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Abstract1

In this paper we consider Quadratic Programming (QP) problems with general linear2

constraints. We show, through a computational investigation, that a careful selection 13

of a suitable reformulation of such problems, together with the related relaxation, and4

an intensive application of bound tightening are simple but very effective ingredients5

in order to make a standard branch and bound approach very competitive and in some6

cases able to outperform even well known commercial solvers. 27

Keywords Quadratic programming · Branch and bound · Linear and convex8

relaxations · Bound tightening9

1 Introduction10

In this paper, we consider Quadratic Programming (QP) problems, where the objec-11

tive function is (non-convex) quadratic, and the feasible region is a polytope. More12

precisely, let13

X = {
x ∈ R

n : Ax ≤ b, Aeqx = beq , 0n ≤ x ≤ en
}
,14

be a polytope, where A ∈ R
m×n , b ∈ R

m , Aeq ∈ R
meq×n , beq ∈ R

meq , while 0n and15

en are the n-dimensional vectors with all components equal to 0 and 1, respectively.16
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In case m = 0 (meq = 0), the constraints Ax ≤ b (Aeqx = b) are not present. Note17

that imposing 0n ≤ x ≤ en is without loss of generality, since we can always impose18

such constraints, possibly after a translation and a re-scaling of the variables. Then,19

the problem we consider in this paper is the following:20

min
x∈X

1

2
x�Qx + c�x, (1)21

where Q ∈ R
n×n is symmetric and, usually, not positive semidefinite, while c ∈ R

n .22

Two relevant special cases are:23

– m = meq = 0: minimization of a quadratic function over the unit box, denoted as24

BoxQP in what follows;25

– m = 0, meq = 1, Aeq = e�
n , and beq = 1: minimization of a quadratic function26

over the unit simplex, denoted as StQP (Standard QP) in what follows.27

Problem (1) turns out to be difficult. NP-hardness results have been proved also for28

the BoxQP subclass (see, e.g., [16]), and for the StQP subclass (see the reformulation29

of tha max clique problem as a StQP in [14]). Due to the difficulty of the problem,30

Branch-and-Bound (B&B) approaches are usually recommended to tackle it. Many31

recent works (e.g., [1,2,5,9,11,12,15,19]) have discussed B&B approaches for problem32

(1) and its sub-classes. Such works differ under many respects like, e.g., the relaxations33

employed to compute lower bounds, the branching strategies, and so on. We will briefly34

review these aspects in the following sections. It is also worthwhile to remark that both35

CPLEX and GUROBI, the best performing commercial solvers in the field of linear36

and integer programming, have recently added the opportunity of solving problems37

within the class (1).38

In this paper we do not bring theoretical advances about QP problems, rather we39

are interested in showing, through computational experiments, that when the structure40

of the problem is weakened, say, when we move from highly structured problems41

like BoxQP and StQP to QP problems over more general feasible polytopes, some42

approaches become competitive. In particular, we would like to show that approaches43

based on the choice of a suitable reformulation of a QP problem, with the related44

relaxation, and on an intensive application of domain reduction strategies, turn out to45

be very efficient. We believe that such computational observation is relevant and could46

be taken into account in order to enhance the performance of other solvers.47

The paper is structured as follows. In Sect. 2 we will present different reformulations48

of problem (1) as well as the related relaxations. In Sect. 3 we briefly describe different49

branching strategies, based on the optimal solutions of the relaxations. In Sect. 450

we discuss domain reduction techniques, which, as we will see, are able to strongly51

enhance the performance of some B&B approaches. In Sect. 5 we discuss merits52

and limitations of different reformulations and of the related relaxations. Finally, in53

Sect. 6 we present and discuss some computational experiments over benchmark54

instances.55
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2 Problem reformulations and relaxations56

Besides the original formulation (1), QP problems can be reformulated in alternative57

ways, which also lead to different relaxations. Most of these reformulations and the58

related relaxations are reviewed in [15]. Here we only report the two reformulations59

(besides the original one) and the related relaxations which will be employed in this60

paper, while some others are only briefly mentioned. The first, simple, reformulation61

is what we call the bilinear reformulation. Interestingly, this is not reported in [15], but62

we describe it here since, according to our experiments, in some cases it turns out to be63

the one leading to the best results. Through the introduction of n additional variables64

and the same number of equality constraints, the objective function is transformed65

into a simple separable bilinear function:66

min
x∈X , y

1
2 x�y + c�x

y = Qx.
(2)67

Next, let Q = UDU� be the spectral decomposition of the symmetric matrix Q.68

Then, after denoting by ui the eigen-vectors of matrix Q (columns of matrix U), with69

the related eigenvalues di , i = 1, . . . , n, we call spectral reformulation of (1) the70

following problem:71

min
x∈X , z

1
2

∑
i : di ≥0 di

[
u�

i x
]2 + 1

2

∑
i : di <0 di z2

i + c�x

zi = u�
i x i : di < 0.

(3)72

Note that the dimension of vector z is equal to the number of negative eigenvalues of73

Q.74

We also mention two further reformulations, namely: (i) the KKT (Karush-Kuhn-75

Tucker) reformulation, first employed, to the authors’ knowledge, in [10], based on the76

observation that, due to the linearity of the constraints, all local optima of problem (1)77

are KKT points. Thus, after including also dual variables (the Lagrange multipliers),78

problem (1) can be reformulated through the addition of constraints imposing the KKT79

conditions;80

(ii) the MILP reformulation, where the dual variables are added, the stationarity81

conditions of the KKT system are exploited to linearize the objective function (see82

[7]), and, finally, the nonlinear complementarity conditions are linearized after the83

addition of binary variables.84

Relaxations In order to simplify the notation, we will use different symbols to85

denote the feasible regions of different reformulations. In particular, we will denote86

by: X1 the feasible region of the original formulation (1), i.e., X1 ≡ X ; X2 the feasible87

region of reformulation (2); X3 the feasible region of reformulation (3). Note that in88

the description of each feasible region we need to consider all variables involved in89

the reformulation. So, for instance, we have that X2 ⊂ R
2n since in reformulation90

(2) we need to include variables y ∈ R
n , besides the original variables x ∈ R

n . In91

fact, when discussing relaxations, we will present them not (only) over the original92

feasible regions but over subsets of these regions. More precisely, at some node of the93
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B&B tree, for some i ∈ {1, . . . , 3}, we will consider an additional (polyhedral) set94

X i , and we will define the relaxation over the subset Xi ∩ Xi of the feasible region.95

Usually, Xi is a set obtained as a result of different branching operations. We will also96

assume that in a given reformulation, say, the one denoted by index i ∈ {1, . . . , 3},97

for all variables appearing in such reformulation, here generically denoted as ζ , lower98

bounds �ζ and upper bounds uζ over Xi ∩ Xi are available or, at least, can be easily99

computed, e.g., by solving linear programs. Given this premise, now we will describe100

in detail the relaxations.101

A straightforward relaxation of the original formulation (1) is obtained by employ-102

ing McCormick under- and overestimators (see [13]):103

min
x∈X1∩X1, X

1
2

∑n
i, j=1 Qi j Xi j + c�x

Xi j ≥ max
{
�xi x j + �x j xi − �xi �x j , uxi x j + ux j xi − uxi ux j

}
i, j : Qi j > 0

Xi j ≤ min
{
�xi x j + ux j xi − �xi ux j , uxi x j + �x j xi − uxi �x j

}
i, j : Qi j < 0,

(4)104

where: the first set of constraints defines the convex envelope of the bilinear terms xi x j105

over the rectangle [�xi , uxi ]×[�x j , ux j ] for all i, j such that Qi j > 0; the second set of106

constraints defines the concave envelope of the bilinear terms xi x j over the rectangle107

[�xi , uxi ]×[�x j , ux j ] for all i, j such that Qi j < 0. The relaxed problem is an LP with108

(up to) n2 additional variables, namely the entries Xi j , i, j = 1, . . . , n, of the variable109

matrix X, and (up to) 2n2 additional linear constraints. In fact, due to symmetries, the110

number of variables and constraints can be (approximately) halved. Moreover, such111

number is obviously strictly related to the sparsity of matrix Q: the sparser matrix Q is,112

the lower the number of additional variables and constraints. The above relaxation is113

also called McCormick relaxation. In the recent and interesting paper [1] it is observed114

that such relaxation is weak but can be considerably strengthened with the addition115

of valid linear inequalities. In particular, the authors consider Chvátal-Gomory cuts116

for the so called Boolean Quadric Polytope, and prove that the only non-dominated117

Chvátal-Gomory cuts are the odd-cycle inequalities.118

McCormick underestimators can also be employed to define a relaxation of refor-119

mulation (2):120

min
x,y∈X2∩X2, g

1
2 e�

n g + c�x

gi ≥ max
{
�xi yi + �yi xi − �xi �yi , uxi yi + uyi xi − uxi uyi

}
, i = 1, . . . , n.

(5)121

Here, the right-hand side of the additional constraints defines the convex envelope of122

the bilinear term xi yi over the rectangle [�xi , uxi ]× [�yi , uyi ]. The relaxed problem is123

an LP with n additional variables gi , i = 1, . . . , n, and 2n additional constraints.124

In reformulation (3) the objective function is separated into the sum of a convex125

and a concave part. Then, a relaxation can be obtained by underestimating the concave126

part:127
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min
x,z∈X3∩X3, f

1
2

∑
i : di ≥0 di

[
u�

i x
]2 + 1

2

∑
i : di <0 di fi + c�x

fi ≤ (�zi + uzi )zi − �zi uzi i : di < 0,
(6)128

where each additional constraint defines the concave envelope of z2
i over the interval129

[�zi , uzi ]. The relaxed problem is a Convex Programming (CP) problem, with a number130

of additional variables and constraints equal to the number of negative eigenvalues of131

matrix Q.132

Concerning the KKT reformulation, in [5] it is first observed that it can be further133

reformulated as a completely positive problem and then the cone of completely positive134

matrices is relaxed into the tractable convex cone of doubly nonnegative matrices,135

thus leading to an SDP bound. The authors further observe that the relaxation can be136

strengthened by the addition of RLT constraints.137

Finally, concerning the MILP reformulation, any valid relaxation for MILP prob-138

lems can be employed in this case. In fact, once the problem is formulated as a MILP,139

there is no need to develop new solution methods: any of the existing methods, imple-140

mented in the best known commercial solvers, like CPLEX and GUROBI, can be141

employed to solve them. Nevertheless, one can improve the performance of these142

solvers by improving the input model. For instance, in the MILP reformulation com-143

plementarity conditions are translated into big-M constraints. Thus, strengthening the144

upper bound values used in these constraints may have a relevant impact on the com-145

puting times. We refer to [9,19] for the discussion of MILP reformulations and their146

application to QP problems.147

3 Branching148

The branching operation employed in a B&B algorithm is strictly related to the for-149

mulation of the problem and the related relaxation. For QP problems we can classify150

branching into two broad categories:151

Spatial branching: the subset of the feasible region associated with a node of the152

B&B tree is subdivided into two subsets, obtained by: i) selecting153

a variable, say xi ; (ii) selecting a reference value for that variable,154

say x∗
i ; (iii) defining the first subset by adding constraint xi ≤ x∗

i ,155

and the second subset by adding constraint xi ≥ x∗
i . In this case156

the two subsets are not disjoint but share a common face, where157

the selected variable is equal to the reference value. By spatial158

branching it is usually only possible to guarantee that in a finite159

number of iterations the globally optimal solution is reached160

within a given precision ε > 0;161

KKT branching: this is strictly associated to the KKT reformulation, where a node162

of the B&B tree is split into two child nodes, by first selecting163

one of the complementarity conditions and then in each child164

node imposing that one of the two (linear) factors appearing in165

a complementarity condition is equal to 0. In case of the MILP166

reformulation this is obtained by fixing one binary variable to 0 in167
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one child node, and to 1 in the other child node. KKT branching168

allows to terminate in a finite number of iterations without the169

need of imposing a positive precision.170

While we mentioned, for the sake of completeness, the KKT branching, in this paper171

we will adopt spatial branching. This is the natural branching approach in case lower172

bounds are computed via the linear relaxations (4) and (5), or via the convex relaxation173

(6), as we will do throughout the paper. Concerning the selected variable, if the linear174

relaxation (4) is employed, then it is one of the original variables xi , i ∈ {1, . . . , n},175

while if the convex relaxation (6) is employed, it is one of the zi variables, for all i such176

that di < 0. In case the linear relaxation (5) is employed, then we can either select one177

of the original variables xi , or one of the variables yi , i ∈ {1, . . . , n}. It is worthwhile to178

remark that finiteness of the B&B algorithm within a positive precision is guaranteed179

even if branching is only performed with respect to variables xi or only with respect180

to variables yi . This property derives from the convex envelope of a bilinear term over181

a rectangle, defined by McCormick underestimators, converging to the bilinear term182

itself even when the length of only one of the edges of the rectangle converges to 0.183

In fact, according to our experiments, branching on yi variables is more efficient than184

branching on xi variables, possibly because each variable yi is a linear function of185

multiple original variables and a limitation on such variable has an impact on all the186

original variables on which it depends.187

The branching variable is selected to be the one with the largest error. More188

precisely, once we solve a relaxation, we consider the difference between an under-189

estimated function and its underestimator computed at the optimal solution of the190

relaxation, and select the variable with the largest error. Therefore, for relaxation (4),191

let (X�, x�) be the optimal solution of the relaxation. Then, we select the variable with192

index193

k ∈ arg max
i=1,...,n

n∑

j=1

Qi j (x�
j x�

i − X�
i j ). (7)194

For relaxation (5), let (x�, y�, g�) be the optimal solution of the relaxation. Then, we195

select the variable with index196

k ∈ arg max
i=1,...,n

x�
i y�

i − g�
i (8)197

(in this case the variable can be either xk or yk). For relaxation (6), let (x�, z�, f�) be198

the optimal solution of the relaxation. Then, we select the variable with index199

k ∈ arg max
i : di <0

f �
i − (

z�
i

)2
. (9)200

In all cases, the reference value, i.e., the value with respect to which we perform the201

branching operation, is the value of the selected variable at the optimal solution of the202

relaxation.203
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4 Domain reduction/Bound tightening204

As previously seen, in spatial branching the branching variable and the related branch-205

ing value are selected in such a way to reduce as much as possible the underestimating206

error. Indeed, since underestimating functions are based on lower and upper bounds207

of variables, by changing one of such bounds through the branching operation, we are208

able to improve the quality of the underestimation. However, a much larger improve-209

ment at a given node of the B&B tree can be attained by so called domain reduction210

or bound tightening procedures (see, e.g., [3,4,8,17,18]). These reduce the range of211

the variables and, consequently, improve the quality of the underestimator. A rather212

expensive but, as we will see, also quite effective domain reduction procedure is based213

on the minimization and maximization of a single variable over the feasible region214

of the B&B node with an additional constraint imposing that the linear or convex215

underestimating function is not larger than the current global upper bound (GU B in216

what follows). For instance, let us consider relaxation (6). We notice that the under-217

estimating function depends on variables zi , i ∈ {1, . . . , n} : di < 0. Let zk be one218

of such variables. Then, we can improve the lower and upper bound of this variable219

by solving the following two convex programs:220

min / max
x,z∈X3∩X3, f

zk

fi ≤ (�zi + uzi )zi − �zi uzi i : di < 0,

1
2

∑
i : di ≥0 di

[
u�

i x
]2 + 1

2
∑

i : di <0 di fi + c�x ≤ GU B.

(10)221

Note that, once new bounds for the variable are computed, these allow to strengthen222

the last constraint and, thus, a further reduction is possible. In practice, one proceeds223

as follows: (i) first, select a subset of variables (again, variables for which the under-224

estimating error is largest are selected); (ii) then, problems (10) are solved for each225

one of these variables; (iii) next, a new lower bound is computed by solving relax-226

ation (6) with the updated bounds; (iv) finally, if the new lower bound significantly227

improves the previous one, then it is worthwhile to try to further reduce the variable228

ranges and, thus, the whole procedure is repeated. Of course, the same procedure can229

be applied when relaxations (4) and (5) are employed. The overall procedure is quite230

expensive, since at each B&B node many LP or CP problems need to be solved. But,231

as we will see in Sect. 6, when applied to general, poorly structured QP problems, it232

is also extremely effective, allowing for a very large reduction of the number of B&B233

nodes to be explored. In order to reduce the computational burden of bound tightening,234

in this paper we adopted the strategy of tightening bounds only for the variables for235

which the error values (7)–(9) are positive. We remark that some recent papers, like,236

e.g., [8], explore further filters to choose variables on which to apply bound tightening237

procedures.238

5 Merits and limits of different approaches239

In the previous sections we briefly revised different approaches for the solution of240

QP problems. Not surprisingly, none of them strictly dominates the others. Special241
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structured QP problems, like BoxQP and StQP problems, have a strong combinatorial242

component. For instance, in BoxQP it turns out (see [10]) that Qii ≤ 0 ⇒ xi ∈ {0, 1}.243

Then, some of the variables can be immediately considered as binary ones. In StQP244

problems, it holds that Qii + Q j j − 2Qi j ≤ 0 ⇒ xi x j = 0. Thus, if some variable xi245

is imposed to be positive at some node of the B&B tree, we can fix to 0 the value of246

variables x j , for each j such that the condition holds. All these combinatorial aspects247

should be exploited for the efficient solution of these special QP problems, and that248

also makes the use of spatial branching not advisable for them, even when powered249

with bound tightening procedures. The best results for StQP problems are reported by250

the QUADPROGIP approach discussed in [19] and by the approach presented in [9],251

both based on a MILP reformulation, and by the approach presented in [11], based252

on a suitable relaxation of the original reformulation, related to the computation of253

the convex envelope of some quadratic functions over the unit simplex, and with a254

branching rule strictly related to the KKT conditions of the StQP problem. For what255

concerns BoxQP problems, very good results are reported by the approach discussed256

in [1], based on the addition of Chvátal-Gomory cuts. In the same paper the remarkable257

performance of CPLEX emerges and, moreover, it is observed that the B&B approach258

based on the SDP bound proposed by [5], called QUADPROGBB, becomes extremely259

competitive when the density of matrix Q increases. In [15] further QP problems with260

a special structure are discussed and the authors propose approaches, embedded into261

the BARON solver, which allow this solver to outperform CPLEX and GUROBI over262

these problems.263

But while spatial branching powered by bound tightening procedures does not264

appear a valid alternative for problems with a special structure, it comes into play265

again as soon as we weaken the structure. In the recent paper [12] we discussed QP266

problems arising from an application in game theory, which, at a first glance, appear267

as a mild modification of StQP problems. Indeed, in such problems the feasible region268

is the unit simplex, while the objective function is the sum of a quadratic function and269

a convex piecewise linear function. The problem can be converted into the form (1)270

by replacing the convex piecewise linear function with a single variable, and adding271

constraints imposing that this variable is not lower than any of the linear pieces.272

In spite of many attempts with all the previously mentioned approaches and with273

different commercial solvers such as CPLEX, GUROBI, BARON, it turned out that274

the best approach is, by far, an approach based on the bilinear reformulation with275

an intensive application of a bound tightening procedure. This suggested to us that276

such an approach could be very competitive not only for the QP problems arising277

from the game theory application discussed in [12], but also for all QP problems with278

general linear constraints (though not for special structured problems such as BoxQP279

and StQP). The aim of this paper is to bring a computational evidence of this fact280

through experiments on benchmark instances. However, the approach proposed in281

[12], while performing pretty well in some cases, also displays bad performance on282

some of the benchmark instances. What we realized is that the bad performance is283

related to the choice of the reformulation. More precisely, through our experiments,284

we observed the following. Reformulation (2) and the related relaxation (5) is quite285

competitive with and in many cases outperforms the original formulation (1) with the286

related relaxation (4). Note that this was not easy to foresee. However, both relaxations287
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are, in some cases, strongly outperformed by the spectral reformulation and the related288

relaxation (6). Thus, the question is now how to choose a proper formulation. This289

topic has been addressed also in [15], where, however, the bilinear reformulation was290

not considered. In particular, in that paper it is suggested to test bounds based on291

different reformulations at the initial nodes of the B&B tree, and then choose the292

reformulation leading to the best bounds. Here we adopt a much simpler rule, based293

on the observation that the convex bound (6) is expected to be more effective when the294

number of nonnegative eigenvalues is large. Thus, our simple rule will be that of first295

computing the eigenvalues of Q, and then using the spectral reformulation when the296

number of negative ones is lower than a given fraction of n, or adopting the bilinear297

reformulation otherwise. In particular, we employed the spectral decomposition only298

when the number of negative eigenvalues is lower than 0.4n. We made this choice,299

which favors the adoption of the bilinear reformulation with respect to the spectral one,300

because the larger cost of solving CP problems with respect to LP problems suggests301

to employ the spectral decomposition only when the dimension of the concave part in302

the spectral decomposition (equivalent to the number of negative eigenvalues) is not303

too large. In the experiments we observed that decreasing the threshold fraction to,304

e.g., 0.3n does not worsen the performance, while increasing it may lead to poorer305

performance over some instances. Note that while in this work we employed a simple306

and nonadaptive rule, exploration of further adaptive rules, as done in [15], is indeed307

an interesting topic.308

6 Computational experiments309

6.1 Setup of the experiments310

In the literature there are many sets of benchmark instances for QP problems (see,311

in particular, [6]). However, for what concerns QP problems with general linear con-312

straints the main ones, to the authors’ knowledge, are CUTEr, Globallib and313

RandQP. We tested all of them, but the first two classes appeared less challenging and314

we do not report the results over them. Class RandQP includes 16 instances for each315

dimension n = 20, 30, 40, 50. The instances can be downloaded, e.g., at https://github.316

com/xiawei918/quadprogIP/blob/master/QuadProgBB_instances.zip. We solved all317

RandQP instances by the approaches proposed in this work and by the best perform-318

ing solvers for QP problems available in the literature. All tests have been performed319

on an Intel® Core™ i7-10750H CPU @ 2.60GHz with 16GB RAM and running Win-320

dows 10 Pro. The source code for the proposed approaches can be found at https://321

github.com/gliuzzi/QPL.322

6.2 Discussion of the results323

The CPU times required by all the tested approaches are given in Table 1, where,324

however, due to space limitation, we do not report the results for n = 20 (but all325

these instances are relatively simple and solved by most of the approaches within few326
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seconds). A time limit of 1800 s has been imposed. All algorithms were stopped as327

soon as a relative precision ε = 10−5 was reached or, alternatively, the time limit328

was reached (a − in the table means that the solver reached the time limit over the329

instance). Full results with additional information, such as the gap at termination330

when the time limit is reached, can be found at https://github.com/gliuzzi/QPL/tree/331

main/results. At first, we discuss the comparison between the approaches presented in332

this paper. Following [12], we call these approaches Branch-and-Tightening (B&T in333

what follows), in order to put in evidence the relevance of bound tightening techniques334

within them. We compared the following approaches:B&T(XY), based on the original335

formulation (1) and the related relaxation (4); B&T(Bil), based on the reformulation336

(2) and the related relaxation (5); B&T(Conv), based on the reformulation (3) and337

the related relaxation (6); B&T(Mix), which chooses between reformulation (2) and338

reformulation (3) according to the number of negative eigenvalues of Q, namely, the339

latter reformulation is chosen if the number of negative eigenvalues is lower than340

0.4n. All these approaches have been implemented in Julia language (version 1.5.2)341

by solving LP subproblems with Gurobi (version 9.1.1) and convex subproblems with342

CPLEX (version 12.10).343

The first, not obvious, observation is thatB&T(XY) is outperformed byB&T(Bil)344

and B&T(Conv), which is also the reason why the latter two approaches are mixed345

in B&T(Mix). More precisely, we notice there are few instances where the com-346

puting times of B&T(XY) are better both than those of B&T(Bil) and than those347

of B&T(Conv). But: i) these are mostly instances with dimension n = 20 (five,348

overall), while there is only one instance at dimension n = 30, and none with dimen-349

sion n = 40, 50; ii) even when B&T(XY) is the best approach, its computing times350

do not differ much from those of B&T(Bil). Instead, there are many cases where351

B&T(Bil) is the best approach and strongly outperforms B&T(XY), in particular at352

dimension n = 50.353

The second relevant observation is that the mixed strategy B&T(Mix) is the best354

one. Indeed, the proposed rule to select the proper reformulation selects the best355

approach between B&T(Bil) and B&T(Conv) in 61 out of 64 cases, while in the356

remaining three cases the performance of the selected approach is close to that of the357

best approach.358

The third observation does not emerge from the reported results but still is quite359

relevant: all these approaches become quite inefficient without the application of a360

bound tightening procedure. Indeed, the experiments we performed without bound361

tightening (not reported here) show that even at dimension n = 20 the computing362

times considerably increase and some instances are not solved within the time limit.363

We also tested a version with a less intensive application of bound tightening. Namely,364

rather than repeating bound tightening over all variables until there is a significant365

reduction of the lower bound, we just performed a single round of bound tightening366

over all variables. By this approach the number of nodes of the B&B tree increases,367

but the computational cost per node decreases and the two effects tend to compensate368

each other. Indeed, in terms of overall computing times we did not observe significant369

differences between the intensive and less intensive version of bound tightening. For370

what concerns the number of nodes, we remark that this is very small for the mixed371

strategy B&T(Mix) with intensive bound tightening: 1861 nodes are visited for the372
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instance qp50_25_3_3, while in three other instances more than 100 nodes (at most373

135) are visited, and in all the remaining ones less than 50 nodes are visited. In374

summary, selecting a proper reformulation and an intensive bound tightening are the375

keys for the good performance of B&T(Mix). The next step will be to show that376

B&T(Mix) is competitive with the current best solvers for QP problems with general377

linear constraints.378

In [19] many experiments are reported with different class of QP problems and379

different solvers. According to these experiments, solver QUADPROGBB, which380

displays very interesting performance over BoxQP problems, usually has poor perfor-381

mance onRandQP instances. Another solver, QUADPROGIP, appears to be very good382

at some instances, in particular at dimension n = 50, but, on the other hand, the same383

solver is unable to solve some instances within a time limit of 10,000 s. According to the384

results reported in that paper, the most robust solver over such instances is CPLEX. For385

this reason, we compare the performance of B&T(Mix) with CPLEX itself (version386

12.10), with GUROBI (version 9.1.1), which was not included in the computational387

study of [19], with BARON (version 21.1.7), both in view of the enhancements of this388

solver described in [15] and because of the fact that BARON relies on bound tighten-389

ing as the approaches discussed in this paper, and, finally, with QUADPROGIP. Note390

that all these solvers have been run with their default settings. According to the results391

reported in Table 1, we notice that:392

– B&T(Mix) is better than BARON and QUADPROGIP at all dimensions,393

although, as also reported in [19], QUADPROGIP performs well on some large394

instances;395

– with respect to CPLEX, B&T(Mix) is slightly worse at dimensions n = 20, 30396

(overall, it has better computing times in 12 out of 32 instances), but becomes397

better at dimensions n = 40, 50 (overall, it has better computing times in 21 out398

of 32 instances);399

– with respect to GUROBI, B&T(Mix) is clearly worse at dimensions n = 20, 30400

(overall, it has better computing times only in 4 out of 32 instances), but becomes401

competitive at dimensions n = 40, 50 (overall, it has better computing times in402

17 out of 32 instances).403

Figure 1 allows to make the most relevant observation. In this figure we report com-404

puting times (in seconds) over the x-axis and the fraction of problems solved along405

the y-axis. It can be seen that the curve corresponding to B&T(Mix) is initially406

below those of CPLEX and GUROBI, but then it gets above them. More precisely,407

B&T(Mix) is able to solve all but one instance within 30 s (and the remaining one408

in approximately 330 s), while all other approaches are unable to solve at least two409

instances within the time limit. Thus, B&T(Mix) is not always the best performing410

approach, but it appears to scale better than the other approaches with respect to the411

dimension, and to be the most robust approach. We remark that at https://github.com/412

gliuzzi/QPL it is possible to download four additional figures, with the same informa-413

tion reported in Figure 1, but with the instances separated according to the four tested414

dimensions n = 20, 30, 40, 50.415

123

SPI Journal: 11590 Article No.: 1846 TYPESET DISK LE CP Disp.:2021/12/24 Pages: 15 Layout: Small-Ex

https://github.com/gliuzzi/QPL
https://github.com/gliuzzi/QPL


un
co

rr
ec

te
d

pr
oo

f

G. Liuzzi et al.

Table 1 CPU times (in seconds) over the set of RandQP instances with dimension n = 30, 40, 50, for
solvers B&T(Bil), B&T(XY), B&T(Conv), B&T(Mix), QuadprogIP, BARON, Gurobi, and CPLEX

Instance Bil XY Conv Mix QuadprogIP BARON Gurobi CPLEX

qp30_15_1_1 – – 0.05 0.05 2.28 0.02 0.02 0.24

qp30_15_1_2 1.63 1.38 453.5 1.63 172.36 1.33 0.07 0.59

qp30_15_1_3 9.79 2.02 1.24 1.24 5.31 2.92 0.2 0.58

qp30_15_1_4 8.16 2.66 0.82 0.82 2.42 0.36 0.12 0.42

qp30_15_2_1 3.44 2.6 1.55 1.55 2.13 1.06 0.09 0.68

qp30_15_2_2 2.42 4.58 792.52 2.42 60.45 23.14 0.72 1.45

qp30_15_2_3 1.17 2.19 7.75 1.17 4.41 4.98 0.39 0.59

qp30_15_2_4 6.31 4.96 3.52 3.52 3.21 24.17 0.19 0.54

qp30_15_3_1 3.2 13.33 578.31 3.2 7.4 33.05 0.81 1.39

qp30_15_3_2 1.42 1.67 4.61 1.42 2.3 2.62 0.23 0.82

qp30_15_3_3 – – 0.78 0.78 6.79 – 76.79 0.23

qp30_15_3_4 0.39 1.23 3.15 0.39 2.38 1.41 0.27 0.57

qp30_15_4_1 256.54 109.68 0.84 0.84 2.26 24.88 1.91 0.49

qp30_15_4_2 1.03 3.1 1335.0 1.03 19.57 10.27 0.77 1.28

qp30_15_4_3 426.81 80.8 2.77 2.77 2.62 203.75 3.89 3.56

qp30_15_4_4 0.53 1.86 2.05 0.53 2.28 3.34 0.34 1.17

qp40_20_1_1 1.13 2.46 – 1.13 167.5 5.67 0.33 0.77

qp40_20_1_2 14.02 18.33 6.3 14.02 10.41 – 0.2 0.54

qp40_20_1_3 1.36 1.86 19.64 1.36 8.13 – 0.29 0.61

qp40_20_1_4 17.2 12.69 4.12 4.12 3.92 62.19 0.9 1.11

qp40_20_2_1 627.02 83.76 1.96 1.96 3.6 0.83 0.19 0.39

qp40_20_2_2 – – 7.26 7.26 946.33 – – –

qp40_20_2_3 6.78 29.02 – 6.78 – 230.11 10.86 11.16

qp40_20_2_4 – – 0.08 0.08 200.37 0.03 0.01 0.16

qp40_20_3_1 1.08 4.48 111.02 1.08 6.15 13.88 2.44 1.83

qp40_20_3_2 – – 2.81 2.81 106.13 – 299.94 649.84

qp40_20_3_3 0.97 3.3 10.54 0.97 3.78 114.58 4.53 23.02

qp40_20_3_4 1.59 10.69 32.42 1.59 6.36 65.59 6.92 6.66

qp40_20_4_1 – – 6.67 6.67 1537.64 – – –

qp40_20_4_2 2.05 32.24 – 2.05 92.92 101.92 8.55 4.64

qp40_20_4_3 30.99 727.32 238.72 30.99 68.42 – 155.49 39.78

qp40_20_4_4 4.39 108.18 98.29 4.39 14.35 1314.08 74.36 12.01

qp50_25_1_1 1.76 7.24 – 1.76 – 12.98 0.2 1.18

qp50_25_1_2 1.84 4.99 5.19 5.19 15.74 278.41 2.71 1.54

qp50_25_1_3 11.2 64.27 – 11.2 – 1775.62 21.35 28.19

qp50_25_1_4 5.55 9.08 13.39 13.39 6.81 – 1.83 2.6

qp50_25_2_1 – 1022.15 0.06 0.06 11.03 0.08 0.01 0.22

qp50_25_2_2 2.7 22.03 – 2.7 1382.56 51.81 2.65 2.22
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Table 1 continued

Instance Bil XY Conv Mix QuadprogIP BARON Gurobi CPLEX

qp50_25_2_3 1.67 14.04 708.68 1.67 436.25 358.06 2.02 2.46

qp50_25_2_4 1.36 4.3 25.19 1.36 6.8 – 4.9 1.14

qp50_25_3_1 11.34 58.82 – 11.34 – 498.78 7 5.46

qp50_25_3_2 0.7 1.59 2.49 0.7 6.77 22.11 0.7 2.53

qp50_25_3_3 332.57 1461.83 1349.27 332.57 457.53 – 247.29 984.61

qp50_25_3_4 335.29 782.67 6.98 6.98 7.69 – 53.57 458.4

qp50_25_4_1 – – 11.93 11.93 12.82 – 113.93 364.25

qp50_25_4_2 4.25 47.39 9.43 9.43 7.1 1109.61 22.59 14.74

qp50_25_4_3 15.91 502.35 – 15.91 – – 208.99 33.05

qp50_25_4_4 5.69 22.57 50.19 5.69 8.2 183.53 2.85 20.41

A − means that the solver reached the time limit (1800 s) over the instance
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Fig. 1 Fraction of problems solved (y-axis) versus computing time (x-axis) for the different tested solvers
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7 Conclusions416

In this work we have shown through some computational experiments that QP prob-417

lems with general linear constraints can be efficiently solved by a standard branch418

and bound approach powered by: i) a careful selection of a suitable reformulation of419

the QP problem and of its relaxation; ii) an intensive application of bound tightening.420

Our computational experiences show that the proposed approach is competitive and421

is sometimes able to outperform the best known solvers for QP problems. As a pos-422

sible topic for future research we would like to see whether the performance can be423

further enhanced, e.g., by adaptive rules which may select different reformulations in424

different nodes of the branch and bound tree (currently the reformulation is fixed in425

advance), or by filtering techniques, such as those in [8], which are able to reduce the426

computational burden of the bound tightening procedure, which is currently the main427

cost of the proposed approaches.428
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