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Abstract

While the current pandemic is causing mortality shocks globally, the management of
longevity risk remains a major challenge for both individuals and institutions. It is high
time there be private market solutions designed for ef�cient longevity risk transfer among
various stakeholders such as individuals, pension funds and annuity providers. From in-
dividuals’ point of view, appealing features of post-retirement solutions include stable
and satisfactory bene�t levels, �exibility, meeting bequest preferences and low fees. This
paper proposes a dynamic target volatility strategy for Group Self-Annuitization (GSA)
schemes aimed at enhancing living bene�ts for pool participants. More speci�cally, we
suggest investing GSA funds in a portfolio consisting of equity and cash, continuously
rebalanced to maintain a target volatility level. The performance of a dynamic target
volatility strategy is assessed against the static case which does not involve portfolio
rebalancing. Bene�t pro�les are assessed by analysing quantiles and alternative strate-
gies involving varying equity compositions. The case of death bene�ts is included, and
the fund dynamics analysed by assessing resulting investment returns and the mortality
credits. Overall, higher living bene�t pro�les are obtained under a dynamic target volatil-
ity strategy. From the analysis performed, a trade-off between the equity proportion and
the impact on the lower quantile of the living bene�t amount emerges, suggesting an
optimal proportion of equity composition.
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1 Introduction

Net of the effect of mortality shocks induced by COVID-19, signi�cant improvements have
been gained in the mortality of older cohorts in many areas around the world. Together
with structural changes in many populations, the mortality dynamics affected Pillar I and II
pension bene�ts, which have been revised downward in many countries. In particular, the
shift from de�ned bene�t (DB) to de�ned contribution (DC) pension schemes implies that
both individual longevity and investment risk have to be self-managed by the individual,
possibly transferring them to a private provider.

It is well documented that, among the private post-retirement solutions, standard annuity
products offer the optimal decumulation strategy (Yaari, 1965), in particular thanks to the
longevity and investment guarantees they embed. However, the annuity market remains
low due to a host of factors contributing to the annuity puzzle (Modigliani, 1986). Such
factors include, among the others, bequest motives, but also loadings that cause annuities to
be perceived as unfairly priced (Brown, 2009). Further, standard annuities are considered to
be an in�exible and illiquid asset by many individuals, as they imply an irreversible decision
(Pitacco, 2016).

There is a growing need for arrangements capable of providing a suitable, sustainable,
stable and �exible post-retirement income. The challenge is magni�ed by higher rates of
baby boomers moving into retirement. Innovation is required in designing customized post-
retirement income products, capable of mitigating longevity risk whilst preserving a sta-
ble income after retirement. A number of pooling structures, where a group of individu-
als create a fund which can be invested in the capital markets whilst periodically drawing
down depending on survival, have been proposed in literature. Such products include group
self-annuitization (GSA) schemes (Piggott et al., 2005, Valdez et al., 2006, Qiao and Sherris,
2013), pooled annuity funds (Stamos, 2008, Donnelly et al., 2013, Donnelly, 2015), tontines
(Milevsky, 2014, Milevsky and Salisbury, 2015, Chen et al., 2019, Weinert and Gründl, 2020)
among others. The design of these pooled products has mainly been analysed considering
simple investment strategies.

In reality, the returns achievable with a simple investment strategy may prove insuf�cient
to maintain the sustainability of the fund due to the ever-changing economic environment
and mortality uncertainty. Ideally, the funds will have to be invested in the capital markets
on various asset classes, such as equities, �xed income securities and (whenever available)
longevity-linked securities, developing a strategy aimed at enhancing the fund performance.
Unlike in the case of standard annuities, where the annuity provider takes charge (unless
default) of the overall longevity and investment risk, under pooling structures risks are fully
retained by the participants. It is thus critical for there to be innovative approaches for neu-
tralizing the risks impacting the pool. One dimension would be enhancement of GSAs, as
they have potential for providing low cost retirement income payouts; however, they may
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prove to be lacking stability of the stream of individual payments. In particular, current GSA
designs are vulnerable to potential decrease in survival bene�ts in the event of mortality
improvements (Qiao and Sherris, 2013), as well as of poor investment performance. While
we do not model longevity risk, we propose a target volatility investment strategy, aimed at
enhancing investment returns of the fund, capable of overcoming adverse conditions.

Target volatility strategies are premised on the empirical relationship of negative corre-
lation between asset returns and conditional volatility (Bollerslev et al., 2006), which asserts
that low volatility regimes are characterized by high equity returns, and vice-versa. Target-
ing a certain volatility level on a portfolio results in more predictable and attainable returns
over a given investment horizon. Such a volatility level is achieved by dynamically rebalanc-
ing the portfolio composition. Pioneering literature on target volatility strategies has been
empirical studies on portfolios consisting of several equities whose overall volatilities are
calculated by estimating the corresponding variance-covariance matrices (see Fleming et al.
(2001), Kirby and Ostdiek (2012) among others). Volatility forecasting has mainly been fa-
cilitated with the aid of time series based techniques, such as the generalized autoregressive
conditional heteroskedasticity (GARCH) framework (Bollerslev, 1986).

Doan et al. (2018) devise target volatility forecasting strategies and assess their perfor-
mance relative to benchmark indices in the Australian, German, UK and US markets. The
authors create portfolios consisting of well diversi�ed stock holdings and stock index fu-
tures. Volatility forecasts are generated by implementing a reduced form of the GARCH(1,1)
model. The devised strategies are shown to outperform traditional benchmark indices in the
analyzed markets.

While Doan et al. (2018) and majority of prior literature use time series based techniques
such as the generalized autoregressive conditional heteroskedasticity (GARCH) framework,
this work devises a continuous time framework by simulating the Heston (1993) stochastic
volatility model. In implementing a target volatility strategy for a GSA pool, we compare
GSA bene�t pro�les emerging under a static fund composition and when the fund is rebal-
anced dynamically. We consider investment strategies involving a combination of determin-
istic cash account and equity which evolves according to the Heston (1993) dynamics. Bene�t
pro�les are assessed by analysing various quantiles and alternative strategies involving vary-
ing equity compositions are presented. The case of death bene�ts is included, and the fund
dynamics analysed by assessing resulting investment returns and the mortality credits. We
�nd that higher living bene�t pro�les are obtained under a dynamic target volatility strategy.
From the analysis performed, a trade-off between the equity proportion and the impact on
the lower quantile of the living bene�t amount emerges, which suggests an optimal propor-
tion of equity composition.

The remainder of the paper develops as follows. In Section 2, we set up the GSA ar-
rangement, in particular describing the bene�ts provided and how the GSA fund builds up
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in time, also disclosing the main components explaining its dynamics. Section 3 provides the
model framework; we de�ne, in particular, the (static and dynamic) target volatility strategy.
In Section 4, we analyse the results obtained by implementing a target volatility strategy for
the GSA, exploring in particular the bene�t pro�les and quantities explaining the fund dy-
namics. Section 5 concludes, while summarised versions of the implementation algorithms
are presented in Appendices A and B.

2 The GSA design

2.1 Bene�ts and GSA fund dynamics

We consider a homogeneous GSA pool consisting of n individuals aged x joining the fund at
time 0, each of them providing an initial capital amount c. The total pool fund then amounts
to F0 = c � n at time 0.

At anytime, the GSA fund value, Ft, evolves according to the return on investment and the
bene�ts paid out, the latter depending on the mortality experienced by the pool and realized
investment returns. In what follows, we de�ne the GSA fund dynamics in continuous time.

The number of surviving members at time t is Nt, and follows a pure death process me-
diated by a stochastic (or deterministic) transition intensity. More speci�cally, the transition
rate from i to i� 1 policyholders at time t is imx+t where mx+t is the force of mortality for a life
aged x + t. Clearly, N0 = n. If a death occurs at time t, then dNt = �1, otherwise dNt = 0.
Since dNt can be viewed as a Poisson decrement process, the probability of multiple deaths
is of order o(dt) (Ross, 2014), and can be neglected.

The GSA scheme pays living bene�ts to the surviving participants; we further incorporate
the possibility of paying out death bene�ts upon member’s death in our framework. We
assume that living bene�ts are continuously paid1; consistently with the GSA rationale, they
are not guaranteed, but their amount is assessed at the time of payment, so as to keep the
actuarial balance in respect of the current GSA fund value Ft. Let ax+t denote the actuarial
value at time t of a unitary annuity. Then, the total living bene�t amount paid by the GSA
scheme at time t is

Bt =
Ft

ax+t
, (2.1)

and

Lt =
Bt

Nt
(2.2)

represents the amount cashed by each survivor at time t.

1Note that in later sections when performing numerical illustrations, as is the practice, we discretise the time
domain into discrete timesteps and apply the Euler scheme.
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The actuarial value of the annuity ax+t is computed taking deterministic assumptions
about the discount rate and the force of mortality. Then ax+t = e�

R ¥
t (r+mx+s) ds, where r is the

(�at) short rate and mx+s is assumed to be deterministic. We point out that this de�nition
of ax+t implies that no future risk is accounted for in the living bene�ts assessed at time t;
this is a natural choice within a GSA arrangement, where risks are retained by the surviving
participants.

As suggested in many studies (see, for example, (Modigliani, 1986, Brown, 2009)), indi-
viduals have bequest preferences, at least up to some (old) age. We then incorporate death
bene�ts paid by the GSA scheme as members die. Upon one member’s death at time t, an
amount

Dt = b
Ft

Nt�
(2.3)

is paid to the member’s bene�ciaries. Here, b is a proportion of the fund value, and Nt� =
Nt � dNt is the number of survivors an instant before time t; then Ft

Nt�
can be referred to as

the notional individual’s share of the GSA fund at time t, prior to the deaths reported at that
time. We note that, similar to living bene�ts, the amount of death bene�ts is not guaranteed
either. It is also important to note that while death bene�ts meet bequest preferences, they
reduce the possibility for the GSA arrangement in achieving a satisfactory pooling effect.
For instance, if b = 1 no mortality credits are left and the GSA scheme becomes a purely
�nancial arrangement, where individual members fully retain their respective longevity risk.
Conversely, if b = 0 all the money is retained by the GSA fund upon a member’s death, and
the individual longevity risk is pooled within the fund. While b = 0 is acceptable, b = 1
is not realistic in the logic of a GSA arrangement. In view of practical applications, we will
access scenarios involving low values of b in our numerical illustrations.

In this paper, we assume that the GSA fund is proportionally invested in equity and risk-
less cash. We denote with St the equity price process, r the risk-free return of a cash account
and wt the proportion of the fund invested into equity (while (1� wt) is the proportion in-
vested in the cash account).

Under this setting, the GSA fund dynamics can be described as follows:

dFt =
�
wt

dSt

St
+ (1� wt)rdt

�
Ft � Btdt + DtdNt, (2.4)

where dSt denotes the instantaneous change of the equity process over a time increment, dt.
For a precise interpretation of Equation (2.4), and related expressions below, recall that dNt

either takes a 0 or a negative value; then, Dt dNt denotes an out�ow for the GSA fund.

2.2 The components of the GSA fund

As is well known, annuity bene�ts are funded by the initial capital (and this is trivial), in-
vestment returns and mortality credits. In a GSA arrangement, neither investment returns
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nor mortality credits are guaranteed. The latter, in particular, depend on the realized mor-
tality rate and the death bene�t paid out by the scheme. In order to better understand the
dynamics of the living bene�ts, it is convenient to split the GSA fund into three components
as follows:

1. principal, that is, consumption of the fund (denoted as F1
t );

2. interest (F2
t );

3. mortality credit (F3
t ),

so that we have the fund value at time t as

Ft = F1
t + F2

t + F3
t , (2.5)

apart from time t = 0, when F1
0 = F0 = n � c, while F2

0 = F3
0 = 0.

A decomposition similar to (2.5) can be developed for bene�ts, living bene�ts in particu-
lar; for example (see Equations (2.1) and (2.2)), Lt = L1

t + L2
t + L3

t , where Li
t = Fi

t
ax+t Nt

. Under-
standing the dynamics of components of the GSA fund thus provides information about the
bene�t dynamics.

Before describing the dynamics of each of these components, we note that all three con-
tribute to the funding of the living and death bene�ts at time t. We assume, in particular, that
they contribute proportionally to both. Then, from Equation (2.4) we derive that Bt dt

Ft
� Fi

t is
the living bene�t covered by the fund component i (i = 1, 2, 3), while Dt dNt

Ft
� Fi

t is the death
bene�t covered by the same fund component.

We assume that the principal, F1
t , is simply the part of the fund value that can be attributed

to the initial capital, without taking investment returns into account. Therefore, as already
noted, at t = 0 we have: F1

0 = F0. As mentioned above, the fund component F1
t contributes

to the funding of the living and death bene�ts. Further, it must contribute to the mortality
credits. The dynamics of F1

t can be de�ned as follows:

dF1
t = �

Bt dt
Ft
� F1

t +
Dt dNt

Ft
� F1

t + (1� b) �
dNt

Nt
� F1

t

= �
F1

t
ax+t

dt +
dNt

Nt
F1

t . (2.6)

In order to interpret (1� b) � dNt
Nt
� F1

t , recall that dNt = �1 if a death occurs, otherwise dNt =
0. This means that (1� b) � dNt

Nt
� F1

t is either 0 or an out�ow for F1
t . We can interpret it as the

contribution of F1
t to the mortality credits.

The interest component, F2
t , is the cumulative amount of investment gains and losses

incurred by the fund. This component changes by (wt
dSt
St

+ (1� wt)rt)dt) � Ft in each time-
interval dt. However, part of the bene�ts must be covered with the interest gained up to time
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t, so that the absolute amount of accumulated investment returns decreases as living and
death bene�ts are paid out. The dynamics of F2

t can be described as follows:

dF2
t =

�
wt

dSt

St
+ (1� wt)rtdt

�
Ft �

Bt dt
Ft
� F2

t +
Dt dNt

Ft
� F2

t + (1� b) �
dNt

Nt
� F2

t

=
�

wt
dSt

St
+ (1� wt)rtdt

�
Ft �

F2
t

ax+t
dt +

dNt

Nt
F2

t . (2.7)

Similarly to the case for F1
t , (1� b) � dNt

Nt
� F2

t can be interpreted as the contribution of F2
t to the

mortality credits.
Mortality credits, F3

t , accrue when an annuitant dies and correspond to the part of the
fund (including interest) notionally belonging to the individual which is not paid back as a
death bene�t. As discussed above, when an annuitant dies at time t, an amount is transferred
from the principal (F1

t ) and interest components (F2
t ) into mortality credits (F3

t ). The dynamics
of F3

t can be described as follows:

dF3
t = �

Bt dt
Ft
� F3

t +
Dt dNt

Ft
� F3

t � (1� b) �
dNt

Nt
� (F1

t + F2
t )

= �
F3

t
ax+t

dt�
dNt

Nt
F3

t + (1� b) �
dNt

Nt
� (F3

t � F1
t � F2

t ). (2.8)

It can easily be checked that dF1
t + dF2

t + dF3
t = dFt.

3 Modelling framework

3.1 The equity model

We assume that the equity process, St, evolves according to Heston (1993) stochastic volatility
model

dSt = mStdt + r
p

vtStdW1
t +

q
1� r2pvtStdW2

t , (3.1)

dvt = k(q � vt)dt + su
p

vtdW1
t , (3.2)

where m is the instantaneous return of the equity process 2, vt is the instantaneous variance of
St which is a mean reverting process whose long-term average, speed of mean reversion and
standard deviation are q, k and su respectively. As presented in Feller (1951), for Equation
(3.2) to be a positive process, the condition 2kq � s2

u has to be satis�ed. Here, dW1
t and

dW2
t are correlated Brownian motion increments for the equity and variance processes whose

correlation is denoted as r. An Euler scheme is adopted in implementing Equations (3.1) and

2Although the same letter is used to denote the force of mortality, mx+t, and the instantaneous return of the
equity process, m, we prefer to stick to the traditional notation for both, considering that in what follows any
misunderstanding is practically negligible.
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(3.2). The fund allocates a proportion wt into equity and (1� wt) into a cash account which
evolves deterministically according to dCt = r Ct. The parameters for the Heston model have
been adapted from Andersen et al. (2002) for all numerical illustrations presented in this
paper3.

3.2 The target volatility strategy

At any instant during the life of the fund and as bene�ts are paid, the weights of the equity
and cash holdings are dynamically rebalanced so as to maintain a target volatility level of
the fund. The target volatility strategy is a self-insurance strategy which facilitates more
equity holdings during low volatility periods, and vice-versa during high volatility periods.
Constraining volatility of the fund around a given target enhances investment return targets
to be attainable. We rebalance the weights of the equity by setting

w0t = min
�

TV
p

�s2(t)
, 1
�

,

where TV is the exogenously speci�ed (annualized) target volatility and �s(t) is an estimated
volatility level of equity returns between any two adjacent rebalancing points, see Morrison
and Tadrowski (2013). In all the numerical illustrations which follow, we will implement an
Euler scheme for the fund dynamics where the time domain is discretized into incremental
time steps. We will jointly assume that the fund is rebalanced weekly and bene�ts (to sur-
viving members or as death bene�ts) paid out immediately before rebalancing. That is, the
proportional investment in equity and cash will be dynamically adjusted every week in line
with changing market conditions, so as to maintain or achieve a target volatility level of the
fund4. Based on historical observations, the fund manager keeps track of the exponentially
weighted moving average (EWMA) of the volatility such that

�s2(t + Dt) = l � �s2(t) +
(1� l)

Dt

�
ln
�

St+Dt

St

��2

, (3.3)

where Dt = 1
52 which corresponds to weekly rebalancing (Engle, 1982). The EWMA incorpo-

rates all prior observations, but with exponentially declining weights through time, whose
rate of decay are detected by the parameter l. A higher value of l implies that the estimate

3We adopt the Heston model for equity dynamics to illustrate the �exibility of our approach and this can
easily be adapted to any equity modelling framework.

4In this study we assume no transaction costs associated with buying and selling of equities. In reality, such
costs can be signi�cant depending on the volume of transactions and rebalancing frequency. While we acknowl-
edge that the target volatility strategy will require active management with implications on rebalancing costs, we
believe that this may also be the case for the �xed equity strategy for which the fund manager may actively select
individual stocks while the overall asset allocation remained constant. We thus deferred this line of inquiry to
future research.
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volatility reacts slower to recent changes in the equity returns thus putting more weight on
past observations.

For all our numerical illustrations, we adopted the parameter set for the Heston stochastic
volatility model presented in Andersen et al. (2002) �tted using S&P 500 index returns. These
parameters have been reproduced in Table 1 for completeness.

r m k q r sv l
0.01 0.0849 2 0.0299 �0.4480 0.2 0.80

Table 1: Parameters of the Heston stochastic volatility model and the decay parameter for the EWMA. These parameters are
for illustrative purposes and one can �t either the Heston model or adapt any equity modelling process to dataset of
interest using standard techniques like that presented in Andersen et al. (2002).

3.3 Illustrative performance of a target volatility strategy

In assessing the performance of the target volatility strategy, we compare the dynamic strat-
egy with the static case which involves preassigning �xed weights to the equity-cash holding
at initial time where the equity dynamics is governed by the Heston stochastic volatility pro-
cess. The weights for the static case are chosen such that the initial fund volatility equates
to the corresponding target volatility of the dynamic strategy. The static strategy works as
follows: at t = 0, the fund manager estimates the long run volatility to be �q and elects a
constant proportion strategy in which wt = TVp

�q
is allocated to equity and the remainder to

cash. This strategy is static in the sense that the proportion wt is determined in advance and
is not rebalanced. A detailed algorithm for implementing the static strategy is illustrated in
Algorithm 1 of Appendix A.

In contrast, the target volatility strategy continuously updates wt based on observed re-
turns. To be more precise, when the static weight allocation is wstatic, we will compare it to
a dynamic strategy with target volatility wstatic �

p
q, where q is the long run variance of the

equity market. This facilitates a fair comparison between the ‘rewards’ of two strategies by
ensuring that they have a similar level of ‘risk’. The dynamic target volatility strategy can
be implemented by replicating the pseudo code outlined in Algorithms 1 and 2 of Appendix
A. Table 2 shows the relationships between wstatic and the equivalent volatility based on our
selected value of q.

wstatic 90% 70% 50% 30% 20% 0%
Target Volatility 16% 12% 9% 5% 3% 0%

Table 2: Relationship between static equity allocation and ‘equivalent’ dynamic target volatility.

An illustrative example with sample paths for dynamic target volatility strategy and static
Heston stochastic volatility case is depicted in Figure 1. The horizontal axis of all subplots
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of Figure 1 are in years. Sample paths in Figure 1(a) shows that the dynamic rebalancing
strategy offers improved returns relative to the static case in the long run. This is consistent
with existing literature such as Morrison and Tadrowski (2013), Doan et al. (2018) and Li et al.
(2019) who note that target volatility strategies limit losses by disinvesting from equities dur-
ing high volatility periods and vice-versa. Figure 1(b) shows a typical sample on how the
weights of the dynamic trading strategy changes through time due to changing market con-
ditions. As re�ected on Figure 1(c), dynamic rebalancing the equity-cash holdings ensures
that the fund volatility is always constrained around a targeted level.

Figure 1(d) shows a simulated path of the volatility process in blue depicting a typical
static case. Applying an exponential weighting used here for constraining volatility towards
the target level yields the red plot. The red plot has less variability relative to the uncon-
strained case.
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Figure 1: Illustrative simulation: Monthly target volatility rebalancing (‘dynamic’) is supposed to ensure that the
model volatility remains close to the target. Rebalancing decisions are based on EWMA estimates of
the volatility, since the true volatility is not observable in the market. The dynamic strategy offers some
improvements in returns, but is limited in actually constraining the volatility of the fund.

3.4 The mortality model

For all illustrations presented in this paper, we adopt the Gompertz-Makeham mortality law
which expresses the force of mortality as

mx = a + eb1+b2x, (3.4)
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where a, b1 and b2 are constant parameters which are determined through calibrating to mor-
tality data. In this paper, we calibrate the model to the US male mortality data for ages 50 to
110 for the cohort born in 1915 with the data extracted from the Human Mortality Database5.
By �tting the Gompertz-Makeham mortality law using the steps presented in Appendix B,
the resulting parameters are presented in Table 3. The corresponding mortality and sur-
vival curves are shown in Figure 2. From the left panel of this �gure we note that the �tted
mortality rates tracks the realized mortality rate very well. As with the �nancial model, the
Gompertz-Makeham law is adopted here for illustrative purposes. Any mortality model (ei-
ther deterministic or stochastic) can be adapted to the approach presented in this paper.

a b1 b2

0.0051 -9.5831 0.0889

Table 3: Gompertz-Makeham estimated parameters for US male mortality, ages 50 to 110.
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Figure 2: Plots for the �tted force of mortality and survival function for the US male data for ages 50 - 110 for the
cohort born in 1915.

4 Implementation of the GSA target volatility strategy

This section presents numerical experiments analysing the performance of the two invest-
ment strategies presented in Subsection 3.2, applied to a GSA fund, as described in Section 2.
The experiments are aimed at drawing insights on the interactions of the equity-cash hold-
ings of the underlying fund and implications on living bene�t payouts. We will assess scenar-
ios where a fraction of mortality credits is paid out as bequest to bene�ciaries of those leaving
the pool. Evolution of each GSA fund component will be analysed through time during the

5https://www.mortality.org/
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tenure of the pool, quantifying their respective contributions to living and death bene�ts. All
results in this section have been generated by implementing relevant routines of Algorithms
1 - 4 presented in Appendix A derived from the methodology outlined in Sections 2 and 3
above. For all illustrations in this section, we have assumed a homogenous cohort consist-
ing of n = 1, 000 participants aged 65 at initial time with each participant contributing $100
as initial capital. The horizontal axis of all �gures presented in this section are expressed in
years from inception of the GSA fund.

4.1 Benchmark case with 70% equity allocation at initial time

This subsection presents the benchmark case with equity allocation of 70% at initial time
corresponding to a target volatility of 12% per annum. Figure 3 shows trajectories of living
bene�ts for varying death bene�t payments. In each subplot, summary statistics of living
bene�ts (namely, the median, the 10th and the 90th percentile) are plotted in the case of a static
(red) and a dynamic (blue) target volatility strategy. All subplots reveal that the dynamic
target volatility strategy consistently pays out higher living bene�ts compared to the static
volatility strategy, which does not adjust the equity and cash composition due to changing
market conditions. In particular, we point out that while the lower quantiles of living bene�ts
do not differ that much in respect of the investment strategy (with the dynamic strategy
usually providing higher bene�t amounts), the median and the upper quantiles show much
more favourable paths in the case of a dynamic strategy.

In respect of the death bene�t (see Figures 3(a) - 3(d)), whose size is de�ned by the pro-
portion b, clearly higher death bene�t payments result in reduced living bene�t payments
through time, as the fund value will be proportionally reduced due to lower mortality cred-
its. This is re�ected in Figure 3 where living bene�ts are decreasing as the bene�t payments
increase. When b � 50%, living bene�t payments may fall below initial payments as revealed
in Figures 3(c) and 3(d). Having adopted a static or a dynamic target volatility strategy does
not seem to be signi�cant in terms of the relative reduction of the living bene�t amount when
death bene�ts are included.

4.2 Analysis of different components of the GSA

The framework adopted in the paper makes it readily possible to analyse the fund dynamics
at anytime in terms of the principal component, investment returns and mortality credits, as
presented in Equation (2.6) - (2.8). Figures 4 - 7 present typical trajectories of these respective
components through time. From Figure 4 we note that, on average, the principal repayments
are consistent and exponentially decreases through time in a predictable fashion, and inde-
pendent of the investment strategy. This is also apparent in Equation (2.6), as the stochastic
differential equation for the principal component of the fund depends only on the mortality
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(a) b = 0.
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(b) b = 0.2
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(c) b = 0.5 (d) b = 1

Figure 3: Individual living bene�t payment (Lt) quantiles for various death bene�t proportions when the static
equity weight = 70% and target volatility = 12%. Quantiles for the static case are in red and those for
the dynamic case are in blue.

experience (that we are assuming to be deterministic; this is why summary statistics coincide
in Figure 4). Minor differences visible in Figure 4 are due to discretisation errors from Monte
Carlo Simulation.

The interest component dominates during the initial stages of the pool with strategies for
cases involving lower death bene�t payments dominating those with higher as depicted in
Figures 5(a) - 5(d). From these subplots, it is worth noting that regardless of how much is
paid out as death bene�ts, interest accumulates aggressively until the 15th year upon which
the pool size starts to deteriorate and thus impacting more for cases within high death ben-
e�t payouts. Consistent with �ndings presented in Figure 3, the dynamic strategy returns
dominate those obtained under a static strategy.

Mortality credits increase with increasing number of deaths as re�ected in Figures 6(a)
- 6(d). Again, the dynamic strategy yields higher mortality credits due to enhanced perfor-
mance from the dynamic target volatility strategy. We note that as age increases, the vari-
ability in mortality credits returned also increases. This is re�ective of a smaller pool size
resulting in higher exposure to random �uctuations in mortality. As b increases we observe
that the variability of mortality credits reduces. This is because the payment of death bene�ts
are negatively correlated with survival bene�ts. Furthermore, these results provide comfort
that mortality credits offer a useful qualitative measure of the variability in annuity payments
that is attributable in part to the survival experience of the pool.

Figure 7 summarizes the contribution of each of these components to living bene�ts. Dur-
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ing the initial phase of the pool, principal contributions make up the greater portion of bene-
�t payouts with mortality credits gradually increasing as pool participants die through time.
Investment returns exhibit a concave pattern, increasing to a climax before gradually decreas-
ing as the pool size and principal depletes.

Figure 7 also reveals that interest accumulate at a faster rate on a target volatility strategy
compared to associated static trading strategy cases. We note from Figures 7(a) that principal
and interest equally contribute to living bene�t payments much earlier compared to Figure
7(b) where interest match principal components after the 10th anniversary under the current
setting. In addition to this, the interest component proportion attains a higher value under
the dynamic case compared to the static case. We note that higher investment returns could
help mitigating the risk of lower mortality credits arising in a scenario with unanticipated
longevity improvements (which is a situation not included in our assessments).

Figure 4: Quantiles for the principal component when the static equity weight = 70% and target volatility = 12%.

4.3 Comparison of living bene�ts for varying equity compositions

Having presented the benchmark case with an initial strategy consisting of 70% equity and
30% cash investments, we now perform sensitivity analysis aimed at revealing the impact
of various investment strategies on living and death bene�ts. In what follows, all analysis
will be performed relative to the 70% equity strategy whose corresponding target volatility
is 12% per annum. Table 4 presents living bene�t quantiles for the benchmark case across
various ages for the target volatility and static investment strategies. As noted from Figure
3, the target volatility strategy dominates the static case across all ages implying that a target
volatility strategy enhances living bene�ts for pool participants.

Tables 5-7 present comparison results for living bene�t quantiles across various ages and
equity compositions relative to the results presented in Table 4. From these tables, we note
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(a) b = 0 (b) b = 0.2

(c) b = 0.5 (d) b = 1

Figure 5: Interest component quantiles for varying death bene�t proportions when the static equity weight = 70%
and target volatility = 12%.

(a) b = 0 (b) b = 0.2

(c) b = 0.5 (d) b = 1

Figure 6: Mortality credit quantiles for varying death bene�t proportions when the static equity weight = 70%
and target volatility = 12%.
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(a) Dynamic strategy when b = 0 (b) Static Strategy when b = 0

(c) Dynamic strategy when b = 0.2 (d) Static strategy when b = 0.2

Figure 7: Proportion of living bene�t contributions from the principal, interest and mortality credits component
for varying death bene�ts and investment strategies.

that when the initial equity composition is 90% of the fund, the median and 90th percentile
are superior to those for the 70% initial equity strategy, while the 10th percentile is lower
than in the benchmark case. Note that corresponding to the 90% initial equity composition
is an initial volatility of 16% for both the static and target volatility strategy, compared to the
initial volatility of 12% for the benchmark case (see Table 2 for initial volatilities associated
with initial equity compositions). When the strategy is less aggressive with more fund hold-
ings invested in cash and less in equity, the living bene�ts decrease as re�ected on columns
corresponding to less equity holding in Tables 5-7.

As would be expected, across all ages presented in these tables, lower equity proportion
implies lower expected value of living bene�ts and lower upper quantile. For the lower
quantile, it turns out to be initially increasing, and then decreasing with respect to the re-
duction of the equity weight. The switch of the path occurs at different ages, depending on
the equity weight. There is a trade-off between equity proportion and impact on the lower
quantile, which suggest an optimal proportion of the equity.

Strategies with less equity holdings have low payout structures due to the limited per-
formance of the underlying fund. In all cases (that is, across all wstatic weights presented in
Table 2), the expected value of the living bene�ts is higher in the dynamic setting, as well as
the higher quantile, whereas the lower quantile is approximately the same in the dynamic
and static case. When wstatic = 0, that is when all the money is invested in cash, the living
bene�ts tend to decrease, due to longevity cost not being adequately compensated by invest-
ment returns. In general, when there is less equity, there is less volatility in bene�t amounts,

16



but they are lower, even decreasing.

Age 75 80 85
Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 6.8725 6.6352 7.4434 7.3153 7.8694 7.3393
0.5 12.1365 11.5346 15.3813 13.8841 17.3999 15.2872
0.9 21.936 18.1925 28.646 23.1723 37.8914 28.2494

Table 4: Individual living bene�ts for the base case with 70% equity allocation and b = 0.

Initial Equity 0% 20% 50% 90%
Quantile Dynamic Static Dynamic Static Dynamic Static Dynamic Static

0.1 1.0334 1.0673 1.053 1.0783 1.0214 1.0414 0.98089 0.95122
0.5 0.59768 0.62887 0.71392 0.7285 0.89837 0.89141 1.0858 1.1172
0.9 0.3384 0.40804 0.47322 0.52612 0.78174 0.78109 1.1376 1.2684

Table 5: Relative individual living bene�ts at Age 75 for varying initial allocations and b = 0. In this table,
quantile comparisons are performed relative to the benchmark case presented in Table 4.

Initial Equity 0% 20% 50% 90%
Quantile Dynamic Static Dynamic Static Dynamic Static Dynamic Static

0.1 0.88752 1.0673 0.95677 0.97531 1.0032 1.0074 0.97647 0.98261
0.5 0.44493 0.62887 0.58978 0.61395 0.84934 0.83602 1.1179 1.182
0.9 0.24707 0.40804 0.38745 0.42875 0.73913 0.72292 1.2126 1.3751

Table 6: Relative individual living bene�ts at Age 80 for varying initial allocations and b = 0. In this table,
quantile comparisons are performed relative to the benchmark case presented in Table 4.

4.4 Conservative strategy from Age 85

We now assess the behaviour of living bene�ts when the investment strategy becomes con-
servative with the entire fund invested in cash from Age 85 and beyond. Figure 8 presents
subplots for varying death bene�t payments. Bene�ts for both target and static volatility
strategies are increasing till Age 85 and then �atten out beyond this age.

A switch to cash yields a smooth and more stable living bene�t payout pattern at the
expense of potentially enhanced bene�ts from equity participation. Comparing Figure 3(a)
with Figure 8(a), one notes that pool participants surviving to advanced ages tend to receive
higher living bene�ts enhanced by equity investment returns from the unconstrained case.
Limiting the fund to cash only investment strategy compromises its potential as re�ected in
Figure 8. This is also revealed in Figure 9 showing the investment return contributions to the
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Initial Equity 0% 20% 50% 90%
Quantile Dynamic Static Dynamic Static Dynamic Static Dynamic Static

0.1 0.74861 1.0673 0.86961 0.92482 0.97553 0.98871 0.96387 0.99949
0.5 0.35686 0.62887 0.50849 0.54311 0.79279 0.80119 1.1327 1.2269
0.9 0.17379 0.40804 0.30016 0.35292 0.67854 0.67 1.257 1.4726

Table 7: Relative individual living bene�ts at Age 85 for varying initial allocations and b = 0. In this table,
quantile comparisons are performed relative to the benchmark case presented in Table 4.

fund for varying death bene�ts. Due to depleting fund value and low returns associated with
cash investments, we note that all investment return contributions exponentially decrease
beyond Age 85.

Comparing Figures 6 and 10 one easily notes that the contribution of mortality credits
to living bene�ts under both scenarios is equivalent as the two cases involve the same pool
participants with similar mortality developments.

(a) b = 0 (b) b = 0.2

(c) b = 0.5 (d) b = 1

Figure 8: Living bene�t payment quantiles for varying death bene�t proportions when switching to all cash from
Age 85 when static strategy equity weight = 70% and target volatility = 12%.

4.5 Comparison between different payout policies

To have a better perspective of the superiority of the target volatility strategy, we present
Figure 11 showing comparisons of the contribution of investment returns to living bene�ts
for the case where there are no death bene�ts. We assess trajectories of investment returns for
the case where all funds are switched to cash from Age 85 and the target volatility strategy for
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(a) b = 0 (b) b = 0.2

(c) b = 0.5 (d) b = 1

Figure 9: Interest component quantiles for varying death bene�t proportions when switching to all cash from
Age 85 when static strategy equity weight = 70% and target volatility = 12%.

(a) b = 0 (b) b = 0.2

(c) b = 0.5 (d) b = 1

Figure 10: Mortality credit quantiles for varying death bene�t proportions when switching to all cash from Age
85 when static strategy equity weight = 70% and target volatility = 12%.
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the whole duration6. Figures 11(a) and 11(b) are the same up to age 85, when in Figure 11(a)
all the equity is disinvested. While returns are less dispersed after the switch, the investment
return contribution signi�cantly drop, due to forgoing the potential high returns of equities.
This is a striking insight, particularly in respect of a more traditional lifecycle investment
approach, suggesting to disinvest equity as individuals age.

(a) Investment returns when b = 0 and all funds switched to
cash post Age 85

(b) Investment returns when b = 0 with a target volatility strat-
egy during the tenure of the GSA pool (see Figure 5(a)).

Figure 11: Comparison of investment returns between different payout policies during the tenure of the GSA
plan when static strategy equity weight = 70% and target volatility = 12%.

4.6 Effects of mortality dynamics on living bene�ts

In this paper, we have assumed the Gompertz-Makeham mortality law which is a determin-
istic mortality model, implying a systematic way in which participants leave the GSA pool.
In reality, mortality rates evolve in an unpredictable fashion with a great deal of research
having been done on stochastic mortality modelling in both discrete and continuous time
settings7. In as much our focus is on illustrating the effectiveness of the target volatility strat-
egy in enhancing living bene�t throughout the life of the fund, we can as well assess the
impact of varying mortality rates on living bene�t pro�les. We accomplish this by shocking
�tted parameters for the mortality process in Equation (3.4) so as to realise mortality rates
which are � 10% than those used in the preceding subsections.

Table 8 presents relative individual bene�t comparisons between the benchmark case of
Table 4 and the case where realised mortality is 10% lower across all ages. As re�ected in
Table 8, we note that irrespective of the investment strategy, mortality improvements result
in lower living bene�t payments across all ages. When realised mortality is higher than
expected, we note higher living bene�ts across all ages irrespective of the investment strategy
as re�ected in Table 9 with all quantiles dominating the benchmark case.

6Note that Figure 11(b) is the same as Figure 5(a). We have reproduced this �gure here for easy of comparison.
7See Lee and Carter (1992) for seminal work on stochastic mortality modelling and Cairns et al. (2008) for

a review of extrapolative and time-continuous stochastic mortality models. Future research may accommodate
such realistic mortality frameworks and incorporate mortality-linked instruments in the investment strategy.
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For completeness, we present Appendix C which illustrates cases involving non-zero
death bene�t payouts for the 70% initial equity investment strategies with b = 20% as pre-
sented in Tables 10 - 12. In generating Tables 11 and 12, we have assumed corresponding
quantiles in Table 10 as reference and computed the relative differences to facilitate compar-
isons. Table 11 corresponds to the case where realised mortality is 10% lower than expected
with Table 12 being the case with realised mortality being 10% higher than expected. As
highlighted in Subsection 4.2, death bene�t payouts result in lower living bene�ts across all
ages8.

Age 75 80 85
Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 0.96689 0.97566 0.94885 0.95058 0.88838 1.0039
0.5 0.96437 0.99339 0.90713 0.97039 0.87426 0.95234
0.9 0.94113 1.0083 0.95306 0.99494 0.90941 0.98354

Table 8: Relative individual living bene�ts for 70% initial equity allocation and b = 0 when realised mortality is
10% lower across all ages. In this table, quantile comparisons are performed relative to the benchmark
case presented in Table 4.

Age 75 80 85
Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 1.0113 1.0536 1.0301 1.0705 1.0624 1.1495
0.5 1.0069 1.0548 1.0065 1.0921 1.0806 1.1485
0.9 1.0001 1.0355 1.0538 1.0948 1.0872 1.1841

Table 9: Relative individual living bene�ts for 70% initial equity allocation and b = 0 when realised mortality is
10% higher across all ages. In this table, quantile comparisons are performed relative to the benchmark
case presented in Table 4.

5 Concluding remarks

In this paper we have presented a target volatility investment strategy for enhancing the per-
formance of a group self-annuitization (GSA) scheme whose funds are strategically invested
in a combination of equity and cash. For illustrative purposes, we have adopted the Hes-
ton (1993) stochastic volatility process for modelling the dynamics of the equity process and
the Gompertz-Makeham mortality law �tted to the US male mortality pro�le for the cohort
born in 1915. The GSA fund maintains a certain volatility level by dynamically rebalancing
the equity and cash holding whenever there are signi�cant market movements. During high

8This can easily be inferred from comparing Table 10 with 4.
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volatility periods, funds are switch from equity to cash whereas when volatility is low, more
weights will be assigned to equity. By comparing bene�t pro�les emerging under the dy-
namic investment strategy with the static case which does not involve rebalancing, we have
demonstrated how the dynamic case enhances the fund performance and hence improved
living bene�t payments.

Bene�t pro�les have been assessed by analysing various quantiles and alternative strate-
gies involving varying equity compositions. A trade-off between the equity proportion and
the impact on the lower quantiles of the living bene�t amount emerges, which suggests an
optimal proportion of equity composition. As potential members of a GSA pool may have
bequest motives, we have assessed cases incorporating death bene�ts. Death bene�ts clearly
reduce mortality credits for surviving members leading to lower living bene�ts. The presence
of death bene�ts does not affect our conclusions about the better performance of a dynamic
in respect of a static investment strategy.

We �nally note that, while the numerical outputs obviously depend on all the mod-
elling choices that we have introduced, the Heston model for the equity dynamics and the
Gompertz-Makeham model for the force of mortality are not necessary choices in our ap-
proach. Alternative models could be adopted instead. In particular, implementing a stochas-
tic mortality model could allow to assess how larger pro�ts expected from a dynamic target
volatility strategy could help mitigating a possible longevity risk emerging because of unan-
ticipated mortality improvements.
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A Algorithms for implementing the GSA structure

Algorithm 1: Simulate stock returns
input : m, r, k, q, s, T, N
output: Equity values (St)N

t=1, latent volatilities (vt)N
t=1

Initialize S 1, v q, dt T
N ;

for i = 1 to N do
Simulate two i.i.d dW1, dW2 � N(0, dt) ;
dv k(q � v)dt + s

p
vdW1;

dS mSdt +
p

vS(rdW1 +
p

1� r2dW2);
S S + dS;
v max(v + dv, 0);
Store Si, vi  S, v ;

end
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If a dynamic strategy is used, then the weights are dynamically adjusted. If a static strat-

egy is used, then the weights are set as wi  
q

vtgt
q

Algorithm 2: Get target volatility weights
input : EWMA parameter, l

target volatility, vtgt

annualised returns per period, ( DSt
S )n

t=1

initial volatility estimate, vinit

output: weights (wt)n
t=1

Initialize vsq  vinit;
for i = 1 to n do

vsq  lvsq + (1� l)
�DSi

S
�2;

wi  min(1, vtgtpvsq
)

end

Algorithm 3: Compute annuity factor
input : (mx+idt)N

i=1, r, dt
output: ( flax+idt)N

i=1
Initialize val  0;
for i = N � 1 to 1 do

dval  ((mi + r)val � 1)dt;
val  val � dval;
flax+idt  val;

end
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Algorithm 4: Simulate fund path
input : ( flax+idt)N

i=1, (St)N
t=1, (nt)N

t=1, b
output: (Fi)N

i=1, (Li)N
i=1

initialization;
for i 2 to N do

dF  (wi
dSi
Si

+ (1� wi)rdt)F;

if living bene�ts paid then
dL Fdt

flax+idt
;

else
dL = 0;

end
if death bene�ts paid and deaths occurred then

dB bFdt(ni�1�ni)
ni

;

else
dB = 0;

end
dF  dF� dL� dB;
F, L F + dF, L + dL;
Store Fi, Li  F, L;

end

B Standard procedure for �tting the Gompertz-Makeham mortality
law

The procedure for �tting is the model is as follows:

1. De�ne y(a)i = log(mi � a) where mi is the empirical force of mortality for age group i.

2. Regressing y(a) against x gives the estimates

�y(a)i = �b1(a)xi + �b0(a).

3. The parameter estimates for a, b1 and b0 are respectively represented as

�a = argmina(å
i

( �y(a)i � y(a)i)2), �b1( �a) and �b0( �a).
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C Sensitivity analysis for varying mortality

Age 75 80 85
Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 6.5528 6.1921 6.6664 6.4414 6.5935 5.9092
0.5 11.631 10.8352 13.5925 12.1353 14.0938 12.3384
0.9 20.4146 17.0716 25.6844 20.7538 29.6217 23.5658

Table 10: Individual living bene�ts for 70% initial equity allocation and b = 20%.

Age 75 80 85
Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 0.97064 0.98032 0.95999 0.95756 0.90472 1.0115
0.5 0.97202 1.0003 0.9206 0.98286 0.89284 0.97986
0.9 0.94809 1.0109 0.96192 1.0118 0.93159 0.99777

Table 11: Relative individual living bene�ts for 70% initial equity allocation and b = 20% when realised mortality
is 10% lower across all ages. In this table, quantile comparisons are performed relative to the results
presented in Table 10.

Age 75 80 85
Quantile Dynamic Static Dynamic Static Dynamic Static

0.1 1.0034 1.0453 1.0145 1.0513 1.0341 1.115
0.5 1.001 1.0496 0.99755 1.0833 1.0567 1.1389
0.9 0.97724 1.0229 1.0345 1.0852 1.0763 1.1531

Table 12: Relative individual living bene�ts for 70% initial equity allocation and b = 20% when realised mortality
is 10% higher across all ages. In this table, quantile comparisons are performed relative to the results
presented in Table 10.
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