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We present a classical approximation for the peaks of survival resonances occurring when
diffracting matter waves from absorption potentials. Generally our simplified model describes the
absorption-diffraction process around the Talbot time very well. Classical treatments of this pro-
cess are presently lacking. For purely imaginary potentials, the classical model duplicates quantum
mechanical calculations. The classical model allows for simple evolution of phase-space probability
densities, which in the limit of the effective Planck’s constant going to zero allows for a compact
analytical expression of the survival probability as a function of remaining parameters. Our work
extends the range of processes that can be described through classical analogues.

I. INTRODUCTION

Optical elements based on diffraction and phase disper-
sion are ubiquitous in modern society, physics and engi-
neering. Electromagnetic waves are used, for instance,
to study microscopic material properties for more than
a hundred years [1, 2]. Matter waves of electrons [3, 4],
neutrons [5], atoms [6] or even heavier particles [7, 8] are
complement tools to investigate material properties or
fundamental aspects and limits of quantum physics.

We focus on atomic matter waves diffracted from a
light-induced grating. In the limit of far-detuned light
from the atom’s internal transitions, such a grating pro-
vides a conservative potential that is used, e.g., to pro-
duce cw optical lattices [9] or pulsed diffraction in the
Bragg or Raman-Nath regime. The latter is used to im-
plement the atom-optics kicked rotor, a standard model
of classical as well as quantum dynamical systems’ theory
[10–13]. A series of recent experiments [14–16] applied
instead an absorption grating to induce pulses on cold
rubidium atoms, realizing an atom-optics ”killed” rotor
(AOKR), implying the loss of atoms due to resonant ab-
sorption. The corresponding potential is imaginary de-
scribing the dissipative process. Light and matter waves
are scattered or diffracted also by such an imaginary po-
tential, an effect that is hard to imagine classically in the
sense of either geometric optics or trajectories in phase
space.

In this paper, we present a fully classical model for the
AOKR that faithfully reproduces the quantum dynamics
of atoms close to the Talbot resonances, at which periodic
phase revivals occur after single diffraction pulses [17].
While such a model existed for diffraction from conserva-
tive potentials, it is remarkable that it can be amended
to describe quantum scattering from purely imaginary
potentials which is thought to be a wave effect. Please
note that while usually dissipation is supposed to induce
a quantum-to-classical transitions, in our case, the dissi-
pative grating is usually seen as to induce a purely quan-
tum scattering effect, without a classical analogue. We

provide exactly such an analogue classical model whose
advantage is its simplicity making it accessible to analyt-
ical treatment. Moreover, it provides a classical picture
of trajectories in phase space for the iterated dissipative
wave diffraction process. In our pseudo-classical descrip-
tion the diffraction is modelled by random kicks in mo-
mentum space to the atom.

The remaining of this paper is structured as following.
Section II provides the theoretical background for atoms
periodically exposed to an optical standing-wave close to
resonance with an open transition. Section III introduces
the classical model in which absorption results in random
momentum kicks. Section IV goes in depth with the spe-
cial case of a resonant standing wave leading to a pure
absorption grating, while Section V concludes the paper.

II. THEORETICAL BACKGROUND

We describe a two-level atom with level difference
∆E = ~ωeg in a standing wave of laser light with fre-
quency ω. This is a good model for rubidium atoms
driven by light pulses close to resonance with some cho-
sen internal transition. The Hamiltonian of the atom in
the rotating frame under rotating-wave approximation
reads

Ĥ =
p̂2

2M
−(~∆+i~Γ/2) |e〉 〈e|+~Ω

2
(|e〉 〈g|+ |g〉 〈e|) cos(kLx̂) .

(1)
Ω is the Rabi frequency and ∆ = ω − ωeg the detuning
from the internal transition. Γ describes the decay rate
of the upper state, and we assume that when the atom
in the excited state spontaneously decays it is lost and
not further considered in the experiment. For the experi-
mental realisation of the AOKR [14–16] the ground state
has two levels, with only one of them considered here.
The dominating decay channel goes into the second level
[14] that motivates our approximation. Even if the atom
would return to the initial ground-state level, it receives
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a recoil changing its quasimomentum (see below after Eq.
(7)) and hence its response to the kicking pulses [18, 19].
This implies that it will be effectively lost from the sig-
nal, and only potentially contributing to an incoherent
background [14, 20].

Neglecting the p̂2

2M term for a moment, the Hamilto-
nian in Eq. (1) can easily be diagonalized to give the
following eigenvalues:

λ1 = −1

2

(
~∆ +

i~Γ

2

)
− 1

2

√(
~∆ +

i~Γ

2

)2

+ ~2Ω2 cos2 (klx)

λ2 = −1

2

(
~∆ +

i~Γ

2

)
+

1

2

√(
~∆ +

i~Γ

2

)2

+ ~2Ω2 cos2 (klx) . (2)

The probability amplitude to remain in the ground
state after a time t is then given by

G(x, t) =
1

1− λ2

λ1

(
exp

(
− i
~
λ2t

)
− λ2

λ1
exp

(
− i
~
λ1t

))
.

(3)
that we call the grating operator in what follows. In case
of off-resonant driving, i.e. ∆� Ω, we would get

G(x, t) = exp

(
−iΩ2

8∆
t cos(2klx)

)
(4)

The potential energy ~Ω2

8∆ cos(2klx) in this case would
be the usual kick potential of the temporal evolution op-
erator of the atom-optics kicked rotor [12, 21]. The phase

φd = ~Ω2

8∆ t is identified as the kicking strength. Since the
kicks are supposed to be instantaneous the kicking time
t should be short with respect to the inverse of the recoil
energy divided by ~. This is the so called Raman-Nath
regime.

Since we are interested in close-to-resonant driving, the
grating operator generally does not just give a phase but
also an amplitude modulation. Then, the position space
representation of the grating operator of Eq. (3) can be
written as

G (x) = exp (iΘ (x))A (x) , (5)

where A (x) ∈ [0, 1] and Θ (x) ∈ [0, 2π) are positive func-
tions determined by Eq. (3), and we assume now that

the time t during which the pulse is on is fixed. This time
must be short in order to comply with the Raman-Nath
condition. We omit it in the further discussion as it only
enters as a parameter in G.

In the standard atom-optic kicked rotor, the time evo-
lution operator for N kicks is given by

U(0, N) =

(
exp

(
− i
~
p2

2M

(
`
TT
2

+ ∆T

))
G

)N
, (6)

with G from Eq. (4). Here, ` is an integer, `TT2 +∆T the
kicking period with ∆T the deviation from the nearest
integer multiple of half the Talbot time. ∆T is the small
parameter of the classical limit obtained for ∆T → 0.
Now, by substituting the general expression Eq. (5), we
obtain the one-period time evolution or Floquet operator

U(0, 1) = exp

(
− i
~
p2

2M

(
`
TT
2

+ ∆T

))
exp (iΘ (x))A (x) .

(7)
Following refs. [18, 22], we introduce dimensionless vari-
ables of the kicked rotor by substituting θ = 2klx,
ε = 4~k2

l ∆T/M , and J = εp/2~kl is the re-scaled mo-
mentum. When rewriting Eq. (7), we introduce the frac-
tional part of momentum β = p/(2~kl) (mod 1). Since
the grating potential is periodic, the quasimomentum and
thereby β ∈ [0, 1) is conserved [18, 21, 23] Eq. (7) then
reads

U(0, 1) = exp

(
− i
ε

(
J2

2
+ Jπ`+ 2Jπ`β

))
exp

(
iΘ

(
θ

2kl

))
A

(
θ

2kl

)
. (8)

III. THE PSEUDO-CLASSICAL MODEL

In refs. [22, 23], a pseudoclassical model was intro-
duced that successfully describes the atom-optics kicked

rotor close to the quantum resonance, where the reso-
nance refers to the Talbot effect causing wave-function
revival in-between two kicks.

We extend this model from a far-off resonant standing
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wave to the close-to or even on-resonant driving of the
atom. In the latter case, the potential given by the grat-
ing operator Eq. (5) is completely imaginary correspond-
ing to a pure absorption grating [6]. It is remarkable that
such a purely classical description is indeed possible for
two wave effects, first the diffraction from an absorbing
potential, second the rephasing of evolution phases in the
external momentum degree of freedom i.e. the Talbot ef-
fect. When we restrict ourselves to a given value of β,
the time evolution induced by Eq. (8) can then be ap-
proximated by the classical map:

Sn+1 = s (θn)Sn (9)

Jn+1 = Jn + δJn + ε
∂

∂θ

∣∣∣∣
θn

Θ

(
θ

2kl

)
(10)

θn+1 = θn + Jn+1 + π`+ 2π`β . (11)

Here Sn is the overall survival probability of a trajectory
after n pulses, s(θ) the probability that an atom at po-
sition θ will survive a single pulse, and δJn a random
momentum kick an atom receives. by the pulse. Please
note that the sign of ε enters the definition of J , contrary
to the notation used in [18, 22, 23]. The iteration of this
map approximates well the quantum evolution as long
as ε remains small. For fixed ε, the approximation will
eventually break down as the number of applied kicks N
increases. Hence, for small kick numbers rather large ε
are fine, while for large numbers the correspondence will
be the better the smaller ε [18]. In contrast to the stan-
dard atom-optics kicked rotor, there are two new points
to consider in our classical evolution. First, we must iter-
ate also the survival probability of the atoms Sn because
of the absorption by the on-resonant grating. Secondly,
the random change of momentum δJn, derives from the
diffraction from the same absorption grating. Both ef-

fects are governed by the amplitude function A
(

θ
2kl

)
that would be identical to one in the standard atom-
optics kicked rotor. Here, however, we obtain for the
absorption or mask function the square of the grating
amplitude A:

s (θ) = A2

(
θ

2kl

)
. (12)

Considering the case where survival predominantly oc-
curs in the vicinity of the standing wave nodes, then the
application of the grating operator broadens the momen-
tum distribution by the Fourier transform of its ampli-
tude A. This implies that the distribution from which
δJn must be drawn is given by:

ρ (δJ) = B

(∫ 2π

0

A (θ) exp

(
−i δJ

ε
θ

)
dθ

)2

, (13)

where B is a normalization constant.
Fig. 1 compares the ε-classical model based on Eqs.

(9)-(11), to the one based on the Floquet operator
(Eq. (8)). Throughout this work we use the experi-
mentally relevant parameters [14–16] kl = 2π/780nm,

Γ = 2π6MHz, Ω = 2Γ, N = 7 kicks, t = 500ns, and M
the mass of an 85Rb atom, unless otherwise stated. We
see in the figure that the ε-classical model captures the
quantum dynamics well. Moreover, we see that the ran-
dom momentum kick δJ that the particle receives due to
the amplitude function remains significant for standing
wave detunings of the order of the natural linewidth Γ.
The green dotted line in the lower panel shows the result
of omitting δJ , and while we still see resonant behavior
the model is no longer in quantitative agreement with the
quantum model, in particular for negative ε. The reason

for the asymmetry is the force term ε ∂
∂θ

∣∣
θn

Θ
(

θ
2kl

)
in

Eq. (10), that changes sign with ε. For positive ε, it will
direct atoms away from θ = π where survival is high,
leading to the rapid drop in survival when ε increase from
zero. On the other hand, for negative ε, the force term
will direct atoms towards the high survival region making
the probability density peak here. However, the addition
of a random δJ will broaden the peak and partially sup-
press the the enhancement of survival, thereby making
the effect of it profound for negative ε.

IV. PURE ABSORPTIVE DIFFRACTION

In the case of exactly resonant standing wave light
(∆ = 0), the above expression simplifies significantly.
The quantum mechanical exact result for the absorptive
diffraction is given, e.g., by Eq. (1) in ref. [20]. Using
in Eqs. (2)-(3) a harmonic approximation of the cosine
close to the potential minima [24] where the atoms have
a chance to survive, we obtain as a good approximation:

G(x) =
∑
j∈Z

exp

(
−1

2

Ω2k2
l

Γ

(
x−

(
j +

1

2

)
π

kl

)2

t

)
(14)

which is the convolution of a delta-function comb with a

Gaussian that has σx = 1
Ωkl

√
Γ
t . This directly gives the

grating amplitude since there is no phase imprint at all,
i.e. exp(iΘ) = 1, implying no Θ-dependent shift in Eq.
(10). Then the transmission probability, Eq. (12) for the
n-kick is

s (θn) = exp

(
−Ω2t

4Γ
(θn − π)

2

)
. (15)

which can be written s (θn) = exp
(
− (θn−π)2

σ2
θ

)
with σ2

θ =
4Γ
Ω2t . Equation (13) then yields a distribution from which
δJn must be drawn given by:

ρ (δJ) =
1√

2πσ2
J

exp

(
− 4Γ

Ω2t

δJ2

ε2

)
, (16)

which is a simple Gaussian with the standard deviation

σJ =
√

t
8ΓΩε. With the explicit results from Eqs. (15)

and (16), the pseudoclassical map can be easily iterated,
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Figure 1. (Upper panel) Comparison between ε-classical
model (dashed cyan line), see Eqs. (9)-(11), and one based
on the Floquet operator from Eq. (8) (solid red line) for an
initial state characterized by J = β = 0 , using resonant
standing wave (∆ = 0) after N = 7 kicks. (Lower panel)
Standing wave off resonance (∆ = Γ), but other parameters
are the same as in the upper panel. ε-classical model (dashed
cyan) and quantum evolution (solid red). We observe a good
agreement, with minor deviation when ε > 0.1 is large. The
green dotted line is the ε-classical result without the random
(δJ) kick that indeed plays a crucial role in our classical model
of diffraction.

e.g. for an initial ensemble of atoms, with a given in-
teger and quasimomentum each. Results are shown in
Fig. 1, where we observe a very good correspondence
with the full quantum mechanical simulations based on
the Floquet operator from Eq. (8). Interestingly, for
the resonant standing wave (upper panel) there are no
observable deviation at all.

A. Evolution of phase-space probability densities

We note that Eqs. (15) and (16) are both Gaussian
functions. This means that the θ-J phase-space proba-

bility density will always be a (potentially sheared) Gaus-
sian ellipse (see Fig. 2). This observation allows for a far
more efficient way of computing the survival probability.
Generally, the phase-space probability density is charac-
terized by only five numbers S, 〈J〉, α, σH and φ (see

Figure 2. The probability density is a Gausian ellipse in
phase-space. 〈J〉 is the mean of J , φ the intersection of the
ellipse’s axis with the θ-axis, and α = ∆θ

∆J
is the inverse slope

of the ellipse’s axis.

Fig. 2) and can be written:

ρW (θ, J) =
S

πε
×

exp

(
−σ2

H

(J − 〈J〉)2

ε2

)
exp

(
− (θ − αJ − φ)

2

σ2
H

)
.(17)

S is the survival probability (the total probability re-
maining in phase-space), 〈J〉 is the mean of J computed
with a normalized probability density (that is S = 1 in
Eq. (17)), φ the intersection of the ellipse’s axis with the
θ-axis, α = ∆θ

∆J is the inverse of the slope of the ellipse’s
axis, and finally σH determines the width of the proba-
bility density along the θ-direction. Please note that the
width along the J-direction is not a free parameter since
it gets dictated by the uncertainty relation originating
from [θ, J ] = iε.

Rather than evolving individual trajectories using
Eqs. (9)-(11) we can use the pseudo-classical evolution
to propagate the five parameters that characterise the
phase-space probability density. This gives recursion re-
lations for these which for the survival probability is:
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Sn+1 =
SnσH,nσθ√(

σ4
H,n + α2

nε
2 + σ2

H,nσ
2
θ

) exp

σ2
H,n

(
π (2 (φn + αn 〈J〉n)− π)− (φn + αn 〈J〉n)

2
)

σ4
H,n + ε2α2

n + σ2
H,nσ

2
θ

 . (18)
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Figure 3. Comparison between recursion model (blue solid)
and Eq. (8) (red dashed) for Ω = 2Γ N=7. Upper panel:
Dependence on ε with β = 0. Lower panel: Dependence on β
with ε =

(
10−7 µs

)
~4k2

l /M .

The recursion relations for the remaining four parame-
ters and an outline of how they are found are given in
the appendix. The recursion relations provide an effi-
cient way of computing the survival probability after a
given number of pulses. Figure 3 compares the survival
probability computed in this way with the one computed
quantum mechanically based on Eq. (8), and we see the
two methods agree excellently with no observable differ-
ence between them.

It may appear surprising that Eq. (18) captures the
full quantum dynamics for finite ε. However, for a reso-
nant standing wave there is no evolution in a potential,
and classical and quantum evolution of phase space dis-
tributions are identical in free space. Additionally, the
fluctuations from averaging over a finite number of tra-
jectories barely visible in the upper panel of Fig. 1 are
no longer present, since Eq. (18) evolves the full phase
space distribution.

B. ε = 0

In the special case when ε = 0 it is possible to obtain
a compact analytical formula for the survival probability
after N standing wave pulses, rather than having to use
the recursion relations given by Eqs. (18), (23), (26), (29)
and (31). In this case 〈J〉 = 0 and the other quantities
are independent of α, which is undefined. The survival
probability after N pulses is:

SN =
σθ

2
√
π
√
N
×

exp

(
− (`π + 2`πβ)

2

12σ2
θ

(N − 1)N (N + 1)

)
, (19)

and expressions for φ and σH are in the appendix [25].
Figure 4 show a comparison between Eq. (19) and a

calculation based on the Floquet operator from Eq. (8).
We see that Eq. (19) agrees excellently with the quantum
mechanical calculation. This is not surprising since the
pseudo-classical model should become strictly correct in
the ε = 0 limit, in analogy to previous work in the off-
resonant limit [18, 21–23].

V. CONCLUSION

We derived a classical model for the iterated diffraction
of matter waves from absorption gratings close to the Tal-
bot revivals. This gives an efficient way of predicting the
peak structure of the survival resonances obtained in the
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Figure 4. The survival probability as a function of β for
ε = 0. Red solid line: Calculation based on the Floquet
operator from Eq. (8). Blue dashed line: Eq. (19).
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experiments [14–16]. Furthermore, our model offers an
intuitive picture of the quantum mechanical diffraction
from imaginary potentials based on trajectories in phase
space. This way of thinking provides a quantum-to-
classical transition for an effect originally treated purely
wave-like or quantum mechanical. When the standing
wave light is resonant with the atomic transition, leading
to pure absorptive diffraction, the classical model agrees
remarkably well with quantum mechanical calculations.
This situation also allows for a simple analytical expres-
sion for the survival probability when ε = 0 and generally
very efficient calculations based on phase-space probabil-

ity densities.
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APPENDICES

VI. RECURSION MAP FOR PHASE-SPACE PROBABILITY DENSITY

We propagate a probability density such as Eq. (17) in two steps. First, we compute how it changes due to
the standing wave pulse, and then propagate the result using Eq. (11). Applying the standing wave changes the
probability density through multiplying it with Eq. (15) and convolving it along J with Eq. (16). This follows
from Eq. (9) and (10), or simply by calculating the Wigner function after application of the grating operator to the
Gaussian probability density. Either way we get:

ρW,a =
Sbσθ

πε

√(
σ2
θ + σ2

H,b +
ε2α2

b

σ2
H,b

) ×

exp

− (θ − π)
2

σ2
θ

− σ2
θ

ε2
J2 −

σ2
H,b

ε2
〈J〉2b −

(θ − φ)
2

σ2
H,b

+

(
σ2
θ

ε2 J +
σ2
H,b

ε2 〈J〉b + α(θ−φ)
σ2
H,b

)2

(
σ2
θ

ε2 +
σ2
H,b

ε2 +
α2
b

σ2
H,b

)
 , (20)

where the subscript b denotes the value before the grating was applied. Equation (20) again describes a Gaussian
ellipse in phase-space and noting that Eq. (17) can be written:

ρW (θ, J) =
S

πε
×

exp

(
− 1

σ2
H

θ2 −
(
σ2
H

ε2
+
α2

σ2
H

)
J2 − 2αφ

σ2
H

J +
2σ2

HJm
ε2

J +
2θα

σ2
H

J − σ2
HJ

2
m

ε2
− φ2

σ2
H

+
2θφ

σ2
H

)
, (21)

we see that the θ2 term in the exponential function determines σH . So isolating that term in Eq. (20) allows us to
determine what σH is after application of the grating in terms of the parameters before. Moreover, by observing Eq.
(11) we see that σH does not change due to the evolution between standing wave pulses, so we find the following
recursion relation for σH where the subscript n denotes the quantities values before the n+ 1’th standing wave pulse:

σ2
H,n+1 =

1
1
σ2
θ

+ 1
σ2
H,n
− ε2α2

n

σ2
H,n(σ2

θσ
2
H,n+σ4

H,n+ε2α2
n)

= (22)

σ2
θ

(
σ2
H,nσ

2
θ + σ4

H,n + α2
nε

2
)(

2σ2
H,nσ

2
θ + σ4

θ + σ4
H,n + α2

nε
2
) . (23)

Similarly φ after application of the standing wave (denoted φa) can be determined from the term proportional to
θ but not J :

2φa
σ2
H,n+1

=
2φn
σ2
H,n

+
2π

σ2
θ

+
− 2ε2α2

nφn
σ2
H,n

+ 2 〈J〉n σ2
H,nαn

σ2
θσ

2
H,n + σ4

H,n + ε2α2
n

(24)

m

φa = σ2
H,n+1

(
φn
(
σ2
θ + σ2

H,n

)
+ 〈J〉n αnσ2

H,n

σ2
H,nσ

2
θ + σ4

H,n + α2
nε

2
+

π

σ2
θ

)
. (25)
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Using this and Eq. (11) we find φn+1 as:

φn+1 = φa + ∆φ (mod (2π)) (26)

with ∆φ = `π + 2`πβ.
Following the same procedure we determine αa from the term proportional to both θ and J :

2αa
σ2
H,n+1

=
2αn
σ2
H,n

−
2
(
σ4
H,n + ε2α2

n

)
αn

σ2
H,n

(
σ2
θσ

2
H,n + σ4

H,n + ε2α2
n

) (27)

m

αa = αnσ
2
H,n+1

σ2
θ

σ2
H,nσ

2
θ + σ4

H,n + α2
nε

2
(28)

which using Eq. (11) gives:

αn+1 = αa + 1 = αnσ
2
H,n+1

σ2
θ

σ2
H,nσ

2
θ + σ4

H,n + α2
nε

2
+ 1. (29)

Finally, 〈J〉 does not change due to evolution between the standing wave pulses, Eq. (11), so 〈J〉n+1 is found from
the term proportional to J but not θ in Eq. (20):

− 2αaφa
σ2
H,n+1

+
2σ2

H,n+1 〈J〉n+1

ε2
=
ε2σ2

H,n2
σ2
θ

ε2

(
σ2
H,n

ε2 〈J〉n −
αnφn)
σ2
H,n

)
σ2
θσ

2
H,n + σ4

H,n + ε2α2
n

(30)

m

〈J〉n+1 =
ε2αaφa
σ4
H,n+1

+
ε2σ2

H,nσ
2
θ

(
σ2
H,n〈J〉n
ε2 − αnφn

σ2
H,n

)
σ2
H,n+1

(
σ2
θσ

2
H,n + σ4

H,n + ε2α2
n

) . (31)

Finally, Eq. (18) comes from integrating Eq. (20).

A. Special case ε = 0

When ε = 0 simple insertion into Eq. (23) reveals that
σH after N standing wave pulses is:

σ2
H,N =

σ2
θ

N
. (32)

Using this and the fact that 〈J〉 = 0 in Eq. (26) allows
one to show

φN =
`π + 2`πβ

2
(N + 1) + π. (33)

Equation (19) then follows from using Eq. (32) and
(33) in Eq. (18).
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