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ON THE AVERAGE NUMBER OF REPRESENTATIONS OF AN INTEGER
AS A SUM OF LIKE PRIME POWERS

MARCO CANTARINI, ALESSANDRO GAMBINI, ALESSANDRO ZACCAGNINI

ABSTRACT. We investigate the average number of representations of a positive integer as the
sum of k + 1 perfect k-th powers of primes. We extend recent results of Languasco and the
last Author, which dealt with the case k = 2 [6] and k = 3 [5] respectively. We use the same
technique to study the corresponding problem for sums of just k perfect k-th powers of primes.

1. INTRODUCTION

The problem of representing a large integer n, satisfying suitable congruence conditions, as
a sum of a prescribed number of powers of primes, say n = pk1

1 + · · ·+ pks
s , is classical. Here

k1, . . . , ks denote fixed positive integers. This class of problems includes both the binary and
ternary Goldbach problem, and Hua’s problem. If the density ρ = k−1

1 + · · ·+ k−1
s is large and

s ≥ 3, it is often possible to give an asymptotic formula for the number of different represen-
tations the integer n has. When the density ρ is comparatively small, the individual problem
is usually intractable and it is reasonable to turn to the easier task of studying the average
number of representations, if possible considering only integers n belonging to a short interval
[N,N +H], say, where H ≥ 1 is as small as possible.

Here we deal with the average number of representations of a positive integer n as the sum
of k+1 perfect k-th powers of prime numbers. The case k = 2 (actually, to be exact a slightly
more general problem) has been studied in [6], while the case k = 3 has been studied in [5].
Here we give a uniform and simpler proof which is valid for general k ≥ 2. Let

Rk(n) = ∑
n=mk

1+···+mk
k+1

Λ(m1) · · ·Λ(mk+1), (1)

where Λ is the von Mangoldt function, that is, Λ(pm) = log(p) if p is a prime number and m is
a positive integer, and Λ(n) = 0 for all other integers.

Theorem 1.1. Let k≥ 2 be a fixed integer. For every ε > 0 there exists a constant C =C(ε)> 0,
independent of k, such that

N+H

∑
n=N+1

Rk(n) = Γ

(
1+

1
k

)k
HN1/k +Ok

(
HN1/k exp

{
−C
( logN

log logN

)1/3})
as N→+∞, uniformly for N1−5/(6k)+ε < H < N1−ε, where Γ is the Euler Gamma-function.

Theorem 1.2. Let k≥ 2 be a fixed integer and assume that the Riemann Hypothesis (RH) holds.
Then

N+H

∑
n=N+1

Rk(n) = Γ

(
1+

1
k

)k
HN1/k +Ok (Φk(N,H)) ,
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uniformly for H = ∞(N1−1/kL3) with H = o(N), where f = ∞(g) means g = o( f ), L = logN
and Φk(N,H) = NL3 +H2N1/k−1 +H1/2N1/2+1/(2k)L+HN1/(2k)L3/2.

The density of this problem is 1 + 1/k. Theorems 1.1 and 1.2 contain as special cases
the results in [6] and [5]. The limitation in Theorem 1.1 is due to the corresponding one in
Lemma 3.1, whereas the limitation in Theorem 1.2 is the expected one.

The main new ingredient is the use of the elementary identity

xk+1− yk+1 = (x− y)2
k

∑
j=1

jxk− jy j−1 +(k+1)(x− y)yk, (2)

which is valid for integral k ≥ 1. We will show in §4 below that this identity can be used quite
effectively to circumvent the need for sharp bounds for exponential sums. In fact, we manage
to obtain the “expected” limitations (in view of Lemma 3.1) for the length H of the “short
interval,” both in the unconditional and in the conditional case.

We remark that the use of identity (2) allows us to treat also the average value of the number
of representations of an integer as a sum of just k perfect k-th powers of prime numbers, which
is a problem of density 1. Let

R′k(n) = ∑
n=mk

1+···+mk
k

Λ(m1) · · ·Λ(mk). (3)

We can prove the following results, which will also appear in a forthcoming paper by A. Lan-
guasco with a proof along the lines of [5].

Theorem 1.3. Let k≥ 2 be a fixed integer. For every ε > 0 there exists a constant C =C(ε)> 0,
independent of k, such that

N+H

∑
n=N+1

R′k(n) = Γ

(
1+

1
k

)k
H +Ok

(
H exp

{
−C
( logN

log logN

)1/3})
as N→+∞, uniformly for N1−5/(6k)+ε < H < N1−ε.

Theorem 1.4. Let k ≥ 2 be a fixed integer and assume that the Riemann Hypothesis holds.
Then

N+H

∑
n=N+1

R′k(n) = Γ

(
1+

1
k

)k
H +Ok

(
Φ
′
k(N,H)

)
,

uniformly for H = ∞(N1−1/kL3) with H = o(N), where Φ′k(N,H) = N1−1/kL3 + H2N−1 +

H1/2N1/2−1/(2k)L+H1−1/kN1/(2k)L3/2.

We do not give the full detailed proofs of Theorems 1.3 and 1.4, but just a short summary in
§6. The starting point is the use of identity (2) with k in place of k+1. The case k = 2 of both
results is proved in Languasco & Zaccagnini [3].

2. DEFINITIONS AND PREPARATION FOR THE PROOFS

For real α we write e(α) = e2πiα. We take N as a large positive integer, and write L = logN
for brevity. Let z = 1/N−2πiα and

S̃k(α) = ∑
n≥1

Λ(n)e−nk/Ne(nk
α) = ∑

n≥1
Λ(n)e−nkz. (4)

Thus, recalling definition (1) and using (4), for all n≥ 1 we have

Rk(n) = ∑
nk

1+···+nk
k+1=n

Λ(n1) · · ·Λ(nk+1) = en/N
∫ 1/2

−1/2
S̃k(α)

k+1 e(−nα)dα. (5)
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It is clear from the above identity that we are only interested in the range α ∈ [−1/2,1/2]. We
record here the basic inequality

|z|−1�min{N, |α|−1}. (6)

We also need the following exponential sum over the “short interval” [1,H]

U(α,H) =
H

∑
m=1

e(mα),

where H ≤ N is a large integer. We recall the simple inequality

|U(α,H)| ≤min{H, |α|−1}. (7)

With these definitions in mind and recalling (5), we remark that
N+H

∑
n=N+1

e−n/NRk(n) =
∫ 1/2

−1/2
S̃k(α)

k+1U(−α,H)e(−Nα)dα, (8)

which is the starting point for our investigation. The basic strategy is to replace S̃k(α) by its
expected main term, which is Γ(1+1/k)/z1/k, and estimating the ensuing error term by means
of identity (2). We use trivial bounds for S̃k and z−1/k and Lemma 3.1 to majorise each term in
the sum on the right-hand side of (2), and the Cauchy-Schwarz inequality and the same Lemma
again to majorise the summand on the far right. Of course, we may use Lemma 3.1 only in
a restricted range, and we need a different argument on the remaining part of the integration
interval. This leads to some complications in details. In the conditional case, we have no such
limitations and our result holds in the “natural” range for H. The details are in §5. In both
cases, we achieve the proof by removing the extraneous factor e−n/N from the left-hand side of
(8).

3. LEMMAS

It will shorten our formulae somewhat to write γk = Γ(1+1/k). For brevity, we also set

Ẽk(α) := S̃k(α)−
γk

z1/k
and A(N;c) := exp

{
c
( logN

log logN

)1/3}
,

where c is a real constant.

Lemma 3.1 (Lemma 3 of [4], Lemma 1 of [2]). Let ε be an arbitrarily small positive constant,
k≥ 1 be an integer, N be a sufficiently large integer and L = logN. Then there exists a positive
constant c1 = c1(ε), which does not depend on k, such that∫

ξ

−ξ

∣∣Ẽk(α)
∣∣2 dα�k N2/k−1A(N;−c1)

uniformly for 0≤ ξ < N−1+5/(6k)−ε. Assuming the Riemann Hypothesis we have∫
ξ

−ξ

∣∣Ẽk(α)
∣∣2 dα�k N1/k

ξL2

uniformly for 0≤ ξ≤ 1/2.

We remark that the proof of Lemma 3.1 in [4] contains oversights which are corrected in [6].
The next result is a variant of Lemma 4 of [4]: we just follow the proof until the last step. We
need it to avoid dealing with the “periphery” of the major arc in the unconditional case.
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Lemma 3.2. Let N be a positive integer, z = z(α) = 1/N−2πiα, and µ > 0. Then, uniformly
for n≥ 1 and X > 0 we have∫ X

−X
z−µe(−nα)dα = e−n/N nµ−1

Γ(µ)
+Oµ

(
1

nXµ

)
.

Lemma 3.3. We have S̃k(α)�k N1/k.

Proof. It is a straightforward application of partial summation and a crude form of the Prime
Number Theorem. In fact, recalling that the summatory function of the von Mangoldt Λ-
function ψ(X) satisfies ψ(X)� X , we have

∑
n≥1

Λ(n)e−nk/N = lim
X→+∞

∑
n≤X

Λ(n)e−nk/N

= lim
X→+∞

(
ψ(X)e−Xk/N +

k
N

∫ X

0
ψ(t)tk−1e−tk/N dt

)
�k N−1

∫ +∞

0
tke−tk/N dt�k N1/k

∫ +∞

0
u1/ke−u du,

by a trivial change of variables. �

Our next tool is Lemma 6 of Languasco & Zaccagnini [5]: it is a consequence of Lemma 4
of [1], which depends, essentially, on a result of Robert & Sargos [7].

Lemma 3.4. For N a positive integer, τ > 0 and for real k > 1 and real ε > 0 we have∫
τ

−τ

|S̃k(α)|4dα�k (τN2/k +N4/k−1)Nε.

Lemma 3.5. For k > 1 and N−c < τ≤ N2/k−1 we have∫ 1/2

τ

|S̃k(α)|4
dα

α
�k N4/k−1+ε

τ
−1.

Proof. We just need a partial integration from Lemma 3.4: let

F(ξ) =
∫

ξ

0
|S̃k(α)|4dα�k (ξN2/k +N4/k−1)Nε.

Now ∫ 1/2

τ

|S̃k(α)|4
dα

α
=
[F(α)

α

]1/2

τ

+
∫ 1/2

τ

F(α)

α2 dα�k N4/k−1+ε
τ
−1,

since τ≤ N2/k−1. �

Lemma 3.6. For N→+∞, H ∈ [1,N] and a real number λ we have
N+H

∑
n=N+1

e−n/Nnλ =
1
e

HNλ +Oλ

(
H2Nλ−1

)
.

Proof. Using the approximation e−n/N = e−1 +O
(
HN−1) introduces an error Oλ

(
H2Nλ−1

)
.

If λ = 0 there is nothing left to prove. If λ < 1 with λ 6= 0 we have

nλ−Nλ = λ

∫ n

N
tλ−1 dt�λ (n−N)Nλ−1 ≤ HNλ−1

for all n ∈ [N +1,N +H], and we see that
N+H

∑
n=N+1

nλ = HNλ +Oλ

(
H2Nλ−1

)
.
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If λ ≥ 1 the argument above proves that nλ−Nλ�λ H(N +H)λ−1�λ HNλ−1 since H ≤ N,
and the conclusion follows. �

4. PROOF OF THEOREM 1.1

We need to introduce another parameter B = B(N), defined as

B = N2ε (9)

Ideally, we would like to take B = 1, but we are prevented from doing this by the estimate in
§4.3. We let C = C (B,H) = [−1/2,−B/H]∪ [B/H,1/2]. Recalling (8) we write

N+H

∑
n=N+1

e−n/NRk(n) = γ
k+1
k

∫ B/H

−B/H

U(−α,H)

z(k+1)/k
e(−Nα)dα

+
∫ B/H

−B/H

(
S̃k(α)

k+1−
γ

k+1
k

z(k+1)/k

)
U(−α,H)e(−Nα)dα

+
∫

C
S̃k(α)

k+1U(−α,H)e(−Nα)dα

= γ
k+1
k I1 + I2 + I3,

say. The first summand gives rise to the main term via Lemma 3.2, the second one is majorised
by means of identity (2) and the L2-estimate provided by Lemma 3.1, and the last one is easy
to bound using Lemma 3.5.

4.1. Evaluation of I1. It is a straightforward application of Lemma 3.2: here we exploit the
flexibility of having variable endpoints instead of the full unit interval. We have

I1 =
∫ B/H

−B/H

U(−α,H)

z(k+1)/k
e(−Nα)dα =

1
γk

N+H

∑
n=N+1

e−n/Nn1/k +Ok

(
H
N

(H
B

)(k+1)/k
)
. (10)

We evaluate the sum on the right-hand side of (10) by means of Lemma 3.6 with λ = 1/k.
Summing up, we have

I1 =
1

eγk
HN1/k +Ok

(
H2N1/k−1 +

H
N

(H
B

)(k+1)/k
)
. (11)

We can neglect the second summand in the error term since H ≤ N and B≥ 1.

4.2. Bound for I2. We let x = x(α) = S̃k(α) and y = y(α) = γkz−1/k and use (2). We recall
the bounds (6) and (7), and Lemma 3.3. Using Lemma 3.1 and the Cauchy-Schwarz inequality
where appropriate, we have

I2�k H
k

∑
j=1

∫ B/H

−B/H
|x− y|2 · |x|k− j · |y| j−1 dα+H

∫ B/H

−B/H
|x− y| · |y|k dα

�k H
k

∑
j=1

max
α
|x|k− j ·max

α
|y| j−1

∫ B/H

−B/H
|x− y|2 dα

+H
(∫ B/H

−B/H
|x− y|2 dα

∫ B/H

−B/H
|y|2k dα

)1/2

�k H
k

∑
j=1

N(k− j)/k ·N( j−1)/kN2/k−1A(N;−c1)
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+HN1/k−1/2A
(

N;−1
2

c1

)(∫ B/H

−B/H

dα

|z|2
)1/2

�k HN1/kA
(

N;−1
2

c1

)
, (12)

where c1 = c1(ε) > 0 is the constant provided by Lemma 3.1, which we can use if B/H <

N−1+5/(6k)−ε. Recalling the choice in (9), we see that we can take

H > N1−5/(6k)+3ε. (13)

4.3. Bound for I3. For k ≥ 3 we have

I3 =
∫

C
S̃k(α)

k+1U(−α,H)e(−Nα)dα�k max
α∈[−1/2,1/2]

|S̃k(α)|k−3
∫

C
|S̃k(α)|4

dα

α

�k N(k−3)/k ·N4/k−1+ε(B/H)−1�k N1/k+εH/B,
(14)

by Lemmas 3.3 and 3.5. This is�k N1/kHA(N;−c1/2), by our choice in (9). For k = 2 we can
use a slightly different argument, based on Lemma 5 of [6]. We omit the details.

4.4. Completion of the proof. For simplicity, from now on we assume that H ≤ N1−ε. Sum-
ming up from (11), (12) and (14), we proved that

N+H

∑
n=N+1

e−n/NRk(n) =
γk

k
e

HN1/k +Ok

(
HN1/kA

(
N;−1

2
c1

))
, (15)

provided that (13) holds, since the other error terms are smaller in our range for H. In order to
achieve the proof, we have to remove the exponential factor on the left-hand side, exploiting
the fact that, since H is “small,” it does not vary too much over the summation range. We use
a sort of bootstrapping argument: since e−n/N ∈ [e−2,e−1] for all n ∈ [N + 1,N +H], we can
easily deduce from (15) that

e−2
N+H

∑
n=N+1

Rk(n)≤
N+H

∑
n=N+1

e−n/NRk(n)�k HN1/k.

We can use this weak upper bound to majorise the error term arising from the development
e−x = 1+O (x) that we need in the left-hand side of (15). In fact, we have

N+H

∑
n=N+1

e−n/NRk(n) =
N+H

∑
n=N+1

(
e−1 +O

(
(n−N)N−1))Rk(n)

= e−1
N+H

∑
n=N+1

Rk(n)+Ok

(
H2N1/k−1

)
.

Finally, substituting back into (15), we obtain the required asymptotic formula for H as in the
statement of Theorem 1.1.

5. PROOF OF THEOREM 1.2

The proof of the conditional version of our result is easier since Lemma 3.1 applies to the
full unit interval, and this partially spares us the trouble of dealing with two different ranges.
Recalling (8), we write

N+H

∑
n=N+1

e−n/NRk(n) = γ
k+1
k

∫ 1/2

−1/2

U(−α,H)

z(k+1)/k
e(−Nα)dα
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+
∫ 1/2

−1/2

(
S̃k(α)

k+1−
γ

k+1
k

z(k+1)/k

)
U(−α,H)e(−Nα)dα,

The main term is evaluated as in §4, whereas for the secondary term we have recourse again to
(2). By Lemma 3.2 with X = 1/2 and Lemma 3.6 with λ = 1/k, we find that∫ 1/2

−1/2

U(−α,H)

z(k+1)/k
e(−Nα)dα =

1
γk

N+H

∑
n=N+1

e−n/Nn1/k +Ok

(
H
N

)
=

1
eγk

HN1/k +Ok

(
H2N1/k−1

)
.

For the secondary term we argue as above, setting x = x(α) = S̃k(α) and y = y(α) = γkz−1/k

and using (2). First we deal with the range [−1/H,1/H]:∫ 1/H

−1/H

(
S̃k(α)

k+1−
γ

k+1
k

z(k+1)/k

)
U(−α,H)e(−Nα)dα

� H
k

∑
j=1

∫ 1/H

−1/H
|x− y|2 · |x|k− j · |y| j−1 dα+H

∫ 1/H

−1/H
|x− y| · |y|k dα

�k H
k

∑
j=1

max
α
|x|k− j ·max

α
|y| j−1

∫ 1/H

−1/H
|x− y|2 dα

+H
(∫ 1/H

−1/H
|x− y|2 dα

∫ 1/H

−1/H
|y|2k dα

)1/2

�k H
k

∑
j=1

N(k− j)/k ·N( j−1)/kN1/kH−1L2 +HN1/(2k)H−1/2L
(∫ 1/H

−1/H

dα

|z|2
)1/2

�k NL2 +H1/2N1/2+1/(2k)L.

In the remaining range we use a partial-integration argument, in order to exploit the full force
of (7). By Lemma 3.1 we have

F(ξ) :=
∫

ξ

0

∣∣Ẽk(α)
∣∣2 dα�k N1/k

ξL2.

Hence ∫ 1/2

1/H

∣∣Ẽk(α)
∣∣2 dα

α
=
[F(α)

α

]1/2

1/H
+

∫ 1/2

1/H

F(α)

α2 dα�k N1/kL3. (16)

Choosing x and y as above and using (16), we see that the contribution from the range [1/H,1/2]
is∫ 1/2

1/H

(
S̃k(α)

k+1−
γ

k+1
k

z(k+1)/k

)
U(−α,H)e(−Nα)dα

�k

k

∑
j=1

max
α
|x|k− j ·max

α
|y| j−1

∫ 1/2

1/H
|x− y|2 dα

α
+
(∫ 1/2

1/H
|x− y|2 dα

α

∫ 1/2

1/H
|y|2k dα

α

)1/2

�k

k

∑
j=1

N(k− j)/k ·N( j−1)/kN1/kL3 +(N1/kL3)1/2H

�k NL3 +HN1/(2k)L3/2.
7



5.1. Completion of the proof. Summing up, we proved that
N+H

∑
n=N+1

e−n/NRk(n) =
γk

k
e

HN1/k +Ok (Φk(N,H)) , (17)

where Φk(N,H) = NL3+HN1/(2k)L3/2+H2N1/k−1+H1/2N1/2+1/(2k)L. As in §4.4 above, we
need to remove the exponential factor, exploiting the fact that, since H is “small,” it does not
vary too much over the summation range. We argue in a slightly different fashion, since we
aim at a stronger error term. Using the fact that e−n/N = e−1 +O (H/N), we have

N+H

∑
n=N+1

Rk(n) = γ
k
kHN1/k +Ok

(
Φk(N,H)+

H
N

N+H

∑
n=N+1

Rk(n)

)
. (18)

The last term is�k H/N(HN1/k+Φk(N,H))�k H2N1/k−1+Φk(N,H)�k Φk(N,H) by (17),
since H ≤ N. Substituting into (18) we find

N+H

∑
n=N+1

Rk(n) = γ
k
kHN1/k +Ok (Φk(N,H)) .

This is an asymptotic formula provided that H = ∞
(
N1−1/kL3) and H = o(N). Theorem 1.2 is

fully proved.

6. PROOF OF THEOREMS 1.3 AND 1.4

We split the unit interval as in §4 and proceed in the same way. With a similar notation, we
find that

N+H

∑
n=N+1

e−n/NR′k(n) = γ
k
kI′1 + I′2 + I′3,

say, where
I′1 = He−1 +Ok

(
H2/N +H/B

)
,

by Lemma 3.2 and standard estimates. We also have

I′2�k HA
(

N;−1
2

c1

)
,

arguing as above by means of identity (2) with k replaced by k−1. For k ≥ 4 we have

I′3 =
∫

C
S̃k(α)

kU(−α,H)e(−Nα)dα�k max
α∈[−1/2,1/2]

|S̃k(α)|k−4
∫

C
|S̃k(α)|4

dα

α
�k NεH/B,

by Lemmas 3.3 and 3.5, which is�k HA(N;−c1/2), by our choice of B.
For k ∈ {2, 3} we need the extension to S̃3 of Lemma 7 of Tolev [8]. The details of the proof

are contained in work in progress by A. Languasco and the last Author. Without this Lemma,
for k = 3 we need to take B = N5/72+ε and we obtain a correspondingly weaker result.

Lemma 6.1 (Tolev). Let k > 1 and 0 < τ≤ 1/2. Then∫
τ

−τ

|S̃k(α)|2 dα�k
(
τN1/k +N2/k−1)(logN)3.

A partial-integration argument similar to the ones above then yields

I′3�k max
α∈[−1/2,1/2]

|S̃3(α)|k−2
∫

C
|S̃k(α)|2

dα

α
�k N(k−2)/k

(
N1/kL4 +

H
B

N(2−k)/kL3
)
,

which is o(HN−ε) if B = N2ε as in (9), for H as in the statement of Theorem 1.3.
We omit the details of the proof of Theorem 1.4.
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