and future research 

The paper presents a method to calculate the effective time for the selective disassembly of 

target components of industrial products. The approach considers the effective conditions 

of a product and its components (e.g., deformation, rust, and wear) using corrective factors. 

This is the main contribution to the state of the art of design for disassembly. The 

corrective factors are derived from a specific data mining process, based on the observation 

of real de-manufacturing activities. The knowledge (i.e., experience of de-manufacturing 

centres), gathered and elaborated through a data mining process, is stored within a specific 

database, called Liaison_DB. Such a result, once implemented by a software tool, can be 

directly used by designers for calculating the disassembly times of target components and 

verify compliance with target values. Moreover, by analysing the cumulative disassembly 

time graph (Figure 12), designers can identify the most critical disassembly operation 

(namely that one with the highest slope). 

The work presented by the authors has been tested with two different household 

appliances: a washing machine and a coffee machine. The case studies highlighted the 

reliability of the method for calculating the corrective factors through the data mining 

approach. The deviations between the estimated disassembly times and the actual ones for 

the single operations range from -13% to 15% for the washing machine and from -8% to 

2% for the coffee machine. The errors in estimating the disassembly time for the selected 

target components are -6% for the electric motor of the washing machine and -3% for the 

water pump of the coffee machine. The case studies also highlighted the adaptability of the 

method to different product families and different conditions of use. Another feature of this 



approach is the upgradability, because the Liaison_DB can be considered as a data 

structure for storing liaisons and relative properties/factors that can be updated by 

analysing new product types. 

The critical analysis of the proposed method highlights two main limitations. 

Corrective factors are calculated using a data mining approach by considering just a 

parameter at a time. Even if the estimated disassembly times are close to the actual ones, 

for considering mutual dependency of the corrective factors, the data mining method 

should consider more than a parameter at a time when calculating a corrective factor. 

Moreover, the two case studies, carried out involving only one operator per product, cannot 

indicate the dependency between the operator skill and the disassembly time. A broader 

campaign of experimentation (more products and operators) will be required for this aim.  

Future research should be focused on seeking a strategy for combining heuristic 

and exact methods for disassembly time calculation. First, exact methods, whose use does 

not imply any preliminary activity, should be used during the product embodiment design 

phase, with the aim to develop a database of disassembly analyses. Second, such a 

repository will represent the basic knowledge to be used during the product conceptual 

design. This integrated approach will  make the product disassemblability evaluation 

feasible during conceptual and embodiment design. Finally, the development of a 

dedicated software tool, powered with algorithms for automatically recognizing 

precedence, liaisons and disassembly levels, will be an effective enabling strategy. with the 

aim to foster the adoption of the presented method and Liaison_DB in real design 

departments. 
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Table 1: Corrective factors for a screw liaison type (Mandolini et al., 2018) 

Liaison 

class 

Liaison 

type 

Standard 

disassembly time 

[s] 

Liaison 

property 
Liaison corrective factors 

Threaded Screw 4 

Wear 

Completely worn / rusted = 2 

Partially worn / rusted = 1.3 

Not worn / rusted = 1 

Deformation 
Deformed = 2 

Not deformed = 1 

Head type 

Hexagonal = 1.2 

Hexagonal with notch = 1 

Cylindrical = 1.2 

Cylindrical with notch = 1 

Cylindrical with hex notch = 

1.1 

Length 

L ≤ 20 mm = 1 

20 mm < L ≤ 40 mm = 1.1 

L > 40 mm = 1.2 

Diameter 

D ≤ 4 mm = 1.2 

4 mm < D ≤ 12 mm = 1 

D > 12 mm = 1.2 

Tool 

Screw gun = 1 

Spanner = 1.2 

Screwdriver = 1.4 

 

  



Table 2: Target components for the analyzed washing machine 

Target 

Componen

t 

Relevant 

features 

Motivation for selective disassembly 

Legislatio

n 

Maintenanc

e 

Remanufacturin

g 

Material 

Recover

y 

Capacitor 

Potential 

failures 

Potential 

presence of 

hazardous 

substances 

and 

materials 

X X   

Water 

pump 

Potential 

failures 

Potential 

use as 

second-

hand 

component 

X X X  

Electric 

motor 

Potential 

failures 

Potential 

use as 

second-

hand 

component 

X X X  

Heating 

element 

Potential 

failures 
 X   

Drum 

Economic 

convenienc

e for the 

recovery of 

   X 



stainless 

steel 

 

  



Table 3: Operations and disassembly time for the Electric motor component 

Operation 

N° 

Removed 

component 

Removed 

liaisons 

Estimated disassembly 

time [s] 

1 TOP back cover 3 screws 14.4 

2 Back cover 6 screws 28.8 

3 Wood panel 2 guides 9.8 

4 TOP guide DX 2 screws 9.6 

5 TOP guide SX 2 screws 9.6 

6 Concrete weight 1 2 screws 13.8 

7 TOP front cover 
2 screws 9.6 

1 snap-fit 2.2 

8 
Control Panel 

Assembly 
3 screws 14.4 

9 Detergent box 

3 pins 16.6 

3 screws 14.4 

1 snap-fit 2.4 

10 
Electro-mec 

Assembly 

30 electric plugs 120 

6 screws 28 

11 Electric wires 
26 electric plugs 67.6 

1 pin 6.5 

12 Cabinet 

3 pins 18 

3 snap-fits 6.8 

1 nut 4.8 

13 Motor support 1 nut 4.4 

14 Electric motor 
2 screws 11.5 

1 guide 3.2 

Total 416.4 

 

  



Table 4: Estimated disassembly time vs. Measured disassembly times for the target 

components of washing machine and coffee machine 

Product Target 

component 

Estimated 

disassembly time [s] 

Measured 

disassembly time [s] 

Error 

[%] 

Washing 

machine 

Capacitor 

 

45 48 -6.3 

Water pump 

 

51 57 -10.5 

Electric motor 

 

416 443 -6.1 

Heating element 

 

420 466 -9.9 

Drum 

 

466 496 -6.0 

Coffee 

machine 

Water pump 

 

227 234 -3.0 

Electronic board 

 

429 444 -3.4 

Boiler 598 624 -4.2 



 

  



Figure 1. Workflow of the proposed DSP approach. 

Figure 2. Exploded view of the gear reducer example. 

Figure 3. Disassembly levels for the gear reducer example. 

Figure 4. Disassembly ‘level’ matrix for the gear reducer example. 

Figure 5. Within-cluster sum of square (WSS) for screw diameter clustering. The red circle 

indicates the optimal number of clusters (elbow method). 

Figure 6. Screw diameter clustering (k-means algorithm). 

Figure 7. Data modelling process for calculating the corrective factors. 

Figure 8. Corrective factors for screw head type (cluster view). Within brackets the 

normalized corrective factors. 

Figure 9. Distribution fitting analysis for the corrective factors. 

Figure 10. (A) Analysed washing machine and (B) coffee machine models. 

Figure 11. ‘Level’ matrices for the washing machine: (A) initial matrix, (B) reduced matrix 

after the disassembly of component B, (C) reduced matrix after the disassembly of 

component B and T. 

Figure 12. Cumulative disassembly time graph for the washing machine electric motor and 

for the coffee machine water pump. 


