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Abstract: Colistin resistance is one of the major threats for global public health, requiring reliable
and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF
mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible
(colS) Escherichia coli strains. To this end, a classifying algorithm model (CAM) was developed,
testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and
Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances:
recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respec-
tively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best
performing one, correctly identifying 67/71 (94.4%) of the E. coli strains collected: in point of fact,
it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in
identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the
gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly
screen colR and colS strains in clinical practice.

Keywords: colistin resistance; MALDI-TOF MS; Gram-negative bacteria

1. Introduction

Antimicrobial resistance is one of the major threats for global public health, since
many pathogens are developing resistance mechanisms to almost all currently available
antimicrobial drugs [1–3]. This phenomenon is mostly related to the misuse and overuse
of antimicrobials, which led to the emergence of multidrug-resistant (MDR), extensively-
drug-resistant (XDR) and pan-drug-resistant bacteria [4–7]. In particular, infections caused
by resistant Gram-negative bacteria, such as Enterobacteriaceae, Pseudomonas aeruginosa and
Acinetobacter baumannii, are a broad matter of concern, because of the ineffectiveness of
conventional treatments and the lack of new antimicrobial agents against them [1,3]. There-
fore, the occurrence and spread of resistant bacterial strains prompted the re-evaluation
of polymixins (colistin and polymixin B), an old class of cationic, cyclic-polypeptide an-
tibiotics [6,8], whose clinical use was previously limited for their reported nephrotoxicity
and neurotoxicity [9–11]. To date, colistin is considered a “last resort” antibiotic, namely a
valid alternative to the classic antimicrobial agents ineffective against MDR Gram-negative
pathogens [1,3,6,8]. Given its saving role against the life-threatening MDR and XDR bacte-
rial infections, colistin was largely and recklessly employed both in human and veterinary
medicine, resulting in the emergence of colistin-resistant pathogens, mainly Gram-negative
bacteria [1,3,6,12]. Commonly, colistin-superbugs are the phenotypic expression of reg-
ulatory or mutational events in chromosomal genes [13–15]. However, resistance to this
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antibiotic can also be acquired by a plasmid-mediated strategy involving the mobile col-
istin resistance (mcr) genes (mcr1-mcr10) [3,16–19]. The discovery of the mcr genes on
mobile genetic elements raised alarm given the possibility of their rapid dissemination
by horizontal transfer [19,20]; therefore, reliable methods to detect colistin resistance are
urgently needed [21–23]. Among the different laboratory techniques for testing the colistin
susceptibility, the phenotypic ones, such as the disc diffusion and the gradient tests, are
not very adequate because of the long turnaround time required, the low mcr sensitivity
and specificity and the poor diffusion in agar of this drug [24,25]. Thus, the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Labora-
tory Standards Institute (CLSI) recommend the use of the broth microdilution (BMD), as
the reference method to test colistin susceptibility among Gram-negative bacteria [25,26].
Even if BMD is considered the gold standard technique in determining the minimal in-
hibitory concentration (MIC) values of colistin in clinical microbiology laboratories, it is
laborious and time consuming [24,25]. On the other hand, faster tools than BMD such as
the automated MIC-determining systems (i.e., MicroScan, Sensititre, MICRONAUT-S, BD
Phoenix, Vitek 2) do not meet the recommendations of EUCAST and CLSI, since they show
low agreement with the reference test and, additionally, high rates of false susceptibility
results [22,24,27]. Nevertheless, reliability and rapidity in detection of colistin resistance are
crucial for antimicrobial stewardship and could be achieved by fast and reliable methods,
such as MALDI-TOF MS [28]. This technique is already employed in clinical microbiology
laboratories for the phenotypic identification of bacterial and fungal strains and its poten-
tialities in predicting the antimicrobial resistance are being studied [26,29,30]. In particular,
the MALDI-TOF MS approach for testing polymixins-resistance is based on the detection
of biomarkers associated with the modified lipid A, which is the phenotypic result of
both chromosomal and plasmid encoded resistance to colistin in Gram-negative bacteria.
Therefore, given the inherent negative charge of the lipid A, several studies aimed to create
MALDI-TOF MS tests to screen colistin resistance in Gram-negative bacteria by operating
in a negative ion mode of the mass spectrometer [28,31–33]. However, to date, the negative
ion mode is not currently and widely available on diagnostic routine mass spectrometers,
since it works in a molecular mass range different from that used for the bacterial and
fungal identification [32]. In this study, we describe an alternative approach for the identi-
fication of colistin resistance in Gram-negative bacteria by proposing a MALDI-TOF MS
protein peak-based assay developed on the basis of spectra acquired in a positive linear
mode embedded in the most widely used MALDI-TOF MS instrument available in clinical
microbiology laboratories. The main aim of the study was to create a classifying algorithm
model (CAM) able to rapidly detect and identify the colistin-resistant strains in clinical
practice, in order to shorten the turnaround time by a simple and inexpensive tool.

2. Materials and Methods
2.1. Bacterial Strains

A total of 104 Gram-negative bacteria were included in this study: 71 Escherichia coli
(Ec) strains (53 and 18 of human and veterinary origin, respectively) and 33 control other
than E. coli strains, 15 Klebsiella pneumoniae (1 of animal origin), 9 Pseudomonas aeruginosa,
4 Acinetobacter baumanii, 5 Achromobacter xylosoxidans. The human strains were collected
at the Unit of Clinical Microbiology of the University Hospital of Parma (81 strains) and
at the Unit of Microbiology and Virology of the Hospital of Piacenza (4 strains) and the
animal strains at the Department of Veterinary Science of Parma (Italy).

2.2. Colistin Susceptibility Testing

Colistin minimal inhibitory concentration (MIC) was determined by BMD (Liofilchem,
Roseto degli Abruzzi, Teramo, Italy), following the manufacturer’s instructions. Results
were interpreted using Clinical and Laboratory Standards Institute (CLSI) breakpoints.
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2.3. MALDI-TOF MS Protein Peak-Based Assay

For testing colistin resistance by MALDI-TOF MS, a protein extraction protocol was
performed. All the bacterial strains were cultured on horse blood agar (Kima, Italy)
plates and incubated at 37 ◦C for 24 h; then, the isolated colonies were used to obtain a 3
McFarland bacterial suspension in sterile double-distilled water. An aliquot of 300 µL of
the bacterial suspension was added to 900 µL of absolute ethanol, homogenized by vortex
for 20 s and then centrifuged at 14.000× g for 2 min. The supernatant was discharged, and
the pellet was dried for 5 min under a laminar flow cabinet at room temperature, then
suspended in 15 µL of 70% formic acid and 15 µL of acetonitrile, and finally vortexed
(20 s) and centrifuged (14.000× g for 2 min). One µL of this supernatant obtained by
protein extraction protocol was transferred on a MALDI-TOF target plate (10 replicates
for each strain), dried under a stem of air and then overlaid with 1 µL of α-Cyano-4-
hydroxycinnamic acid Matrix (HCCA-Bruker Daltonics, Bremen, Germany), solubilized in
30:70 (v:v) acetonitrile/trifluoroacetic acid 0.01% (TA30 Organic Solvent). The dried spots
were analysed by the Autoflex Speed mass spectrometer (Bruker Daltonics, Germany),
previously calibrated with “Bruker Bacterial Test Standard” according to manufacturer’s
instructions and set in MBT_ Standard method (positive linear mode, with 60 Hz laser
frequency, ion source voltage 20 kV and mass molecular range 2–20 kDa). The spectra
acquisition was performed in different independent experiments, by different operators in
different days, in manual mode, in different points of the well with a laser intensity ranging
from 30 to 40%, and an overall 1400 laser-shot, by 200 shot steps. The acquired spectra
were baselined and smoothed by FlexAnalysis software (version 3.1, Bruker Daltonics),
and only those with >104 intensity arbitrary units were used for further analysis. The
normalized spectra were then loaded into the MALDI Biotyper software (version 3.1.66,
Bruker Daltonics) to verify their validity, and to identify the bacterial species; the replicates
identified with a <2-score value were discarded.

2.4. Classifying Algorithm Model

Based on BMD susceptibility results, the 71 E. coli strains were divided in two groups:
“training set” and “test set”. The “training set” included 10 E. coli strains, 5 colistin-resistant
(colR-Ec) and 5 colistin-susceptible (colS-Ec), randomly selected; the “test set” included the
remaining 61 E. coli strains.

To rapidly and correctly identify both the colistin-resistant (colR) strains and the
susceptible (colS) ones, a classifying algorithm model (CAM) was developed by using the
“training set”. A total of 80 “training set” spectra (8 replicates/strain) were imported in
ClinProTools software (version 3.0, Bruker Daltonics), in order to develop a CAM able to
discriminate between the colR-Ec and the colS-Ec on the basis of their different protein
profiles. The analysis was performed focusing on the molecular mass range 2–20 kDa
with a 4 signal-to-noise threshold, an 0.08 relative threshold base peak, and the “Shift
Maximum Peak” parameter set up at 1000 parts per million (ppm). The software calculated
an average spectrum of each isolate (single average spectrum), an average spectrum of
both the classes considered (colR-Ec average spectrum and colS-Ec average spectrum) and
an average spectrum based on all replicates of all analyzed isolates (cumulative average
spectrum), and then provided a list of peaks potentially differentiating the colR-Ec strains
and the colS-Ec ones. In addition, this spectra dataset (“training set”) was analysed by
Principal Component Analysis (PCA), an unsupervised hierarchical type of clustering, in
order to visualize the homogeneity and heterogeneity of the protein spectra. The PCA
results are called scores and are derived and displayed in various plots. The score output
represents the original data mapped into the new coordinate system, which is defined by
the Principal Components (PCs). Within the score plot, outlier spectra from a group or
from several groups can be discovered and visualized. The outliers are spectra that are
extreme or do not fit the PCA model. Independently from the PC coordinates, the score
plots contain the same spectra number as the original data set. Moreover, the percentage of
the “explained variance” of the single given PC was also reported.
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For the development of the CAM, the Genetic Algorithm (GA), the Quick Classifier
(QC), and the Supervised Neural Network (SNN) algorithm-based models were applied to
the preliminary pattern of protein peaks found by the software. Each algorithm performed
a selection of different discriminating peaks in order to improve its classification perfor-
mance. Each CAM was characterized by recognition capability (RC) and cross-validation
(CV) values, parameters of the accuracy of the model. For the development of each algo-
rithm, different combinations of parameters were evaluated and, for each one, the most
performing in terms of RC and CV was reported. The reliability and the accuracy of each
algorithm-based model were verified by performing an internal and an external validation.
In particular, the “training set” were used for the internal validation, while the external
validation was achieved with the “test set”.

2.4.1. Genetic Algorithm

The Genetic Algorithm (GA) works on a population of peaks and selects the fittest
peaks combinations that are the most relevant for the classification. At each step, the
GA randomly selects peaks from the preliminary pattern of protein peaks found by the
Software and uses them as “parents” to produce the “children” for the next generation.
In this study, the parameters of this algorithm were set as follows. A maximum number
of 15 peaks was chosen to be included in the model, with an automatic detection mode
to determine the best number of peak combinations to integrate (npc) by applying the
heuristic formula NPC = 100 + (Number of picked peaks × 20)/(Maximal number of
peaks in model + 1). Within the GA algorithm, the k-nearest neighbor (k-NN) classifier
algorithm allowed us to obtain the final classification. The k-NN algorithm calculated the
distances between the points in the n-dimensional space; each point corresponded to a
spectrum whose area defined its coordinates. The number of neighbors, the mutation rate
and the crossover rate were set at 7 (values among 3, 5, and 7), 0.2 (range values 0.0–1.0)
and 0.5, respectively. In ClinProTools, both the mutation rate and the crossover rate are
advanced parameters. In particular, the mutation rate is the probability of a mutation,
namely the random exchange of a peak within peak combinations by a randomly selected
new one; on the other hand, the crossover rate is the likelihood of a crossover between
peaks combinations.

2.4.2. Quick Classifier

The QuickClassifier (QC) is a univariate sorting algorithm. The class averages of the
peak areas are stored in the model, together with statistical data such as the p-values at
certain peak positions. For classification, the peak areas/intensities are sorted per peak and
a weighted average over all peaks is calculated.

The QC automatically uses automatic peak detection to determine the best number of
peaks to be integrated in the model (maximum is 25 peaks). The sort mode used for peak
ranking and as weight was p-value obtained by Student’s t-test/ANOVA.

2.4.3. Supervised Neural Network

The Supervised Neural Network (SNN) is a prototype-based classification algorithm
that identifies some characteristic spectra for each class, which could be consider as proto-
types of that class. In an initial step, a predefined number of prototypes are spread over the
data space by using the Batch-Neural-Gas algorithm, which gives an optimal distribution
of the prototypes over the data space in accordance with the data density properties. In a
second step, the SNN optimizes the positions of the prototypes with respect to the class
information (supervised) minimizing the empirical risk. Thereby, the used metric of the
data space is adapted such that dimensions, which are relevant for the class separation, are
higher weighted than dimensions that do not contribute to class separation. This procedure
of optimizing prototype positions with a combined feature selection is applied iteratively
for a predefined upper limit of steps.
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The SNN uses an automatic peak detection mode to determine the best number of
peaks (maximum 25 peaks) to be integrated in the model and the automatic detection
of prototype number was applied. The upper limit of cycles to run for optimizing the
prototype positions was set at 2000.

2.5. Statistical Analysis

Statistical Analysis was automatically performed by ClinProTools software. In par-
ticular, the p-value is obtained by both parametric and non-parametric statistical tests.
With regards to parametric tests, the software automatically selected between Student’s
t-test (two classes involved) or ANOVA (more than two classes involved). Similarly, for
non-parametric tests, the software automatically selected between Wilcoxon test (2 classes
involved) or Kruskal–Wallis test (more than two classes involved).

The p-value was calculated by comparing each single average spectrum with the cu-
mulative average spectrum, based on both parametric (Student’s t-test) and non-parametric
(Wilcoxon—W) statistical tests. The software considered the peaks associated to a
p-value ≤ 0.05 as potentially able to discriminate between the considered classes. However,
since the best discriminating peaks are associated to low p-values, the significance threshold
was set to 0.01, in order to improve the performance.

3. Results

According to the colistin susceptibility testing results, among all E. coli isolates, 48
(33 human and 15 animal strains) were colistin-susceptible and 23 (20 human and three
animal strains) were colistin-resistant (MIC ≥ 4 mg/L). Both the colR-Ec strains and the
colS-Ec strains were correctly identified at the species level by MALDI-TOF MS, with score
values above 2.0. When the “training set” was used to develop the CAM, a list of 47 po-
tential discriminating peaks (Supplementary Table S1) was obtained by the ClinProTools
software. The additional PCA analysis of the spectra showed two different clusters referred
to colR-Ec and colS-Ec strains (Figure 1).
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In order to verify the reliability of these discriminating peaks, 61 different strains (“test
set”), 43 colS-Ec and 18 colR-Ec were loaded into ClinProTools software and the PCA was
created (Figure 2A,B, respectively).
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The “PCA-3D plot” obtained for colR-Ec showed that these strains clustered close
to colR-Ec strains used as “training set” and were totally separated from colS-Ec strains.
Similarly, the PCA obtained for colS-Ec strains showed that these strains clustered close to
colS-Ec strains used as “training set” and were totally separated from colR-Ec strains.

The three algorithms applied to the pattern of 47 peaks showed different performances
in terms of RC, CV and list of peaks involved, as reported in Table 1.

Table 1. Performances and list of peaks of the different algorithms tested. GA Genetic Algorithm; SNN Supervised Neural
Network; QC Quick Classifier; RC Recognition Capability; CV Cross Validation; Da Dalton; + peak involved in classifying
algorithm model (CAM).

Algorithms
Model

RC (%) CV (%)
Peaks Used for Classification (Da)

4177 4365 4440 4449 4498 5612 6257 6283 8330 8878 9066 9715

GA 100 100 + + + + + + +

SNN 100 97.62 + + + + + + +

QC 98.81 94.21 + + +

The GA-based model automatically selected seven peaks with a p-value < 0.008 for
both statistical tests. Both the RC and CV values were 100%. As concern the internal and
the external validations, this CAM correctly classified 100% and 82% (50/61) of the E. coli
strains included in the “training set” and in the “test set”, respectively. In particular, 88.9%
(16/18) of colR-Ec and 79% (34/43) of the colS-Ec strains of the “test set” were correctly
classified (Table 2).

The SNN-based model automatically selected seven peaks associated to a p-value < 0.000001
for both statistical tests, with 100% and 97.62% of RC and CV, respectively. Concerning the
internal validation, 100% of the colR-Ec and colS-Ec “training set” strains were correctly
classified (Table 2); conversely, this CAM correctly classified 93.4% of the strains included in
the “test set” (57/61): 83.3% (15/18) and 97.7% (42/43) of the colR-Ec and colS-Ec external
control strains, respectively, were correctly classified (Table 2).
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Table 2. Classification of the internal and external validation E. coli strains by the 3 different classifying algorithm models (CAMs). BMD Broth microdilution; GA Genetic Algorithm; SNN
Supervised Neural Network; QC Quick Classifier; colR colistin-resistant; colS colistin-susceptible.

Set of Strains BMD No.

CAM Classification

GA SNN QC

colR colS Correctly Classified (%) colR colS Correctly Classified (%) colR colS Correctly Classified (%)

Internal
validation

colR 5 5 5/5 (100) 5 5/5 (100) 5 5/5 (100)

colS 5 5 5/5 (100) 5 5/5 (100) 5 5/5 (100)

10 10/10 (100) 10/10 (100) 10/10 (100)

External
validation

colR 18 16 2 16/18 (88.9) 15 3 15/18 (83.3) 17 1 17/18 (94.4)

colS 43 9 34 34/43 (79) 1 42 42/43 (97.7) 15 28 28/43 (65.1)

61 50/61 (82) 57/61 (93.4) 45/61 (73.8)

Overall 71 60/71 (84.5) 67/71 (94.4) 55/71 (77.5)
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Finally, the QC-based model automatically selected three peaks with a p-value < 0.000001
for both statistical tests, classifying strains with overall RC (98.81%) and CV (94.21%) values
lower than the other two algorithm-based models tested. The QC-based CAM correctly
classified 100% of the internal control strains and 73.8% of the strains included in the “test
set” (45/61): 94.4% (17/18) of the colR-Ec and 65.1% (28/43) of the colS-Ec test strains,
respectively, were correctly classified (Table 2).

With regard to the absolute number of errors, GA-based CAM failed to classify
11 strains out of the 61 included in the “test set”, while SNN-based CAM failed to classify
four strains, and QC-based CAM 16.

Among the 18 colR-Ec strains, one human strain was wrongly classified as colS-Ec by
each CAM tested; similarly, among the 43 colS-Ec strains, one animal strain was wrongly
classified as colR-Ec by the three CAMs.

The pattern of peaks used for the classification by the SNN-based CAM included two
peaks (9066 Da and 9715 Da) (Figure 3), not included in the GA and QC algorithms’ list
of peaks.
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Figure 3. Peaks used for the classification by the SNN-based CAM (9066 Da and 9715 Da) not
involved by the GA and QC algorithms (colR-Ec “training set” Average spectrum in red and colS-Ec
“training set” Average spectrum in green). arb. u. arbitrary units; Da dalton.

The molecular weights of these two peaks were found to correspond to those of a
hypothetical protein related to the IncK2 carrying mcr-1 gene plasmid (Accession number
ASO65104.1; 86 amino acids; molecular weight 9090 Da) and of a transcriptional regu-
lator linked to a Plasmid-mediated mcr-1 (pICBEC7Pmcr) in a carbapenem-susceptible
E. coli strain (Accession number OKO56538.1; 85 amino acids; molecular weight 9700 Da),
respectively.

These three different CAMs patterns of peaks were evaluated also with colR and
colS strains (16 and 17 strains, respectively) other than E. coli (Table 3). GA-based CAMs
correctly classified 45.5% (15/33) of strains: 50% (8/16) of colR and 41.2% (7/17) of colS
strains. SNN-based CAM correctly classified 48.5% (16/33) of strains: 50% (8/16) of colR
and 47% (8/17) of colS strains. QC-based CAM classified all strains as colR.
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Table 3. Classification of strains other than E. coli by the 3 different classify algorithm models (CAMs). BMD Broth microdilution; GA Genetic Algorithm; SNN Supervised Neural Network;
QC Quick Classifier; colR colistin-resistant; colS colistin-susceptible.

Strains BMD No.

CAM Classification

GA SNN QC

colR colS Correctly Classified (%) colR colS Correctly Classified (%) colR colS Correctly Classified (%)

K. pneumoniae colR 7 3 4 3/7 (42.9) 7 0/7 (0) 7 7/7 (100)
P. aeruginosa colR 2 2 2/2 (100) 2 2/2 (100) 2 2/2 (100)
A. baumannii colR 2 2 2/2 (100) 2 2/2 (100) 2 2/2 (100)

A. xylosoxydans colR 5 1 4 1/5 (20) 4 1 4/5 (80) 5 5/5 (100)

16 8/16 (50) 8/16 (50) 16/16 (100)

K. pneumoniae colS 8 1 7 7/8 (87.5) 8 8/8 (100) 8 0/8 (0)
P. aeruginosa colS 7 7 0/7 (0) 7 0/7 (0) 7 0/7 (0)
A. baumannii colS 2 2 0/2 (0) 2 0/2(0) 2 0/2 (0)

17 7/17 (41.2) 8/17 (47) 0/17 (0)

Overall 33 15/33 (45.5) 16/33 (48.5) 16/33 (48.5)
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4. Discussion

In the last decade, colistin has been proposed as a last-line antibiotic for the treatment
of MDR Gram-negative infections.

However, despite its high capacity in bacterial killing, colistin resistance phenomenon
is emerging as a result of mutations in the efflux pump operon, and in genes encoding lipid
A. These resistance mechanisms to colistin have gained global attention and pose a new
threat to public health [26,33].

Furthermore, as widely reported by EUCAST and CLSI, the methods most frequently
used in clinical microbiology laboratories for performing antimicrobial susceptibility testing
(automated systems, E-test) are not reliable for detecting colistin resistance, concluding
that BMD represents the reference method for colistin susceptibility testing.

More rapid, and cost-effective clinical microbiology technologies, such as MALDI-
TOF MS, are currently being evaluated in order to overcome the use of BMD method
and to obtain a reliable detection of colistin-resistant strains, by directly assessing the
biochemical cause of resistance, the modification of lipid A [31]. However, the MALDI-TOF
MS method for colistin resistance detection is usually performed in a linear negative-ion
mode [31], not embedded in all instruments used in diagnostic laboratories, in a mass range
< 2 kDa. This study aimed to detect colistin resistance in E. coli strains by MALDI-TOF
MS in the linear positive-ion mode, within the mass range 2—20 kDa commonly used
for the routine identification of bacteria and fungi [34–37]. Firstly, we created a CAM
to automatically distinguish E. coli strains as colR or colS using 10 E. coli strains (5 colR
and 5 colS), arbitrarily selected. The multivariate unsupervised statistical analysis, PCA,
applied to this data set, showed the spectra replicates of the two different analyzed classes
(colistin-resistant and colistin-susceptible) placed in two well separated clusters, suggesting
the possible differentiation of these two classes based on the presence of specific peaks
in the mass range 2–20 kDa. In particular, a pattern of 47 potential discriminating peaks
was evaluated using three different algorithms-based CAMs (GA, SNN and QC). The
three CAMs identified different patterns of discriminating peaks, which, however, showed
similar RC (100%, 100% and 98.81%, respectively), and CV (100%, 97.62% and 94.21%,
respectively) values. In addition, in all three cases a correct identification of the 100% of
the internal control strains was obtained. Despite that GA-based CAM showed the highest
values of RC and CV, it demonstrated a moderate ability to detect colS-Ec strains (34/43;
79%). On the contrary, the external validation of the QC-based CAM was not satisfactory,
since only 73.8% (45/61) of the strains was correctly identified, and in particular only 65.1%
(28/43) of colS-Ec strains.

Among the three CAMs tested, even if it showed the lowest ability in identifying colR-
Ec strains (15/18; 83.3%), the SNN-based model correctly identified the greatest number of
colS-Ec strains (42/43; 97.7%). The only colS-Ec strain wrongly classified by this CAM was
also mis-identified by the other two.

However, if considering the absolute number of errors, GA-based CAM failed to
classify 11 strains of the validation set, while SNN-based CAM failed to identify only
four strains. The correct identification of the majority of the colS-Ec strains by SNN-based
CAM could be due to the inclusion in the classification peak list of two peaks (9066 Da
and 9715 Da) having a molecular weight similar to the two proteins related to a plasmid,
which carries mcr-1 gene found in E. coli. The same reason could explain the failure of the
same CAM in the classification of three colR strains, which may show a colistin resistance
mechanism different from mcr-1.

Each CAM showed a limited capability in classifying Gram-negative colR and colS
strains other than E. coli, likely due to the diversity between their species-specific protein
profiles and those of E. coli, on which the development of the three CAMs was based.
Therefore, a classification model is able to perform an intraspecific discrimination between
colR and colS strains, which are probably classified on the basis of species-specific colistin
resistance mechanisms, whose molecular effectors could have a molecular mass within the
2–20 kDa range. Although this approach is not based on the traditional colistin resistance
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biomarkers (i.e., modifications in lipid A, involving phosphoethanolamine), the develop-
ment of a species-specific CAM allows a rapid screening of colR and colS strains on the basis
of species-related discriminating peaks, and without resorting to the more time-consuming
BMD method. As a matter of fact, although the conventional antibiotic susceptibility tests,
such as BMD, allow the phenotypic characterization of resistant strains, they suffer from a
higher time-to-result because of the long time required for the bacterial growth and the
phenotypic expression of the resistance mechanism, consequently preventing a prompt
and appropriate treatment.

5. Conclusions

In conclusion, the present study describes an alternative, rapid, simple to perform,
inexpensive and reliable MALDI-TOF MS application for the identification of colR E. coli
strains in routine diagnostic. Although no one of the CAM created in this study is 100%
reliable for both the categories tested, this approach could represent an alert, at the same
time as the bacterial identification, for the presence of colR strains, which, as suggested by
CLSI and EUCAST, should be investigated using the gold standard method (BMD assay)
for MIC determination or molecular approach to determine genetic resistance mechanisms.
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