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1 Introduction

Since the revival of the bootstrap program [1], our understanding of conformal field theory

(CFT) dynamics has improved significantly. There has been a huge amount of progress,

numerical as well as analytical, that has severely constrained the landscape of CFTs, and

has also brought us closer to solving individual models (see [2] for a recent comprehensive

review). However, most of the works during this first decade of modern bootstrap research

have focused on correlation functions of local operators, in particular by using the crossing

symmetry of the four-point functions.

Extended objects, or defects, are an important class of observables in CFT that can

also be studied using the bootstrap approach. In the presence of defects, the information

associated to a system is enlarged: it includes the standard data associated to bulk quanti-

ties, but also data associated to the defect itself and to the interaction between the defect

and the bulk. This new data is otherwise inaccessible if one is restricted to bulk correlation

functions. Hence, the addition of defects and the study of their interplay with the bulk is

necessary if we want a complete understanding of the dynamics of a theory.

The majority of the defect bootstrap studies done so far usually consider local bulk

operators in the presence of a defect. The conformal blocks for correlation functions in the

presence of a boundary, i.e. a defect of codimension one, were obtained in [3], and in [4, 5]

(see also [6]) for defects of higher codimension. Here we should point out that in this

setup the crossing equations in general lack a certain positivity property which is necessary

for the numerical bootstrap of [1]. There is an alternative (underexplored) approach by

Gliozzi that does not require positivity [7], and is therefore better suited for the defect

bootstrap. Both approaches have been used in the context of boundary CFTs and have

given reasonable results [8–10].

In the case of defects of codimension higher than one, it is possible to extract analytic

information from the crossing equations. The analysis mimics what is called the “analytic”

or “lightcone” bootstrap [11–15], which studies the spectrum of CFTs in the limit of large

spin. Indeed, as shown in [16], defect CFTs exhibit similar universal behavior at large

transverse spin, i.e. the quantum number associated to rotations around the defect. Note

that this quantum number does not exist in the case of boundaries. Other related analytical

approaches to defects include Mellin space [17, 18] and “alpha space” [19]. We should also

mention that, as opposed to local operators in the presence of a defect, one can also study

correlation functions of the defects themselves. Works in this direction include [20–22].

In this article, we will consider operators in a 4d N = 4 CFT that are constrained

to live on a supersymmetric line defect. A similar setup without supersymmetry is the

monodromy defect of the 3d Ising model [23] (see also [24–26] for recent analytic progress

on the 1d bootstrap). Even though the theory living on the defect is a nonlocal CFT, as

signaled by the absence of a stress tensor, it is possible to write a conformal block expansion

and a corresponding crossing equation. This setup also has the added advantage that the

non-positivity caveat can be overcome, and the techniques of [1] can be applied.

The bootstrap program for supersymmetric defects was initiated in [27], where a de-

tailed analysis of OSP(4∗|4) preserving defects was presented, which includes boundaries,
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interfaces, and line defects. The results of [27] imply that the crossing equations of half-

BPS operators of all these configurations are related by a web of analytic continuations.

In this work we build on those results and implement the bootstrap for the case of a line

defect. Hence, we will work with a 1d superconformal theory with OSP(4∗|4) symmetry.

Although our analysis is mostly based on symmetry without referring to explicit La-

grangian constructions, this setup corresponds to line defects in N = 4 SYM, and there is

therefore literature that study this system from the gauge theory point of view. Results

include exact formulas [28–30] for the Wilson loop (which is conformally related to the

line), perturbative calculations at weak coupling [31], holographic calculations at strong

coupling [32], and integrability-based studies [33, 34]. The bootstrap approach of this paper

complements these works.

The structure of the paper is as follows. In section 2 we discuss the preliminaries

which include the relevant Ward identities and the superconformal blocks to be used in

the crossing equations. Section 3 reviews some results for line defects in gauge theories

which will helps us understand several of our bootstrap results. The crossing equations

are presented in section 4, they are analyzed numerically in section 5, and analytically in

section 6. We conclude with a discussion of future directions and open problems.

2 Preliminaries

Let us begin by summarizing the symmetries preserved by the half-BPS line defect. We will

consider a straight line in four dimensions. The bosonic subgroup of the four-dimensional

conformal group preserved by this defect is SO(2,1) × SO(3), where the SO(2,1) factor is

the 1d conformal group on the line and the SO(3) represents rotations orthogonal to the

defect; in the supersymmetric setup we consider here there is also a SP(4)R R-symmetry.

The bosonic generators together with the 16 fermionic generators left unbroken form the

superalgebra OSP(4∗|4). The representations of this superalgebra are labeled by the con-

formal dimension ∆, the SO(3) spin s (this variable was dubbed “transverse spin” in [16]),

and the SP(4)R Dynkin labels [a, b]. In this work we will be particularly interested in cer-

tain half-BPS multiplets of the OSP(4∗|4) algebra which we denote by Bk, where k labels

the [0, k] SP(4)R irrep of the superconformal primary.

In the presence of defects there is a rich interaction between bulk and defect quantities.

As described in the introduction, in this work we will only study operators constrained to

the defect, making our theory effectively one-dimensional. Among the defect operators a

special role is played by the displacement operator, which measures deformations orthogonal

to the defect. For a line defect in 4d, this operator has protected dimension ∆D = 2, and

in the class of supersymmetric theories we are interested in it sits in a B1 multiplet. The

structure of this multiplet is as follows

B1 : [0, 1]s=0
∆=1 → [1, 0]

s= 1
2

∆= 3
2

→ [0, 0]s=1
∆=2 , (2.1)

where the highest weight is a scalar with ∆ = 1 in the [0, 1] representation of SP(4)R.1

1This representation corresponds to the fundamental of SO(5). In gauge theories this quantum number

is associated to the five scalars that do not couple to the line, see section 3.
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We will usually call this multiplet the displacement, although technically the displacement

operator is just the term [0, 0]s=1
∆=2. The remaining components of this supermultiplet

correspond to the R-symmetry and supersymmetry that are broken due to the presence of

the defect.

In the bootstrap analysis of subsequent sections we will consider the four-point function

of B1 multiplets, but also mixed correlators with B2 multiplets. The structure of the latter

is given by

B2 : [0, 2]s=0
∆=2 → [1, 1]

s= 1
2

∆= 5
2

→ [0, 1]s=1
∆=3 ⊕ [2, 0]s=0

∆=3 → [1, 0]
s= 1

2

∆= 7
2

→ [0, 0]s=0
∆=4 . (2.2)

Even though we will only consider half-BPS multiplets as external operators, more general

multiplets can be exchanged in the OPE, the representations relevant for our analysis are

summarized in table 1.

2.1 Superconformal blocks

A particularly useful superspace for the study of correlation functions of Bk multiplets was

introduced in [27]. The superspace coordinate on the defect reads

X =

(
x εab θaβ

θbα y(αβ)

)
(2.3)

where a, b = 1, 2 are the transverse spin indices, α, β = 1, 2, the θaα are fermionic and

εab is the antisymmetric tensor. Let Dk be the operators sitting in the short multiplets

Bk. Generically we have to deal with operator multiplicities, but let us ignore that for a

moment. We will return to that issue in section 2.3. The two-point functions of the Dk
operators take the form

〈Dk(1)Dl(2)〉 = δk,l(12)k , where (ij) ≡ 1

(spf(X12))2
=
y2

12

x2
12

+ ferm . (2.4)

where y2
12 ≡ det y12. It follows from superconformal symmetry that the four-point function

of B-type multiplets can be written as

〈Dm1(1)Dm2(2)Dm3(3)Dm4(4)〉 = K{m1,m2,m3,m4}A{m1,m2,m3,m4}(χ, ζ1, ζ2) , (2.5)

where m1 + · · ·+m4 is even due to R-symmetry and the prefactor reads

K{m1,m2,m3,m4} = (12)
1
2

(m1+m2)(34)
1
2

(m3+m4)

(
(14)

(24)

) 1
2

(m1−m2)((13)

(14)

) 1
2

(m3−m4)

. (2.6)

The quantities (χ, ζ1, ζ2) are the eigenvalues of the supermatrix

Z = X12X
−1
13 X34X

−1
24 , Xij := Xi −Xj . (2.7)

Notice that the expression (2.5) implies that the correlation functions of all superconformal

descendants can be recovered from the one of the corresponding primaries in this case. If
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the fermionic variables are set to zero by a superconformal transformation, the cross-ratios

take the familiar form

χ =
x12x34

x13x24
, ζ1ζ2 =

y2
12y

2
34

y2
13y

2
24

, (1− ζ1)(1− ζ2) =
y2

14y
2
23

y2
13y

2
24

. (2.8)

Notice that since we are in one dimension there is only one spatial cross-ratio and ζ1, ζ2 are

defined up to permutations so that A has to be symmetric with respect to the exchange

ζ1 ↔ ζ2.

The dependence of A on ζ1, ζ2 is further restricted by the fact that the correlator (2.5)

has to be a polynomial in the yαβi coordinates. This translates to a condition on the ζ1, ζ2

dependence of A that singles out a number of linearly independent terms which is equal to

the number of SP(4)R singlets in the tensor product [0,m1]⊗[0,m2]⊗[0,m3]⊗[0,m4]; exam-

ples are give in (A.3), (A.6). It is convenient for later to define the shorthand combinations

X ≡ χ2

ζ1ζ2
, X̃ ≡ (1− χ)2

(1− ζ1)(1− ζ2)
. (2.9)

The Ward identities. Superconformal symmetry puts strong constraints on the form of

correlation functions, these constraints are captured by the superconformal Ward identities.

In our setup, the Ward identities take a compact form and can be obtained from the analytic

continuations described in [27] (see also [35–38] for Ward identities in higher spacetime

dimensions), in our coordinates they read(
∂A
∂ζ1

+
1

2

∂A
∂χ

)∣∣ζ1=χ

=

(
∂A
∂ζ2

+
1

2

∂A
∂χ

)∣∣ζ2=χ

= 0 , (2.10)

where A ≡ A{m1,m2,m3,m4}. Let us start with the simplest case of identical D1 external

operators. The solution to (2.10) can be written in an elegant form:

A{1,1,1,1}(χ, ζ1, ζ2) = FX + Df(χ) , (2.11)

where F is a constant and the differential operator D is defined as

D =
(
2χ−1 − ζ−1

1 − ζ−1
2

)
− χ2

(
ζ−1

1 − χ−1
) (
ζ−1

2 − χ−1
) ∂

∂χ
. (2.12)

The different solutions to these equations correspond to different superblocks associated

to the OSP(4∗|4) multiplets being exchanged in the OPE. Below we list all the relevant

solutions.

• I. The simplest solution represents the contribution of the identity operator I:

FI = 1 , fI(χ) = χ . (2.13)

• B2. This solution can be interpreted as the contribution of a B2 half-BPS multiplet:

FB2 = 1 , fB2(χ) = χ (1− 2F1 (1, 2; 4;χ)) . (2.14)
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• L∆
[0,0]. The final solution has no constant term and can be identified as the superblock

of a generic long block whose primary is neutral under SP(4)R:

FL∆
[0,0]

= 0 , fL∆
[0,0]

=
1

1−∆

[
χ∆+1

2F1 (∆ + 1,∆ + 2; 2(∆ + 2);χ)
]
. (2.15)

In general, superconformal blocks are given by a finite sum of bosonic blocks, although not

obvious from the expressions listed above, this is indeed case. For example, using the D
operator we obtain

GI(χ, ζ1, ζ2) = FIX + DfI(χ, ζ1, ζ2) = 1 , (2.16)

as expected for the identity contribution. More illuminating is the expansion of the B2

short block:

GB2(χ, ζ1, ζ2) = FB2X + DfB2(χ) ,

= B[0,2]g
1d
2 (χ) +

1

10
B[2,0]g

1d
3 (χ) +

3

350
B[0,0]g

1d
4 (χ) .

(2.17)

Here the g1d
h (χ) corresponds to the one-dimensional bosonic block in (A.1) with the external

dimensions set to ∆12 = ∆34 = 0. The terms B[p,q] are polynomials in ζ−1
i given in (A.3).

They are appropriately normalized eigenfunctions of the SP(4)R quadratic Casimir (A.2)

and capture the R-symmetry structures associated with the [p, q] irrep of SP(4)R.2 The

corresponding expansion for the long block L∆
[0,0] reads

GL∆
[0,0]

(χ, ζ1, ζ2) = B[0,0]g
1d
∆ (χ)− ∆

∆− 1
B[2,0]g

1d
∆+1(χ)

+

(
∆ + 1

∆− 1
B[0,2] +

3∆(∆ + 1)(∆ + 3)

10(∆− 1)(2∆ + 1)(2∆ + 5)
B[0,0]

)
g1d

∆+2(χ) (2.18)

− ((∆ + 1)(∆ + 2)(∆ + 3)

4(∆− 1)(2∆ + 3)(2∆ + 5)
B[2,0]g

1d
∆+3(χ)

+
(∆ + 1)(∆ + 2)(∆ + 3)2(∆ + 4)

16(∆− 1)(2∆ + 3)(2∆ + 5)2(2∆ + 7)
B[0,0]g

1d
∆+4(χ) .

In later sections we will consider more general correlators involving different half-BPS

multiplet as external operators. In particular, we will study the full mixed system given by

A{1,2,1,2}(χ, ζ1, ζ2) , A{1,2,2,1}(χ, ζ1, ζ2) , A{2,2,2,2}(χ, ζ1, ζ2) . (2.19)

The Ward identities for these cases can be solved similarly as we did for A{1,1,1,1}, although

for the mixed system it is convenient to use a different parameterization for the correlators.

We have collected all the solutions and the corresponding expansions in bosonic blocks in

appendix A, together with the explicit map between the two parameterizations (see (A.13)).

2In appendix A there is an extra label “0, 0” in the superblocks G and the R-symmetry polynomials B,

this label can be ignored in sections 2 and 3 but it will play a role later when we discuss mixed correlators.
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Name ∆ SO(3) Spin R-Symmetry

Bk k 0 [0, k]

C[a,b] a+ b 0 [a, b]

L∆
[a,b] ∆ 0 [a, b]

Table 1. Representations of OSP(4∗|4) that are relevant for the line defect bootstrap.

2.2 The OPE selection rules

The solutions to the Ward identities together with the knowledge of the SP(4)R tensor

products give us the OPE selection rules, which state which supermultiplets are allowed to

appear in a particular OPE. The full set of selection rules relevant for our system reads

B1 × B1 = I + B2 + C[2,0] +
∑
∆≥1

L∆
[0,0] ,

B1 × B2 = B1 + B3 + C[2,1] +
∑
∆≥2

L∆
[0,1] ,

B2 × B2 = I + B2 + B4 + C[2,0] + C[4,0] + C[2,2]

+
∑
∆≥1

L∆
[0,0] +

∑
∆≥3

(
L∆

[2,0] + L∆
[0,2]

)
.

(2.20)

The operators C[a,b] are semi-short multiplets that can be obtained by putting the longs

L∆
[a,b] at their unitarity bound. In fact, we have normalized the superblocks (see appendix A)

so that

lim
∆→1+a+b

(
∆− (1 + a+ b)

)
GL∆

[a,b]
= GC[a+2,b]

. (2.21)

Notice also that (2.20) only contains multiplets with zero SO(3) spin. As an aside (based

on an analysis of the OPEs of some higher Bk) we conjecture that the OPE relation can

be generalized as

Bk × Bl =

k+l∑
m=|k−l|, step 2

Bm +

min(k−1,l−1)∑
i=0

i∑
j=0

C[
2i−2j+2,2j+|k−l|

]
+

min(k−1,l−1)∑
i=0

i∑
j=0

∑
∆>2i+|k−l|+1

L∆[
2i−2j,2j+|k−l|

] ,
where I ≡ B0. The main properties of the exchanged representations are listed in table 1.

2.3 Topological structure constants

Correlators of half-BPS operators on the line have a topological sector that does not depend

on the positions of the operators [39, 40], and whose existence follows directly from the

superconformal Ward identities (2.10).3 The restriction to this subsector in the four-point

3This subsector is closely related to the exact truncations recently uncovered in superconformal theo-

ries [41–44].
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functions (2.5) is equivalent to setting χ = ζ1 = ζ2. In this limit only the exchange of

the identity operator and Bk-type multiplets survives in the OPE decomposition. In this

section, we summarize some information regarding the structure constants (or three-point

couplings) of the topological sector relevant for the mixed correlator system to be studied

below. Our basic assumption is that the displacement operator D1 is unique, given this

assumption we make the following definitions:

1. We define D2 as the operator in the multiplet B2 that appears in the OPE D1 ×D1.

2. We define D3 as the operator in the multiplet B3 that appears in the OPE D1 ×D2.

3. We define D4 as the operator in the multiplet B4 that appears in the OPE D2 ×D2.

Since there can be several operators that sit in B2 multiplets, we denote by D′2 the contribu-

tion of the remaining operators4 that appears in the OPE D2×D2. Schematically we have

D2 ×D2 = I +D2 +D′2 +D4 + · · · . (2.22)

Having defined the operators Dm we introduce the following notation for their structure

constants

CDmDnDr ≡ Cm,n,r , (2.23)

where we shall write 2′ for the D′2 operator; the index 0 stands for D0 ≡ I. In addition to

cyclicity, one-dimensional structure constants also exhibit time-reversal symmetry [25]

Ci,j,k = C∗k,j,i , Ci,j,k = Cj,k,i = Ck,i,j . (2.24)

In particular, it follows that Ci,i,j are real for all i and j. Choosing appropriate normaliza-

tions it is possible to set C1,1,0 = C2,2,0 = 1, and also C1,1,2 ≥ 0. Considering the correlator

〈D1D1D1D3 〉 restricted to the topological sector it follows that C1,2,3 is real. Then, the in-

dependent real OPE structures entering the mixed correlator system we are interested in are

C1,1,2 ≥ 0 , C1,2,3 , C2,2,2 , C2,2,2′ , C2,2,4 . (2.25)

In addition, from the correlator 〈D1D1D2D2 〉 restricted to the topological sector the fol-

lowing condition can be obtained

1 + C1,1,2C2,2,2 = C2
1,1,2 + C2

1,2,3 , =⇒ C2,2,2 ≥ C1,1,2 − C−1
1,1,2 . (2.26)

There are no simple conditions on the OPE coefficients C2,2,2′ or C2,2,4 that do not involve

OPE coefficients of higher half-BPS operators.

4Note that there can be many operators in B2 multiplets, but only one linear combination will appear

in the OPE as D′2.
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3 Line defects in gauge theory

As discussed in the introduction, the bootstrap philosophy aims at solving theories using

only symmetry requirements without relying on explicit Lagrangian formulations, never-

theless, part of our motivation is the understanding of concrete line defects in gauge theory.

In this section we collect some results regarding Wilson lines in N = 4 SYM, that will be

relevant for our subsequent analysis.

The defect is defined by

WR = trR Pexp

∫
γ
dt
[
iẋµAµ + |ẋ| θIΦI

]
, (3.1)

where the path γ is a straight line and the scalar part is given by θIΦI = Φ6. With this

choice, the configuration preserves an SO(5)R ∼ SP(4)R R-symmetry since we can freely

rotate the five scalars Φa, and also the SO(2, 1)× SO(3) which is the 1d conformal algebra

together with rotations orthogonal to the line. In addition to the bosonic generators the

defect also preserves 16 supercharges that form the 1d OSP(4∗|4) superconformal algebra.

Our bootstrap setup then describes this particular class of line defects. Gauge invariant

correlation function on the line are then given by

〈〈O1(x1) · · · On(xn)〉〉 =
〈TrR [O1(x1)Pexp(· · · ) · · · On(xn)Pexp(· · · )]〉

〈WR〉
. (3.2)

Note that in this paper we will ignore the double-bracket notation and denote correlators

using single brackets. In gauge theory, the displacement operator contains the elementary

excitations of the Wilson line and sits in the half-BPS D1 multiplet described in the previous

section. Its bosonic content is the five scalars Φa not coupled to the Wilson line with ∆ = 1

and the three components of the field strength Ftµ ≡ iFtµ + DµΦ6 along the directions

µ = 1, 2, 3 transverse to the line with ∆ = 2.5

3.1 Localization results

Thanks to localization techniques [30], it is possible to calculate the CFT data for the

topological sector of a half-BPS circular Wilson loop. Because the line is conformally

related to the circle, the localization results are also valid for this geometry, as long as the

correlators are properly normalized. Most of the results of this subsection were already

obtained in [40].

For a gauge group G and a representation R of G, the vacuum expectation value

(setting the radius of the circle to one) reads [30]

〈WR(λ) 〉 =

∫
g[da]e−

8π2hG
λ

(a,a)trRe
2πa∫

g[da]e−
8π2hG
λ

(a,a)
, (3.3)

5Like before, the actual “displacement operators” are the three Ftµ that measure the change of the Wilson

loop under deformations orthogonal to the contour, the remaining elements of D1 are their supersymmetric

partners.
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where g is the Lie algebra of G, λ = g2
YMhG with gYM the Yang-Mills coupling, a ∈ g

and hG the dual Coxeter number6 of G. This formula can be generalized to a 1
8 -BPS

Wilson loop whose contour is not a line but a generic curve that is entirely contained in

an S2 [45, 46]. For this Wilson loop one obtains the identity〈
W1/8
R (λ;A)

〉
=

〈
WR

(
λ
A(4π −A)

4π2

)〉
, (3.4)

where A is the area in S2 enclosed by the curve.

Let us denote the correlation functions in the topological sector by a tilde over the

operators. The n-point function of D̃1 is given by [32]

〈
D̃n1
〉

non-norm.
=
[
∂nA

〈
W1/8
R (λ;A)

〉]∣∣A=2π
, ⇒

〈
D̃n1
〉

=

〈
D̃n1
〉

non-norm.〈
D̃2

1

〉n
2

non-norm.

. (3.5)

Using the OPE relations (2.20) and the orthonormalization of the operators, the four-point

function is then 〈
D̃4

1

〉
=
〈

(1 + C1,1,2D̃2)2
〉

= 1 + C2
1,1,2 . (3.6)

Now, plugging (3.5) in the above we find

C2
1,1,2 = −1 + 3

WR(λ)W ′′R(λ)

(W ′R(λ))2
, (3.7)

where, by definition, we take the root so that C1,1,2 is positive.7

We can also study the correlators with D̃2 by using the relation D̃2 = 1
C1,1,2

(D̃2
1 − 1),

which stems from the OPE relation (2.2) and the discussion of the second part of section 2.2.

Then, we find the following relation between C2,2,2 and C1,1,2

C2,2,2 =
〈
D̃3

2

〉
=

W ′R (λ)C1,1,2(
W ′R (λ)2 − 3WR (λ)W ′′R (λ)

)2

[
(15WR (λ)2W(3)

R (λ) + 2W ′R (λ)3

− 9WR (λ)W ′R (λ)W ′′R (λ)
]
. (3.8)

By directly integrating the Gaussian integrals (and for the antisymmetric representations

cross-checking with the results of [47]) we have computed C1,1,2 and C2,2,2 for G = SU(N),

SO(N), SP(2N) and a variety of representations; the results are shown in figure 1. In

section 5 this region will be contrasted with the allowed regions coming from the bootstrap

and some analytic solutions to crossing (see figure 9).

We note that the boundary of figure 1 can be obtained from two simple formulas.

First, the upper bound is provided by the G = SU(2) in the fundamental representation

(SU(2)[1])

C2
1,1,2 = 2− 3072

(λ+ 48)2
, C2

2,2,2 =
8(λ(λ(λ+ 144) + 2304) + 12288)2

(λ(λ+ 96) + 768)3
, (3.9)

6We remind that hSU(N) = N .
7For gYM = 0 this OPE coefficient takes the value C2

112 = 2 − 1
2

Cas2(Adj)
Cas2(R)

, where Cas2 denotes the

quadratic Casimir of g. See figure 13 for more details.
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U(1) or strong coupling

SU(2)[1]

SU(3)[1,0] planarfund

SP(4)[0,1]

SP(6)[0,0,1]

SU(2)[2]

SU(2)[3]

SU(2)[1], vary λ

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
C1,1,2

1.0

1.5

2.0

2.5

3.0

C2,2,2

Figure 1. The allowed region for C1,1,2, C2,2,2 from localization for classical groups G. Extremal

points corresponding to free theories are marked by red points and the planar theory in the fun-

damental representation is marked by a dotted red curve. The U(1) theory at (
√

2, 2
√

2) (for any

value of the coupling) has the same OPE coefficients as the strong coupling limit of any other case

that we looked at. The notation for the theories is GR, where the representation R is given by its

Dynkin labels.

as λ varies from zero to infinity. The lower bound curve, starting from the leftmost point

SU(2)[1] and extending to the planar theory in the fundamental representation is given by

the free SU(N) theories in the fundamental representation

C2
1,1,2 =

N2 − 2

N2 − 1
, C2

2,2,2 =

(
N4 − 4N2 + 8

)2
(N2 − 2)3 (N2 − 1)

. (3.10)

Finally, the remaining piece of the lower bound curve is also given by (3.10), but this time

amusingly for purely imaginary values of N , i.e. we set N = ix and vary x over all the reals.

It turns out that various other free theories, such as SU(2) with higher spins and SP(2k)

in the fundamental representation, sit on that curve for appropriate imaginary values of

N . It is interesting to notice that for any fixed G and R, all C1,1,2 and C2,2,2 tend to the

same value once g2
YM →∞. This is an experimental observation that should have a proof

starting from the expression (3.3). Alternatively, since Wilson lines are S-dual to t’ Hooft

lines one might imagine showing this fact in perturbation theory in the “magnetic picture”.

3.2 Operator multiplicities in gauge theories

In section 2.3 we reviewed the symmetries of the OPE coefficients in the topological sector

of any 1d CFT with OSP(4∗|4) symmetry. We mentioned that we generically have to deal

with operator multiplicities and now we want to shed some light on the origin of these

multiplicities, if the 1d CFT is obtained from a 4d N = 4 SYM with a given gauge group G

and representation R. We begin by assuming that if the model under investigation is not

a product of two or more decoupled theories, then the displacement operator D1 sitting

in the multiplet B1 is unique. For the multiplets B`≥2, however, we have to deal with

multiplicities. To understand that, we first remind that the five scalars (those not coupled
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n\` 0 1 2 3 4 5 6

1 1 0 1 0 1 0 1

2 1 1 1 1 1 1 1

3 1 2 1 2 1 2 1

4 1 2 2 2 2 2 2

5 1 2 2 2 3 2 3

6 1 2 2 2 3 3 3

Table 2. Number of B` for the representation of dimension n for the group SU(2).

to the line) Φa lie the [0, 1] representation of SP(4)R and that [0, k], which is the lowest

∆ piece of Bk, is the k-fold symmetric traceless tensor product of [0, 1]. Thus, to make an

operator sitting in B2, we can for example consider the operator

O = TrR(−− Φ
(a
•k(x)Φ

b)
k•(x)−−) , (3.11)

where −− denotes the Wilson line, (a, b) stands for the traceless symmetrization of the

indices and the • are gauge groups indices that are contracted to the line. However,

another operator that also sits in this representation is given by WR×TrR(Φ(a(x)Φb)(x)),

i.e. a color singlet that is just placed on the line.

In general, for a gauge group G, the number of B` multiplets on a Wilson line in the

representation R is given by the number of singlets in the tensor product

#B` =
[
R ⊗ R∗ ⊗ (Adj)⊗sym`

]
G-invariant

. (3.12)

The first remark is that for ` = 1 and R not the trivial representation, there is only one

singlet in this tensor product corresponding to the displacement operator. In the example

of gauge group SU(2) one has (Adj)⊗sym` = (2` + 1) ⊕ (2` + 1 − 4) ⊕ (2` + 1 − 8) ⊕ . . . ,

where (s) denotes the s-dimensional representation. For Wilson lines in the fundamental

representation, there is only one B` for each `. Some other examples for SU(2) are shown

in table 2. We see that the number of operators sitting in B2 is generically higher than one,

even for gauge group SU(2). Nevertheless, through the OPE relation (2.20), we see that a

certain linear combination of these operators is special, since it is the one that appears on

the r.h.s. of D1 ×D1. In section 2.3 we defined this linear combination as the operator D2

whose correlation functions we study.

3.3 Strong coupling

Complementary to the localization results, there was a recent study of this system at strong

coupling using AdS2 Witten diagrams [32]. In this section we will review these results and

rewrite them in the language of section 2. At strong coupling in the planar limit, the

correlator A has the following expansion

A{1,1,1,1}(χ, ζ1, ζ2) = A(0)(χ, ζ1, ζ2) +
1√
λ
A(1)(χ, ζ1, ζ2) + . . . , (3.13)
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where the A(0) term corresponds to the strong coupling limit described by an abelian U(1)

theory, and the A(1) term is captured by leading tree-level connected Witten diagrams.

From section 2 we know that the non-trivial information of this correlator is captured

by the constant F and the function f(χ). In the strong coupling limit these are given by

F (0) = 3 , f (0)(χ) =
χ(2χ− 1)

χ− 1
. (3.14)

In order to compare with the results of [32] let us define

Aabcd{1,1,1,1}(χ) = GS(χ)δabδcd +GT (χ)(δacδbd + δbcδad − 2

5
δabδcd) +GA(χ)(δacδbd − δbcδad) ,

(3.15)

where the Kronecker deltas capture the different SO(5)∼ SP(4) channels. In our harmonic

coordinates the different channels are captured by the ζi variables. The dictionary is as

follows

A{1,1,1,1}(χ, ζ1, ζ2)→ Aabcd{1,1,1,1}(χ) , (3.16)

where we use

B[0,0] → δabδcd ,

B[2,0] → −(δacδbd − δbcδad) , (3.17)

B[0,2] →
1

2

(
δacδbd + δbcδad − 2

5
δabδcd

)
.

Using this dictionary and the D operator, equation (3.14) implies

G
(0)
S (χ) = 1+

2

5
G

(0)
T (χ) , G

(0)
T (χ) =

1

2

(
χ2 +

χ2

(1−χ)2

)
, G

(0)
A (χ) =

1

2

(
χ2− χ2

(1−χ)2

)
,

(3.18)

which is the correct leading behavior at strong coupling. As stated above, the corrections

to these expressions were calculated in [32], in our language their result can be written as

F (1) = −3 , f (1)(χ) = r(χ) log(χ)− χ2

(1− χ)2
r(1− χ) log(1− χ) + q(χ) , (3.19)

where

r(χ) =
χ3(2− χ)

(χ− 1)2
, q(χ) =

χ(1− 2χ)

(χ− 1)
. (3.20)

The functions G
(1)
S (χ), G

(1)
T (χ) and G

(1)
A (χ) can be extracted like before, using the D

operator and the dictionary (3.17):

G
(1)
S (χ) = −

(
2χ4 − 5χ3 − 5χ+ 10

)
log (1− χ)

5χ
−

2
(
χ4 − 4χ3 + 9χ2 − 10χ+ 5

)
5(χ− 1)2

+

(
2χ4 − 11χ3 + 21χ2 − 20χ+ 10

)
χ2 log (χ)

5(χ− 1)3
,

G
(1)
T (χ) = −χ3 log (1− χ)−

(
2χ2 − 3χ+ 3

)
χ2

2(χ− 1)2
+

(
χ2 − 3χ+ 3

)
χ4 log (χ)

(χ− 1)3
,

G
(1)
A (χ) =

(
−2χ3 + 5χ2 − 3χ+ 2

)
χ

2(χ− 1)2
+

(
χ3 − 4χ2 + 6χ− 4

)
χ3 log (χ)

(χ− 1)3

−
(
χ3 − χ2 − 1

)
log (1− χ) ,

(3.21)
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where χ ∈ [0, 1]. These were the results presented in equation (4.19) of [32]. Thanks to the

Ward identities, it is possible to rewrite the somehow involved formulas (3.21) in the more

compact form (3.19)–(3.20). The strong coupling behavior and its first order correction

will be important when we interpret the numerical results of section 5. Moreover, due to

the simplicity of the functions r(χ) and q(χ) (together with F (1) = −3) it is natural to ask

whether this result can be re-derived using only bootstrap reasoning, bypassing the Witten

diagram computation. This will be one of the subjects of section 6.

Remarks on the strong coupling 1d CFT. A clarification about the CFT at leading

order in 1√
λ

is in order, since it is somewhat different from the standard supergravity/large

N CFTs whose leading behavior is the one of a generalized free theory. In this case

the one dimensional CFT is defined via a two dimensional theory on AdS2 with 1√
λ

as

coupling constant, see [32]. The boundary values of the fundamental fields of the bulk

theory transform as the displacement supermultiplet D1. When the bulk theory is free,

i.e. at leading order for
√
λ→∞, the spectrum consists of composite operators made of a

single displacement supermultiplet, and correlation functions are the one obtained by Wick

contractions using the super-propagator (2.4). Some examples are

〈D1(1)D1(2)Dk(3)Dk(4)〉 = (12)(34)k + k ((13)(24) + (14)(23)) (34)k−1 , (3.22)

〈D2(1)D2(2)D2(3)D2(4)〉 = (12)2(34)2 + (13)2(24)2 + (14)2(23)2 (3.23)

+ 4 ((12)(23)(34)(41) + (13)(32)(24)(41) + (14)(43)(32)(21)) ,

where Dk ∼ Dk1 . This is of course different from what is usually referred to as generalized

free theory. Since at leading order all the operators are words made of components of the

displacement supermultiplet, which is of type B1, their partition function is given by

Zstrong = P.E. (χB1(q, z;x, y)) , P.E.(f(t)) := exp

( ∞∑
n=1

f(tn)

)
. (3.24)

Above P.E. is the plethystic exponential and χB1(q, z;x, y) is the character of the B1 mul-

tiplet, see (2.1), with q, z, (x, y) character variables for scaling weight, transverse spin and

SP(4)R respectively. By expanding (3.24) in the q variable one notices that it can be

written as

Zstrong = 1 + ZShort
strong + ZLong

strong , ZShort
strong =

∞∑
k=1

χBk(q, z;x, y) , (3.25)

Notice that there are no multiplicities for the half-BPS operators Bk and no long multiplets

at the unitarity bound. It will be useful for a later discussion to collect here the content of

long operators of low dimensions in the representation [0, 0] and with vanishing transverse

spin:

ZLong
strong

∣∣∣
[0,0],s=0

= χL∆=2
[0,0]

+ 2χL∆=4
[0,0]

+ 3χL∆=6
[0,0]

+ . . . (3.26)
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Figure 2. Exchanging the points 2 and 4 is a symmetry of the system.

4 Crossing equations

We now present the crossing equations to be studied numerically in section 5. On a line,

after identifying the endpoints at infinity we are allowed to exchange the points 2 and 4 as

illustrated in figure 2. This operation acts on the four-point invariants as χ ↔ 1 − χ and

ζi ↔ 1− ζi. Using this and the prefactor convention of (2.5), the crossing relation

〈Dm1(1)Dm2(2)Dm3(3)Dm4(4)〉 = 〈Dm1(1)Dm4(4)Dm3(3)Dm2(2)〉 (4.1)

implies the following identity

X̃
m2+m3

2 A{m1,m2,m3,m4}(χ, ζi) = X
m3+m4

2 A{m1,m4,m3,m2}(1− χ, 1− ζi) , (4.2)

where we remind of (2.9) for the definitions of X and X̃. This relation implies in fact multiple

equations, one for each R-symmetry factor, however, due to superconformal symmetry not

all of them are independent. This is a general feature of the half-BPS bootstrap, see for

example [38, 48–54]

4.1 The single correlator D1

If we just consider the four-point function of the displacement multiplet D1, then (4.2)

implies

X̃A{1,1,1,1}(χ, ζi) = XA{1,1,1,1}(1− χ, 1− ζi) , (4.3)

and the expansion of A{1,1,1,1}(χ, ζi) in terms of superblocks reads

A{1,1,1,1}(χ, ζi) =
∑

O∈D1×D1

C2
1,1,O G

0,0
O (χ, ζi) . (4.4)

The upper indices were added to distinguish the different channels (see also (4.8)). In

order to study the mixed correlator system below it will be convenient to change the

parametrization of the single correlator with respect to section 2. The new basis is explained

in appendix A, where we defined functions fa,bO and constants F a,bO that are related to the

blocks Ga,b according to (A.10) and (A.11). With this new parametrization the three

crossing equations in (4.3) (one for each of R-symmetry structures B0,0
[0,0], B

0,0
[2,0] and B0,0

[0,2],

see (A.3)) are satisfied iff the following single equation holds[
χf0,0

1,I

]
s

+ C2
1,1,2

[
χf0,0

1,B2

]
s

+ C2
1,1,C[2,0]

[
χf0,0

1,C[2,0]

]
s

+
∑

X=L∆
[0,0]

∆>1

C2
1,1,X

[
χf0,0

1,X

]
s

= 0 . (4.5)
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The translation between the two parametrizations for the single correlator is given in (A.13).

Notice that only the functions f0,0
1,O from (A.11) appear in (4.5). The other two, f0,0

2,O and

f0,0
3,O, will make their appearance only when we consider the D2 multiplet. Furthermore,

the constants F 0,0
O do not appear in (4.5). They also will make their appearance later in

the topological sector relation (4.12) that comes from analyzing the mixed crossing system.

Finally, in writing (4.5), we have made use of one of the following useful shorthands:

[f ]s ≡ f(χ) + f(1− χ) , [f ]a ≡ f(χ)− f(1− χ) . (4.6)

The analysis of the single correlator crossing (4.5) already gives several numerical con-

straints which we present in section 5.

4.2 The full mixed system

Let us now consider the mixed system of four-point functions of D1 and D2 operators. The

crossing equations (4.2) imply in addition to (4.3) the following equations

X̃2A{2,2,2,2}(χ, ζi) = X2A{2,2,2,2}(1− χ, 1− ζi) ,

X̃
3
2A{1,2,1,2}(χ, ζi) = X

3
2A{1,2,1,2}(1− χ, 1− ζi) ,

X̃2A{1,2,2,1}(χ, ζi) = X
3
2A{1,1,2,2}(1− χ, 1− ζi) .

(4.7)

The final equation involving A{1,1,2,2} is actually not a crossing equation since it becomes

trivial when using the cyclicity of the correlation functions. However, it is useful since one

can decompose the two sides in different sets of blocks and obtain a non-trivial relation. In

addition, there is a crossing equation for A{2,1,2,1} which is simply the complex conjugate

of the second equation in (4.7) due to the time-reversal symmetry.

According to the discussion on the reality and cyclicity conditions of the structure

constants in section 2.3, and using the blocks that we present in detail in appendix A, we

can expand all these functions as

A{1,1,1,1}(χ, ζi) =
∑

O∈D1×D1

C2
1,1,O G

0,0
O (χ, ζi) ,

A{2,2,2,2}(χ, ζi) =
∑

O∈D2×D2

C2
2,2,O G

0,0
O (χ, ζi) ,

A{1,1,2,2}(χ, ζi) =
∑

O∈D1×D1

C1,1,OC2,2,OG0,0
O (χ, ζi) ,

A{1,2,1,2}(χ, ζi) =
∑

Õ∈D1×D2

(C1,2,Õ)2 G1,1

Õ (χ, ζi) ,

A{1,2,2,1}(χ, ζi) =
∑

Õ∈D1×D2

|C1,2,Õ|
2G1,−1

Õ (χ, ζi) .

(4.8)

We remind that C1,1,O and C2,2,O are real while C1,2,Õ is complex and that we need to

supplement the complex crossing equations (the second one in (4.7)) by their complex

conjugate.
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In appendix B, we explain in more detail how using the blocks (A.11), the crossing

equations (4.3) and (4.7) can be written in the compact form

∑
O∈D2×D2

(
C11O C22O

)
VO

(
C11O

C22O

)
+

∑
Õ∈D1×D2

(
ReC12Õ ImC12Õ

)
ṼÕ

(
ReC12Õ

ImC12Õ

)
= 0 .

(4.9)

In the above, the VO and the ṼÕ are vectors with eight components, each of which is a

2× 2 matrix. Specifically, we find for VO and ṼÕ the expressions

VO =



θ(O)

(
[χf0,0

1,O(χ)]s 0

0 0

)
(

0 0

0 [f0,0
1,O(χ)]a

)
(

0 0

0 [f0,0
2,O(χ)]s

)
 0 0

0
[
f0,0

3,O(χ)
]
a


(

0 0

0 0

)
(

0 0

0 0

)
θ(O)

2

(
0 [χf0,0

1,O(χ)]s

[χf0,0
1,O(χ)]s 0

)
θ(O)

2

(
0 [χf0,0

1,O(χ)]a

[χf0,0
1,O(χ)]a 0

)



, ṼÕ =



(
0 0

0 0

)
(

0 0

0 0

)
(

0 0

0 0

)
(

0 0

0 0

)
(

[f1,1

Õ ]s 0

0 −[f1,1

Õ ]s

)
(

0 [f1,1

Õ ]s

[f1,1

Õ ]s 0

)
(

[f1,−1

Õ ]s 0

0 [f1,−1

Õ ]s

)
(
−[f1,−1

Õ ]a 0

0 −[f1,−1

Õ ]a

)



,

(4.10)

where8

θ(O) = 1 if O ∈ D1 ×D1 and is zero otherwise . (4.11)

To (4.9), we have to supplement the topological sector relation

C2
1,2,3 = 1 + C1,1,2C2,2,2 − C2

1,1,2 , (4.12)

which is the only crossing equation in which the constants F a,bO make an apparition. We

remind that these constants are equal to one if O is a short operator Bk, and zero otherwise.

The first line of (4.9) contains the crossing equations of the D1 system (4.5). However,

the mixed system of equations (4.9) is not the final word. We must rewrite them a bit in

order to take into account several facts: C1,2,1 = C1,1,2, C1,2,3 is real, C1,1,X = 0 for many

X, and the multiplicity of B2 is in general greater than zero (said otherwise, C2,2,2 and

8The function θ(O) is included due to the fact that only operators in D1×D1 contribute to the A{1,1,2,2}
function.
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C2,2,2′ enter the equations differently). Moreover, we can eliminate C2
1,2,3 by using (4.12).

Putting it all together, we get the following expression for the crossing equations of the

mixed system

0 =
(

1 1
)
VI

(
1

1

)
+(ṼB3)11

+
(
C1,1,2 C2,2,2

)VB2 +

(
(ṼB1)11 0

0 0

)
+

−(ṼB3)11
(ṼB3

)11

2
(ṼB3

)11

2 0

(C1,1,2

C2,2,2

)
+(VB2)22C

2
2,2,2′+(VB4)22C

2
2,2,4

+
∑

X=L∆
[0,0]

(
C1,1,X C2,2,X

)
VX

(
C1,1,X

C2,2,X

)
+

∑
X=L∆

[2,0]

C2
2,2,X(VX)22 +

∑
X=L∆

[0,2]

C2
2,2,X(VX)22

+
∑

X=L∆
[0,1]

(
ReC1,2,X ImC1,2,X

)
ṼX

(
ReC1,2,X

ImC1,2,X

)
, (4.13)

where (V )ab is the ab-component of the corresponding 2 × 2 matrix in (4.10).

We must remark that even though we have eliminated C2
1,2,3 using (4.12), we cannot

completely forget about it when implementing the numerical bootstrap as we shall note in

section 5.

5 Numerical results

In this section we apply the methods of the numerical conformal bootstrap to the crossing

equations (4.13), and obtain bounds on the conformal dimensions of the long operators

L∆
[a,b] (in section 5.1) as well as on the OPE coefficients of the theory (in section 5.2). In

each case, the presentation of the numerical results is preceded by a short review of the way

that semi-definite programming is applied to the problem at hand. The actual numerics

are then performed by using Mathematica as a front end to the semi-definite program solver

SDPB [55].9 For more details on the numerical implementation, see for example [1, 59, 60]

for original literature, and [61, 62] for introductory lectures.

5.1 Dimension bounds

Both theD1 crossing equation (4.5) as well as the full system (4.13) can be put schematically

into the form

0 = Pid +
∑

X short

C2
XPX +

∑
Y long

C2
Y PY , (5.1)

where the PO can be sets of 2 × 2 matrices in the mixed case. Importantly, the above

equation separates into a part that does not depend on the OPE coefficients (because

9Other front end options are the Python package PyCFTBoot [56] or the Sage package cboot [57] (see

also [58] for an alternative to SDPB).
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Figure 3. Left: upper bounds on ∆[0,0] as a function of Λ−1. Several fits (linear while ignoring

the first 4 points, quadratic and cubic) were done are plotted in orange. Extrapolated to Λ → ∞,

they lead to ∆[0,0] ≤ 2.009, 2.007, 1.986 respectively. Right: bounds on the difference ∆′[0,0]−∆[0,0]

between the conformal dimensions of the first two longs for a given first long with dimension ∆[0,0].

The plot was done for Λ = 20, 30, . . . , 80 and only the allowed region for Λ = 80 was shaded. The

left red dot denotes the analytic solution (C.1) for ξ = −1, while the right one corresponds to ξ = 1.

For the other values of ξ we have ∆[0,0] = 1 and ∆′[0,0] = 2, which is too low to be interesting.

those involving the identity have been normalized to one) and on a part that does. We can

then search via SDPB for a functional α that satisfies

α(Pid) = 1 , α(PX) ≥ 0 ∀X short , α(PY ) ≥ 0 ∀Y with ∆Y ≥ Bound (5.2)

In the above ≥ 0 means semi-definite positive for the blocks involving 2× 2 matrices. The

bounds for the conformal dimensions of the long operators Y = L∆
[a,b] can be different for

different [a, b]. Thus, in the full mixed system (4.13) we have to deal with four a priori

different bounds: ∆[0,0], ∆[0,2], ∆[2,0] and ∆[0,1], of which only ∆[0,0] is relevant in the

analysis of the D1 crossing equation (4.5). If a linear functional α can be found such

that (5.2) holds, then clearly (5.1) cannot be true and the corresponding bound structure

is forbidden. The space of functionals that we consider is given by

α(f) =

Λ∑
n=0

αn
∂n

∂χn
f∣∣χ=1/2

, (5.3)

and the numerics improve as we increase the number of derivatives Λ.

The D1 four-point function. Let us first analyze (4.5) using the above discussion.

Letting the sum over longs be restricted to operators with ∆ ≥ ∆[0,0], we obtain the bounds

of the left side of figure 3. We remind that in our conventions, the semi-short C[2,0] can be

thought of as a long at the unitarity bound ∆ = 1. Thus, having ∆[0,0] > 1 implies that the

C[2,0] multiplet is absent. For Λ→∞, the bounds of figure 3 seem to extrapolate to ∆[0,0] .
2. This could potentially be rigorously proven à la [24]. In addition, we can consider the case

of a double gap, in which we allow one long operator with dimension ∆[0,0] and then require

that the other longs have dimensions ∆ ≥ ∆′[0,0]. We have plotted the allowed region in the

two gaps for various Λ on the right hand side of figure 3. The kink in the allowed region

is related to the absence of a (strictly positive) lower bound for the OPE coefficient C2
1,1,2

as it is clear by looking at figure 6. It is expected that this kink will disappear as Λ →∞.
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Figure 4. Upper bounds for ∆[2,0], ∆[0,2], ∆[0,1] as a function of ∆[0,0] for Λ = 10, 20, 30, 35, 40.

Gap structures coming from the analytic solutions (C.1) for special values of the parameters are

shown with red crosses. Among them there is an analytic solution for which ∆[0,0] = 1 and

∆[0,1] = ∞, which explains why the bound on ∆[0,1] diverges for small ∆[0,0]. It seems plausible

that for ∆[0,0] = 2, the bounds would converge to the strong coupling values ∆[2,0] = 5, ∆[2,0] = 4,

∆[0,1] = 3 for infinite Λ.

The full mixed system. In the full system the maximal bound for the gap ∆[0,0] does not

change. We can plot the upper bounds of the other gaps as a function of ∆[0,0] in figure 4.

It is suggestive that the bottom plot of figure 4 shows a drop in the upper bound

for ∆[0,1] around ∆[0,0] = 1.6 for Λ = 40. For a similar value of ∆[0,0] and for the same

precision, the l.h.s. of figure 10 shows the sudden appearance of an upper bound for the

OPE coefficient C2,2,2. It is likely that the two phenomena are related, similarly to what

happens in the 3d Ising model, where the appearance of a kink can be traced back to the

vanishing of a certain OPE coefficient [63].

5.2 OPE bounds

In order to obtain bounds on the OPE coefficients of an operator X, we rewrite (5.1) as10

0 = Pid +


C2
XPX

or

(aX bX)PX

(
aX

bX

)


+
∑
Y rest

C2
Y PY , (5.4)

10The “rest” in (5.4) is made out of long and short operators and takes into account the unitarity bounds

on the spectrum of long operators.
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Figure 5. Left: the bounds on C2
1,1,2 as a function of ∆′[0,0] if the semi-short C[2,0] is present. Right:

the bounds on C2
1,1,C[2,0]

as a function of ∆′[0,0]. The numerics are done for Λ = 10, 20, . . . , 80 and

the allowed regions for Λ = 80 are shaded in orange. Analytic solutions from (C.1) are marked

in red. For the purpose of comparison, we overlay in light blue on the left the allowed region of

figure 6. One must keep in mind that if C[2,0] decouples, we can identify ∆′[0,0] with ∆[0,0] here,

since we consider a single gap in the long spectrum.

depending on whether CX appears alone or is mixed like C1,1,2 and C2,2,2 in (4.13). In the

latter case, PX is a 2 × 2 matrix and we set aX = CX cos(θ) and bX = CX sin(θ), where

θ is an angle over whose values we have to sweep, see [64]. We then act on (5.4) with the

functional α and require

α(Pid) is maximized , α(PY ) ≥ 0 for all Y ∈ Rest ,

α(PX) = ±1 or α

(
(cos(θ) sin(θ))PX

(
cos(θ)

sin(θ)

))
= ±1 .

(5.5)

Depending on the normalization condition (the last condition in (5.5)), we get the bounds

C2
X ≤ −α(Pid) (for +) or C2

X ≥ α(Pid) (for −) . (5.6)

We remark that in order to get a positive lower bound for CX it is necessary that X be an

isolated operator in the spectrum [59].

The D1 four-point function. Let us start by considering the case in which the semi-

short C[2,0] is present. This implies setting ∆[0,0] = 1 in which case the maximal value of

the second gap ∆′[0,0] seems to go to ∆′[0,0] = 3, from the extrapolation from figure 4. For

the OPE coefficients, we find the result of figure 5. The position of the “kink” on the left

plot is the position at which the lower bound appears in the right plot. On both plots,

there is a line of analytic solutions for ∆′[0,0] = 2 (corresponding to −1 < ξ < 1 in (C.1))

and a point (corresponding to ξ = −1) for ∆′[0,0] = 3. Furthermore, we can ask for the

allowed region in the OPE coefficients of the operator D2 and the semi-short C[2,0] for a

given value of ∆′[0,0]. The results are shown in figure 8 below.

In the theories that are not free, it is expected that the semi-short C[2,0] would be

absent. In our framework, this implies setting ∆[0,0] > 1. Computing the upper and

lower bounds on the OPE C2
1,1,2 in this case leads to the bounds of figure 6. As an aside,

we note that since a long at the unitarity bound becomes a semi-short (2.21), the analytic
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Figure 6. Upper/Lower Bounds on the OPE coefficient C2
1,1,2 for Λ = 10, 20, . . . , 80. The allowed

region for Λ = 80 is shaded. The point (∆[0,0] = 2, C2
1,1,2 = 2) represented by a bigger red dot is

occupied by the solution (C.1) with ξ = 1. The thick red line refers to the solutions with −1 ≤ ξ < 1.

For a given Λ, the value of ∆[0,0] for which a non-trivial lower bound on C1,1,2 appears is the value of

∆[0,0] for which there is a kink on the r.h.s. of figure 3. The black dashed line starting from the point

(1, 1) represents the behaviour of Wilson lines in planar N = 4 SYM for which ∆[0,0] = 1+ λ
4π2 + . . .

as first computed in [65] and C2
112 = 1+ λ

24 +. . . as follows from localization. The (upper) purple and

(lower) black dashed curves starting from the point (2, 2) are the first and second order perturbative

approximation of the lower bound curve given by (6.29), compare to (5.7).

solutions (C.1) with11 ξ ∈ [−1, 1) will appear in figure 6 for ∆[0,0] = 1. This is the reasoning

behind the red line in figure 6.

We note furthermore, that we can compute the slope of the lower bound in C1,1,2 around

∆[0,0] = 2. Specifically, the lower bound of figure 6 at ∆[0,0] = 2 gives C1,1,2 ≥ 1.9998 with

the tangent vector (1, 0.6063) at that point. In fact, we can compute even more terms and

write (by Taylor-expanding the interpolation of the Λ = 80 result in Mathematica),

lower bound of C2
1,1,2(∆[0,0]) = 1.9998 + 0.6063(∆[0,0] − 2)

− 0.3801(∆[0,0] − 2)2 +O(∆[0,0] − 2)3 ,
(5.7)

where we would like to remark that we have significantly less control over the second order

term.

On the other hand, analyzing the lower bound around ∆[0,0] = 1 is difficult. From the

way that the intersection of the lower bound with the ∆[0,0] axis moves to the left as Λ

increases, it seems natural to expect that at Λ =∞ the only way to have C1,1,2 = 0 is to also

have ∆[0,0] = 1. For these values we have an analytic solution, namely (C.1) with ξ = −1.

It would be very interesting to know the value of the slope of the lower bound at that point

for Λ =∞, but the numerics do not seem to be able to give us a conclusive answer.

It is interesting to take a more careful look at the spectrum {∆(0)
[0,0],∆

(1)
[0,0], . . .} of longs

operators of the theories that extremize the C2
1,1,2 bounds of figure 6. One can extract

11For these values of ξ the analytic solutions contain a semi-short, see the block expansion (C.2).
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Figure 7. Plot of the difference ∆
(i)
[0,0] −∆

(i−1)
[0,0] (for i = 1, 2, 3) between the conformal dimensions

of the lowest lying longs as a function of the gap ∆
(0)
[0,0] ≡ ∆[0,0]. We have depicted in blue the

spectrum of for the lower bound and in orange the spectrum of the upper bound with the numerics

done for Λ = 80. Observe that the upper bound spectrum is independent of ∆[0,0] and that the two

become identical for the maximal value of ∆[0,0] allowed for Λ = 80.

this spectrum by computing the zeroes of the extremizing functional [66], the results are

presented in figure 7 where we plot the differences ∆
(i)
[0,0]−∆

(i−1)
[0,0] (for i = 1, 2, 3) between the

conformal dimensions of the lowest-lying longs as a function of the gap ∆
(0)
[0,0] ≡ ∆[0,0]. We

see that for ∆[0,0] = 1 and for ∆[0,0] = 2 the gaps of the extremizing solutions are roughly

equal to 2. This is also the case for the analytic solutions with ξ = −1 (for ∆[0,0] = 1) and

ξ = 1 (for ∆[0,0] = 2), see the block decompositions (C.2). On the other hand, the analytic

solutions with −1 < ξ < 1 have gaps of 1 between the conformal dimensions of the long

operators. This suggests that if we want to perform a conformal perturbation analysis that

starts from the point ∆[0,0] = 1, C2
1,1,2 = 0 and follows the lower bound curve of figure 6,

we would need to start from a spectrum for which the long operators have gaps of 2.

Interestingly, we also see in figure 7 that the spectra of the lower bound (in blue) and of

the upper bound (in orange) agree for the maximal possible value of ∆[0,0] for our Λ. Hence,

this suggests that the spectrum of the theory at the right tip of the allowed “triangle” in

figure 6 should be unique, at least as far as the single D1 correlator is concerned. This is

compatible with the bound of the r.h.s. of figure 3, though that latter one only provides

an upper bound on the gaps and not a lower one.

Lastly, we can obtain upper bounds on the OPE coefficient of the first long operator

in the spectrum, namely L∆[0,0]

[0,0] , for a given value of ∆[0,0] and of C2
1,1,2. The results are

depicted on the left side of figure 8.

The full mixed system. In the full system of the crossing equation (4.13), we can

set C1,1,2 = r cos(θ) and C2,2,2 = r sin(θ) and search for bounds on r as a function of θ.

The general situation is illustrated in figure 9. There we show the areas allowed by the

topological sector relation, the region covered by the analytic solutions (C.2), and also the

most general localization region.
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Figure 8. Left: upper bounds on the OPE coefficient
(
C

1,1,L
∆[0,0]

[0,0]

)2
for given ∆[0,0] and of C2

1,1,2.

The numerics were done for Λ = 80. The upper bound at the analytic solution for ξ = 1, represented

by the red dot, is
(
C1,1,L2

[0,0]

)2 ≤ 0.4. To our precision, the numerics exactly saturate the bound.

The dashed lines show the levels 0.1, 0.2 and 0.3. Right: allowed region for the OPE coefficients

C2
1,1,2 and C2

1,1,C[2,0]
for a given value of ∆′[0,0]. Again, the numerics were done for Λ = 80. The

upper bound does not change as ∆′[0,0] is varied and we denote the value ∆′[0,0] in black close to the

lower bound. Note the region for a given ∆′[0,0] contains the regions for larger values of ∆′[0,0].

Topological Constraint

Analytic Solution

Localization

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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4

C2,2,2

Figure 9. Allowed region for C1,1,2, C2,2,2 from the topological contraint (which coincides with

the numerical analysis for small values of the gaps above the unitarity bounds). There is a general

upper bound on C1,1,2, namely C1,1,2 ≤
√

2, but there is no upper or lower bound on C2,2,2. On

top are the analytical solutions (C.1), and the localization region from formulas (3.7), (3.8).

Turning now to the numerical analysis and assuming the lowest possible values for

the gaps just slightly above the unitarity bounds,12 namely ∆[0,0] = 1.01, ∆[2,0] = 3.01,

∆[0,2] = 3.01 and ∆[0,1] = 2.01, we get the results of the l.h.s. of figure 10.

We can leave the gaps ∆[2,0], ∆[0,2] and ∆[0,1] just above the unitarity bound and

vary the gap ∆[0,0]. Doing so, we get the results of the l.h.s. of figure 10, where we have

also overlayed the allowed region for the analytic solutions (C.1). We observe that until

∆[0,0] ≈ 1.6, there is no upper bound on C2,2,2. The appearance of this upper bound, which

transforms the allowed region into an island might be connected to the drop in the upper

bound on ∆[0,1], see figure 4. The fact that, for suitable gaps in the long spectrum, the

allowed region for the OPE coefficients C1,1,2 and C2,2,2 becomes an island can be compared

with similar phenomena in [64, 67].

12This way, we exclude the presence of the semi-shorts operators.
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Figure 10. Left: bounds for Λ = 40 and for the gaps ∆[0,0] = 1.01, 1.2, 1.4, 1.6, 1.8, 2, while

keeping the other gaps just above their respective unitarity bounds. The allowed region for given

∆[0,0] contains the allowed regions for larger values of ∆[0,0]. The small blue cross at (
√

2, 2
√

2)

is an analytic solution for ∆[0,0] = 2. The subregion enclosed by the dotted curve comes from the

analytic solutions (C.1) with the parameters (C.5) subject to (C.7) and is also shown in figure 9.

Right: allowed region for C1,1,2 and C2,2,2 if C2,2,2′ = 0. The numerics were done for Λ = 40 and

for ∆[0,0] = 1.01, 1.2, 1.4, 1.6, 1.8, 2. The other gaps are just slightly above their unitarity bounds.

Note that the allowed region for a given ∆[0,0] contains the regions for larger values of ∆[0,0].

It is also interesting to investigate the consequences of the decoupling of the operator

D′2. This can happen due to the multiplicity of B2 being equal to one as in the case of

the SU(2) theory with R the fundamental representation, or in the case of the analytic

solution of appendix C, see (C.11). Alternatively, it could be that the multiplicity is higher

than one but that the operator D′2 still decouples, implying C2,2,2′ = 0. The results for

the allowed OPE of C1,1,2 and C2,2,2 for various values of ∆[0,0] are shown on the r.h.s. of

figure 10. The main difference with the general case is the appearance of an upper bound

on C2,2,2 even for very small values of the gap ∆[0,0].

We can also obtain upper/lower bounds on the remaining short operators D′2 and D4.

Keeping again the gaps ∆[2,0], ∆[0,2] and ∆[0,1] just above the unitarity bound and varying

∆[0,0], we find the results of figure 11. Compared to the other OPE bounds, they are

weaker, in particular the one for C2,2,2′ . No lower bound for C2,2,2′ was found, which is

consistent with the possibility of setting C2,2,2′ = 0 in the plot of the r.h.s. of figure 10,

and yet still obtaining results for all allowed values of ∆[0,0].

The strong coupling case. Lastly, we can impose that the gap structure is the one of

the leading strong coupling solution given in (3.22), namely ∆[0,0] = 2, ∆[2,0] = 5, ∆[0,2] = 4

and ∆[0,1] = 3 and compute bounds on the OPE coefficients C1,1,2 and C2,2,2. This results

in an island of allowed values shown in figure 12. Additionally, we can combine the stronger

(for Λ = 80) upper/lower bounds on C1,1,2 from the analysis of the D1 four-point function

in figure 6. This excludes about half of the island that the Λ = 40 numerics for the mixed

system have given us. From figure 12, we read that for this gap structure we have in

particular the inequalities

∆[0,0] = 2 , ∆[2,0] = 5 , ∆[0,2] = 4 , ∆[0,1] = 3 ⇒

{
1.414 ≤ C1,1,2 ≤ 1.429

2.821 ≤ C2,2,2 ≤ 2.961
. (5.8)
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Figure 11. Left: upper bounds on the OPE coefficient C2
2,2,2′ as a function of ∆[0,0]. We find

no lower bounds. One the right: upper/lower bounds on the OPE coefficient C2
2,2,4 as a function

of ∆[0,0]. The numerics are done for Λ = 20, 30, 40. We see that increasing Λ improves the

bounds significantly and it is plausible that the bounds will converge to the strong coupling solution

C2
2,2,2′ = 0, C2

2,2,4 = 6.
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Figure 12. Allowed region for the OPE coefficients C1,1,2 and C2,2,2 for the gaps ∆[0,0] = 2,

∆[2,0] = 5, ∆[0,2] = 4 and ∆[0,1] = 3. The allowed region is shaded in blue and is the result of

intersecting the numerics for the mixed system done for Λ = 40 with the bound 1.414 ≤ C1,1,2 ≤
1.429 done for Λ = 80, see figure 6. The red cross corresponds to (

√
2, 2
√

2) for which we have an

analytic solution. The thick blue lines correspond to the inequality C2,2,2 ≥ C1,1,2 − C−11,1,2 (2.25)

and to the bound C1,1,2 ≤ 1.429. We zoom in on the allowed region.

The above is suggestive of there being only one possible value of the OPE coefficients C1,1,2

and C2,2,2 that solves the crossing equations for Λ → ∞. For the OPE coefficients C2,2,2′

and C2,2,4, the situation is less clear. Just imposing the gap ∆[0,0] = 2 for Λ = 40 does

not place high enough restrictions on them. However, the situation improves if we also

demand that ∆[2,0] = 5, ∆[0,2] = 4, ∆[0,1] = 3 and, since we are still in a regime of Λ

in which the numerics improve drastically with increased precision, it is possible that for

Λ → ∞ the OPE coefficients would be restricted to the values C2,2,2′ = 0 and C2,2,4 = 6

which correspond to the strong coupling solution.
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The expectation then is that this is the unique solution to crossing with the maximal

gap ∆[0,0] = 2. Further support of this claim could be produced by increasing the values

of Λ and extracting the spectrum as in [68]. This behavior is somewhat similar to the one

obtained in [48, 52] when considering the four-point function of stress-tensor supermulti-

plets in 4d N = 4 SCFT. In that case, the extremal solution to crossing at large central

charge seems to coincide with mean field theory, and its first correction with tree level

supergravity, see conjecture 3 in [52].

6 Analytical results

In this section we present an analytic study of the four-point function of the displacent

operator D1 corresponding to the lower bound in figure 6 in the vicinity of the point

(∆[0,0], C
2
1,1,2) = (2, 2).13 The latter is associated to a very simple four-point function and

coincides with the leading strong-coupling solution A(0), see (3.13), described in section 3.3.

Correlators saturating the lower bound of figure 6 are solutions of crossing for which the

number of operators exchanged is minimized. The end points of the lower bound curve,

namely (1, 0) and (2, 2) in figure 6, illustrate this point neatly: the (non half-BPS) operators

(in the L∆
[0,0] representation) being exchanged are given by the sets {∆}(1,0) = {1, 3, 5, . . . }

and {∆}(2,2) = {2, 4, 6, . . . } respectively. In between these extrema the spectrum of dimen-

sions starts from a lower bound 1 < ∆[0,0] < 2 and continues with a spacing of roughly two

units, see right-hand side of figure 3 and figure 7.

In the following, we derive the first and second order perturbations14 of the (2, 2)

solution corresponding to the lower bound curve. The first order perturbation coincides

with the string theory result described in section 3.3. At second order, the lower bound

solution might differ from the second order perturbation in string theory due to degeneracies

of the operators. We comment on this point in the end of the section. The point (1, 0) in

figure 6 corresponds to a very simple four point function as well, see (D.1). Unfortunately,

the vicinity of this point, for which the gap ∆[0,0] approaches the unitarity bound, is hard

to probe with the numerics as the convergence of the bound to its Λ → ∞ limit is very

slow in this region. We present an analysis of the vicinity of this point in appendix D. It

is relatively easy to generalize such expansions to the case of mixed correlators and this is

crucial to resolve the issue of degeneracy and make contact with the second order correction

in string theory. We postpone this interesting problem to future work.

6.1 Setup

As explained in section 2, we parametrize the four-point function of displacement operators

in terms of a function f(χ) and a constant F . They can be expanded in superconformal

blocks as

f(χ) = fid(χ) + aB2 fB2(χ) + aC[2,0]
fC[2,0]

(χ) +
∑
∆∈S

a∆ f∆(χ) , F = 1 + aB2 , (6.1)

13Recently, there has been substantial progress in the application of analytic bootstrap methods to

problems of the type addressed here, see e.g. [69] and references therein.
14We thank Fernando Alday for important discussions on this problem and for sharing some unpublished

notes with us.
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where the blocks are given in (2.13), (2.14) (2.15) and (2.21). In order to shorten the

notation we use f∆ := fL(∆)
[0,0]

, and introduce the notation a? for OPE coefficients C2
1,1,?.

The crossing equation reads

(χ− 1)2f(χ) + χ2f(1− χ) = 0 , (6.2)

where χ ∈ [0, 1]. We will consider a perturbation of a given solution to crossing denoted

by
(
f (0)(χ), F (0)

)
, with associated CFT data a

(0)
? , S(0) such that the number of operators

appearing in the OPE is unchanged and no hidden degeneracy is lifted by the perturbation.

We introduce the notation

f(χ) = f (0)(χ)+ε f (1)(χ)+. . . a? = a
(0)
? +ε a

(1)
? +. . . S = {∆+ε γ

(1)
∆ +. . . }∆∈S(0) , (6.3)

with ? 6= C[2,0]. We will discuss the special case of including that operator shortly.

The crossing equations (6.3) are valid order by order in ε. The conformal block expan-

sion on the other hand mixes CFT data from different orders, which is crucial. Expanding

the conformal block decomposition in ε gives at first order

f (1)(χ) = f
(1)
log (χ) logχ+ f

(1)

log0(χ) , (6.4)

with the two new functions given by

f
(1)
log (χ) =

∑
∆∈S(0)

a
(0)
∆ γ

(1)
∆ f∆(χ) + aC γ

(1)
C fC(χ) , (6.5)

f
(1)

log0(χ) = a
(1)
B2
fB2(χ)+

∑
∆∈S(0)

(
a

(1)
∆ f∆(χ)+a

(0)
∆ γ

(1)
∆ f

(1)
∆ (χ)

)
+
(
ãC fC(χ)+aCγ

(1)
C f

(1)
C (χ)

)
,

where for notational convenience C ≡ C[2,0]. In the above, we have defined

f
(`)
∆ (χ) := χ∆

(
∂

∂∆

)` (
χ−∆f∆(χ)

)
. (6.6)

This function has a regular expansion around χ = 0 starting at order χ∆+1, so that

f
(1)
log (χ) and f

(1)

log0(χ) are both regular at χ = 0. It should be noted that the operator of

type B2 cannot have anomalous dimension, but the OPE coefficient aB2 can vary with ε.

The contribution of C[2,0] requires a small discussion. Operators of type C[2,0] appear as a

subrepresentation of long operators at the unitarity bound: L∆=1
[0,0] = C[2,0] + . . . , and the

order ε0 contribution results from a cancellation between a pole in the conformal block

with a zero in the OPE coefficient.15 The first-order correction (6.4) should be crossing

15More explicitly

f1+εγ1+ε2γ2+...(χ) =
1

ε γ1
fC[2,0]

(χ) +

(
logχ− γ2

γ2
1

)
fC[2,0]

(χ) + f
(1)
C[2,0]

(χ) + . . . .

a∆=1+εγ1+ε2γ2+... = (ε γ1 + ε2 γ2 + . . . )
(
aC[2,0]

+ ε ãC[2,0]

)
+ . . . .

It is worth mentioning that this is exactly what happens for Wilson lines in N = 4 SYM at weak coupling

for the multiplet with highest weight φI=6. It is indeed cleat that 〈φaφbφ6〉 = O(ε). The multiplet

recombination in this case has been analyzed in [31].
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symmetric, see (6.2). In order to make it manifest we rewrite it as

f (1)(χ) = r(χ) log(χ)− χ2

(1− χ)2
r(1− χ) log(1− χ) + q(χ) , (6.7)

where q(χ) is crossing symmetric by itself and has a regular expansion around χ = 0.

Comparing (6.4) with (6.7) we obtain

f
(1)
log (χ) = r(χ) , f

(1)

log0(χ) = − χ2

(1− χ)2
r(1− χ) log(1− χ) + q(χ) . (6.8)

Let us now turn to the description of the solutions to crossing that we are going to perturb.

The free solution. We recall that the solution of crossing corresponding to the point

(2, 2) of figure 6 is

〈D1D1D1D1〉(2,2) = (12)(34) + (13)(24) + (14)(23) , (6.9)

where (ij) denotes the super-propagator defined in (2.4). In the parametrization of (2.11)

the solution (6.9) corresponds to f (0) = χ(2χ−1)
χ−1 and F (0) = 3 from which one extracts the

CFT data:

(2, 2) : a
(0)
B2

= 2, a
(0)
C[2,0]

= 0, a
(0)
∆ =

Γ(∆ + 3)Γ(∆ + 1)(∆− 1)

Γ(2∆ + 2)
, S(0) = {2, 4, 6, . . . } .

(6.10)

The crucial insight for the study of the perturbations of these solutions is to analyze

the transformation properties of the various terms in (6.4), (6.5) under the coordinate

transformations

χ 7→ χ

χ− 1
. (6.11)

where χ is in a neighborhood of zero. We will use the following identity which are easy to

check and generalize to higher values of `:

f
(`)
∆ (

χ

χ− 1
) + f

(`)
∆ (χ) =


0 ` = 0

− log(1− χ) f∆(χ) ` = 1

−2 log(1− χ) f
(1)
∆ (χ) + log(1− χ)2 f∆(χ) ` = 2

. . .

(6.12)

for ∆ ∈ {2, 4, 6, . . . } and

fB2

(
χ

χ− 1

)
+ fB2(χ) =

χ2

χ− 1
. (6.13)

6.2 First order perturbation of 〈D1D1D1D1〉(2,2)

It is an immediate consequence of (6.12) and (6.13) that f
(1)
log (χ) and f

(1)

log0(χ) defined in (6.5)

satisfy

f
(1)
log

(
χ

χ− 1

)
+ f

(1)
log (χ) = 0 f

(1)

log0

(
χ

χ− 1

)
+ f

(1)

log0(χ) + log(1−χ) f
(1)
log (χ) = a

(1)
B2

χ2

χ− 1
.

(6.14)
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Rewriting f
(1)

log0 and f
(1)
log in terms of r(χ) and q(χ), see (6.8), one notices that the second

equation in (6.14) takes the form16 A(χ) + log(1 − χ)B(χ) = 0. Assuming that r(χ) and

q(χ) are rational, which can be justified by looking at the structure of Witten diagrams

in the AdS2 dual [32], one obtains two conditions: A(χ) = B(χ) = 0. We have three

new equations to be added to the obvious crossing relation for q(χ) following from the

parametrization (6.7). To summarize, we have found the relations

r

(
χ

χ− 1

)
+ r(χ) = 0 , r(χ) + χ2 r

(
1

1− χ

)
=

(
χ

χ− 1

)2

r(1− χ) ,

q

(
χ

χ− 1

)
+ q(χ) = a

(1)
B2

χ2

χ− 1
, q(χ) +

(
χ

χ− 1

)2

q(1− χ) = 0 . (6.15)

The equations (6.15) put strong constraints on the functions r(χ) and q(χ) but are not

powerful enough to specify them uniquely and some sort of boundary conditions need to

be imposed. Two obvious ones follow directly from the definitions (6.5), namely

r(χ) = χ3(r0+O(χ)) , −
(

χ

χ− 1

)2

r(1−χ) log(1−χ)+q(χ) = −1

2
a

(1)
B2
χ2+O(χ) . (6.16)

Notice that in the second equation there can in principle be cancellations between the

contributions from the two factors on the left hand side. There are additional conditions

related to the behaviour of r(χ) for χ close to one and these are more subtle. They can be

translated to the behavior of γ
(1)
∆ for large ∆, by the definition of r(χ) in (6.5), (6.7). The

intuitive argument is that by acting with the Casimir operator we can increase the order

of the pole of r(χ) for χ ∼ 1 at the price of having a more divergent behaviour of γ
(1)
∆ at

large ∆. This follows from the following relation

C2 f∆(χ) = (∆ + 1)(∆ + 2) f∆(χ) , C2 := (1− χ)∂χχ
2∂χ . (6.17)

The growth of anomalous dimensions is related to local bulk interactions in the AdS dual:

the more irrelevant the interaction, the bigger the growth [70, 71]. Because we are going

after the leading correction to the strong coupling behavior, it is natural to choose the

solution with the mildest behavior at large ∆. This corresponds to keeping the leading

effective vertex in the dual theory. We will therefore impose that the behavior at χ ∼ 1 is

no worse than r(χ) ∼ (1 − χ)−2. Under these conditions (6.16) admits a unique solution

which of course coincides with the string theory calculation reported above, see (3.20). The

correction of CFT data at this order read17

γ
(1)
∆ = a

(1)
B2

∆(∆ + 3)

6
, a

(1)
∆ = ∂∆

(
a

(0)
∆ γ

(1)
∆

)
. (6.18)

16We use the relation log(1− χ) + log(1− χ)−1 = 0.
17It should be noticed that the expression for the anomalous dimensions differs slightly from the one

presented in [32]. By looking at the expansion of the superblock (2.18) in bosonic blocks, it is rather clear

that the (bosonic) partial wave decomposition we are considering will be degenerate in all R-symmetry

channel but the [0, 2] one. The latter has a unique representative in each long block. For this reason

equation (4.33) in [32] agrees with (6.18) while equation (4.42) there does not. The degeneration between

bilinears in the displacement operators is lifted when arranging operators in supermultiplets but there are

additional degeneracies which are relevant.
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The results for the anomalous dimensions holds upon assuming that there is no operator

degeneracy. This will be further discussed in the end of this section.

6.3 Second order perturbation of 〈D1D1D1D1〉(2,2)

Let us now consider the second order term in the expansion of the conformal block decom-

position

f (2)(χ) = f
(2)

log2(χ)(logχ)2 + f
(2)
log (χ) logχ+ f

(2)

log0(χ) , (6.19)

where18

f
(2)

log2(χ) =
1

2

∑
∆∈S(0)

a
(0)
∆

(
γ

(1)
∆

)2
f∆(χ) ,

f
(2)
log (χ) =

∑
∆∈S(0)

(
a

(1)
∆ γ

(1)
∆ + a

(0)
∆ γ

(2)
∆

)
f∆(χ) + a

(0)
∆

(
γ

(1)
∆

)2
f

(1)
∆ (χ) ,

f
(2)

log0(χ) =
∑

∆∈S(0)

a
(2)
∆ f∆(χ) +

(
a

(1)
∆ γ

(1)
∆ + a

(0)
∆ γ

(2)
∆

)
f

(1)
∆ (χ) +

1

2
a

(0)
∆

(
γ

(1)
∆

)2
f

(2)
∆ (χ) .

(6.20)

Notice that, without loss of generality corresponding to a redefinition of ε, we can set

a
(2)
B2

= 0. The contribution of the double logarithm f
(2)

log2(χ) is expressed in terms of known

CFT data19 and can be resummed in to the rather simple form, see a(χ) given in (6.23).

Next we proceed as in the previous section by considering the transformation properties of

f
(2)

logk
(χ) under χ 7→ χ

χ−1 . They follow from (6.12) and the definition (6.20):

f
(2)

log2

(
χ

χ− 1

)
+ f

(2)

log2(χ) = 0 ,

f
(2)

log1

(
χ

χ− 1

)
+ f

(2)

log1(χ) = −2 log(1− χ) f
(2)

log2(χ) ,

f
(2)

log0

(
χ

χ− 1

)
+ f

(2)

log0(χ) = − log(1− χ) f
(2)

log1(χ)− log2(1− χ) f
(2)

log2(χ) .

(6.21)

In order to make crossing symmetry manifest we write20

f (2)(χ) =

(
a(χ) log2 χ+ b(χ) logχ−

(
χ

χ− 1

)2

(χ→ 1− χ)

)
+ c(χ) logχ log(1− χ) ,

(6.22)

where c(χ) is crossing symmetric by itself. The relation between a(χ), b(χ), c(χ) and

f
(2)

logk
(χ) is obvious and generalizes (6.8). The relations (6.21) imply functional relations

for a(χ), b(χ), c(χ) by taking the coefficients of the logk(1 − χ) for k = 0, 1, 2. After

imposing boundary conditions at χ = 0, 1 for the functions a(χ), b(χ), c(χ) (these boundary

18Recall that there are no C[2,0] appearing in this example.
19For this to be the case it is crucial that there is no operator mixing.
20One can also include Li2 functions in the ansatz, but it turns out that they have to be set to zero in

the end.
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conditions follow from similar remarks as in the first order analysis around equation (6.16)),

one finds the unique solution to be

a(χ) =
1

18

(
χ

χ− 1

)3

(2− χ)(3χ2 − 5χ+ 5) a
(0)
B2

,

b(χ) =
1

36

χ(χ− 2)

(χ− 1)2
(6χ2 − χ+ 1) a

(0)
B2
,

c(χ) =
1

18

(2χ− 1)

(χ− 1)2
(3χ4 − 6χ3 + 3χ2 + 1) a

(0)
B2
.

(6.23)

From the above one can extract the CFT data:

γ
(2)
∆ =

∆(∆ + 3)

72

(
4∆− 5− 2

∆ + 1
+

6

∆ + 2
+ 4H∆

)
a

(0)
B2

, Hn =

n∑
k=1

1

k
,

a
(2)
∆ = ∂∆

(
a

(0)
∆ γ

(2)
∆ + a

(1)
∆ γ

(1)
∆

)
− 1

2
∂2

∆

(
a

(0)
∆

(
γ

(1)
∆

)2 )
+ a

(0)
∆ X∆ a

(0)
B2
,

(6.24)

where

X∆ =
A(u) + (2∆ + 3)B(u)

72∆(∆ + 1)2(∆ + 2)2
+
u(2− u))

72

(
ψ(1)

(
∆ + 1

2

)
− ψ(1)

(
∆

2

))
, (6.25)

ψ(n) is the polygamma function of order n and u = ∆(∆ + 3), A(u) = −120−36u+ 17u2 +

5u3, B(u) = 8− 4u+ 5u2 + u3.

Comparison with the expectations from string theory at second order. The

results just obtained will most likely differ from the second order perturbation result in

string theory. The main reason for the discrepancy is due to degeneracies, as we will show

momentarily, see [72, 73] for a recent related discussion. We stress once again that with

the appropriate modifications to deal with operator mixing, the methods applied in this

section can be generalized to this case as well. To illustrate the operator mixing let us look

at the correlators

〈D1D1D1D1〉(2,2) , 〈D1D1D2D2〉(2,2) , 〈D2D2D2D2〉(2,2) , (6.26)

see (3.22) for their explicit expressions and (4.8) for their decomposition in conformal

blocks. Let us start by looking at operators in representation L∆=2
[0,0] which are exchanged

in all three of the correlators above. We know from (3.26) that there is no degeneracy of

operators with this quantum numbers. Therefore, let us call O the (normalized) operator

sitting in L∆=2
[0,0] . The fact that there is only one such operator is confirmed a posteriori by

using the block decomposition (see (C.2)–(C.4) and (C.8)) of the correlators (6.26), which

gives the equations:∑
i

C2
11Oi =

2

5
,
∑
i

C11OiC22Oi =
4

5
,
∑
i

C2
22Oi =

8

5
, (6.27)

that have a solution involving just one operator O with C11O =
√

2
5 and C22O = 2

√
2
5 (up

to an obvious Z2 ambiguity).
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Let us turn to operators in the representation L∆=4
[0,0] . We know from (3.26) that there

are two such operators that we will denote by Oi=1,2 with 〈OiOj〉 ∼ δij . From the known

four point functions we know that∑
i

C2
11Oi =

1

7
,
∑
i

C11OiC22Oi =
2

7
,
∑
i

C2
22Oi =

4

5
,

=⇒ (C11O1 ,C11O2)∼

(√
1

7
,0

)
, and (C22O1 ,C22O2)∼ 2

(
1√
7
,

√
2

35

)
,

(6.28)

where ∼ means up to O(2) rotations. The analysis of higher ∆ is similar but requires the

knowledge of more correlators.

Comparison with numerics. Recall that as a physical definition of ε we take aB2 = 2−ε,
which in our notation is equivalent to a

(1)
B2

= −1, a
(n>1)
B2

= 0. We will now compare the

results from the analytic perturbation to the numerical results in the vicinity of the point

(2, 2) in figure 6. From the expression for the anomalous dimensions (6.18) and (6.24) for

the operator of lowest dimension, i.e. ∆ = 2, we can extract

aB2(∆[0,0]) = 2 +
3

5
(∆[0,0] − 2)− 59

200
(∆[0,0] − 2)2 + . . . (6.29)

Since 3
5 = 0.6 and 59

200 = 0.295 this relation is in good agreement with (5.7). Let us comment

on the validity of the perturbation at small but finite ε. At first oder, for any finite ε the

unitarity bound will be violated for ∆ large enough, since the anomalous dimensions are

negative and are quadratic in ∆, see (6.18). We can require that ∆ + ε γ
(1)
∆ ≥ 1 for ∆ ≤ 30

for example, this gives 0 ≤ ε ≤ 0.17. In this range 1.72 ≤ 2 + ε γ
(1)
2 ≤ 2. The resulting

value for the gap ∆[0,0] is depicted in figure 6 by the upper purple dashed curve starting

from the point (2, 2). The situation improves quite a bit at second order. In this case

for 0 ≤ ε ≤ 0.994 all OPE coefficients are positive and all the dimensions are above the

unitarity bound. In this range one finds that 1.69 ≤ 2 + ε γ
(1)
2 + ε2 γ

(2)
2 ≤ 2. This rough but

reasonable result is drawn as a black dashed curve starting from the point (2, 2) in figure 6.

7 Conclusions

Let us now briefly summarize the main points of this article. We implemented the bootstrap

for the displacement operator D1 and its cousin D2 on half-BPS line defects in 4d N = 4

SCFTs. Our results include constraining bounds on the conformal dimensions of long

operators, and on the OPE coefficients of short operators. While the numerics have not

fully converged yet, they suggest a unique solution to crossing, provided that the gap ∆[0,0]

takes its maximal value of 2. This solution can be identified with the strong-coupling

behavior of line defects in N = 4 SYM. Moreover, corrections to the strong-coupling

behavior were obtained analytically using only bootstrap reasoning, and they fit nicely

with our numerical results.

There are many interesting directions in which to further develop the analysis of this

article. In this work we focused just on the correlation functions supported on the one-
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dimensional defect. The next important step is to impose the additional consistency condi-

tions arising from coupling this 1d CFT to a four-dimensional N = 4 theory. The relevant

bootstrap equations are known in this case [27], the issue then becomes that one loses posi-

tivity and traditional numerical methods cannot be applied. Nevertheless, one could use the

alternative numerical techniques of [7], combined with input from the existence of a topo-

logical sector, and an analytical perturbative treatment in the vicinity of some free theories.

Another interesting problem is to study the four-point function of long operators on

the defect. The bootstrap problem for long operators has been largely unexplored due to

various technical complications that have to do with the presence of nilpotent invariants

in the four point function, see [74] for the only example of this type to date. Considering

these examples has the advantage that one can vary the dimension of the external operator

and look for special features in the plots. This might shed some light on the interpretation

of the drop in the bound on ∆[0,1] in figure 4.

One could also study line defects in N = 2, 3 four-dimensional theories, see for ex-

ample [75], or alternatively in N = 4, 6, 8 three-dimensional theories, see e.g. [76]. While

localization results are available for the half-BPS circular Wilson loops even for N = 2 the-

ories ([30] provides the fundamental result for circular Wilson loops, see for example [77, 78]

for explicit results for some N = 2 SCFTs) in 4d, there are currently no known results from

localization for the loops involving insertions of the displacement supermultiplet. Alterna-

tively, one could also consider line defects in N = 4 four-dimensional theories supporting

less (or no) supersymmetry, see [79–81] for a study of some of these effective 1d theories.

One should stress that the bootstrap problem considered in this work is probably

one of the simplest bootstrap setups on the market, and one could imagine producing

non-trivial solutions to crossing analytically. A particularly interesting solution is the one

corresponding to Wilson lines in planar N = 4 SYM, where one could combine bootstrap

methods with integrability techniques to determine some of the CFT data. One could also

try to produce relatives of the SYK model, see e.g. [82], with OSP(4∗|4) symmetry and

investigate how they fit in the picture presented in this work.

Finally, as pointed out in [83], the study of CFTs at finite temperature shares many

similarities with the defect bootstrap program. Hence, we expect that both lines of research

will complement each other.
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A Blockology

A.1 The bosonic pieces

In this section, we shall discuss the SO(2, 1) and SP(4)R blocks separately before we put

them together in the full superblocks in section A.2.

First, we introduce the 1d bosonic conformal blocks that we need. They read

g1d
∆ (χ) = χ∆

2F1

(
∆ +

∆2 −∆1

2
,∆− ∆4 −∆3

2
; 2∆;χ

)
. (A.1)

The next ingredient that we need are the SP(4)R R-symmetry structures. They can be

defined as the eigenfunctions of the quadratic Casimir operator Dε=1 (depending on 3

parameters a, b and finally c = 0 which we omit) of equation (2.3) in [84] with x = ζ1

and z = ζ2. We can do that since the operator of [84] is the quadratic Casimir for the

d = ε+ 2 = 3 conformal group SO(3, 2), which is SP(4)R up to reality conditions. Written

explicitly, the Casimir operator reads

Dε = ζ2
1 (1− ζ1)∂2

ζ1 + ζ2
2 (1− ζ2)∂2

ζ2 − (a+ b+ 1)
(
ζ2

1∂ζ1 + ζ2
2∂ζ2

)
− ab(ζ1 + ζ2) + ε

ζ1ζ2

ζ1 − ζ2

(
(1− ζ1)

∂

∂ζ1
− (1− ζ2)

∂

∂ζ2

)
,

(A.2)

where in our case a = k2−k1
2 and b = k3−k4

2 are functions of the R-symmetry labels of the

external operators transforming in the of the [0, ki] representation.

We first look for the R-symmetry structure in the D1×D1 and D2×D2 OPE channels.

These R-symmetry structures are polynomial eigenfunctions in ζ−1
i of the operator Dε=1

with a = b = c = 0. Up to the polynomial degree that we want, we get the eigenfunctions:

B0,0
[0,0] = 1 , B0,0

[2,0] = 1− 1

ζ1
− 1

ζ2
, B0,0

[0,2] =
3

10
− 1

2ζ1
+

1

ζ1ζ2
− 1

2ζ2
,

B0,0
[0,4] =

5

126
− 5

27

(
1

ζ2
+

1

ζ1

)
+

(
28

27

1

ζ1ζ2
+

1

6ζ2
2

+
1

6ζ2
1

)
−
(

1

ζ1ζ2
2

+
1

ζ2
1ζ2

)
+

1

ζ2
1ζ

2
2

,

B0,0
[4,0] = −4

3

(
1

ζ2
+

1

ζ1

)
+

1

ζ2
1

+
2

3

1

ζ1ζ2
+

1

ζ2
2

+
1

2
,

B0,0
[2,2] =

5

7

(
1

ζ2
+

1

ζ1

)
− 1

2

(
4

ζ1ζ2
+

1

ζ2
2

+
1

ζ2
1

)
+

(
1

ζ1ζ2
2

+
1

ζ2
1ζ2

)
− 3

14
(A.3)

TheDε=1 eigenvalues of B0,0
[0,0], B

0,0
[2,0], B

0,0
[0,2], B

0,0
[0,4], B

0,0
[4,0], B

0,0
[2,2] are respectively 0, 3, 5, 14, 8, 10

and they are normalized such that the coefficient of the term with the highest power of ζ−1
i is

one. These structures are in one to one correspondence with the irreducible representations

appearing in the SP(4) tensor products:

[
0, a
]
×
[
0, b
]

=

min(a,b)⊕
i=0

i⊕
j=0

[
2i− 2j, 2j + |a− b|

]
. (A.4)
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Furthermore, in the expansion of the G1,1 superblocks, we need the eigenfunctions of the

operator Dε=1 with a = 1
2 , b = −1

2 and c = 0. We get the results

B1,1
[0,1] =

1√
ζ1
√
ζ2
, B1,1

[2,1] =
1

ζ
3/2
1

√
ζ2

+
1

√
ζ1ζ

3/2
2

− 5

4
√
ζ1
√
ζ2
,

B1,1
[0,3] = − 2

3ζ
3/2
1

√
ζ2

− 2

3
√
ζ1ζ

3/2
2

+
1

ζ
3/2
1 ζ

3/2
2

+
10

21
√
ζ1
√
ζ2
.

(A.5)

Finally, for the G1,−1 superblocks, we need instead to use the eigenfunctions for the operator

Dε=1 with a = 1
2 , b = 1

2 and c = 0

B1,−1
[0,1] =

√
ζ2

√
ζ1 −

√
ζ1√
ζ2

+
1√
ζ1
√
ζ2
−
√
ζ2√
ζ1
,

B1,−1
[2,1] = −1

4
3
√
ζ2

√
ζ1 +

7
√
ζ1

4
√
ζ2
−
√
ζ1

ζ
3/2
2

+
7
√
ζ2

4
√
ζ1
− 11

4
√
ζ1
√
ζ2

+
1

ζ
3/2
1

√
ζ2

−
√
ζ2

ζ
3/2
1

+
1

√
ζ1ζ

3/2
2

,

B1,−1
[0,3] =

1

7

√
ζ2

√
ζ1 −

10
√
ζ1

21
√
ζ2

+

√
ζ1

3ζ
3/2
2

− 10
√
ζ2

21
√
ζ1

+
38

21
√
ζ1
√
ζ2

− 4

3ζ
3/2
1

√
ζ2

+

√
ζ2

3ζ
3/2
1

− 4

3
√
ζ1ζ

3/2
2

+
1

ζ
3/2
1 ζ

3/2
2

. (A.6)

The eigenvalues of the R-symmetry structures Bm,n[0,1], B
m,n
[2,1] and Bm,n[0,3] in (A.5) and (A.6) are

2, 6 and 9 respectively.

A.2 Explicit superblocks

Armed with the bosonic conformal blocks and the R-symmetry structures, we can obtain

the full superblocks by making an ansatz of the type

Gm,nO (χ, ζ1, ζ2) =

∆+δ∑
h=∆

∑
R

ch,Rg
1d
h (χ)Bm,nR (ζ1, ζ2) , {m,n} =

{
{0, 0}, {1, 1}, {1,−1}

}
,

(A.7)

where the conformal blocks g1d
h (χ) have the correct external dimensions ∆i plugged in

them (this depends on m and n, see (A.1)) and the sum over R runs over the appropri-

ate structures for the channel. The prescription of which block indices m,n to use for

which function A is summarized in (4.8). The constants ch,R are determined by feeding

the ansatz (A.7) into the superconformal Ward identities with the coefficient of lower con-

formal dimension bosonic block normalized to one, or to minus one. The correct sign was

determined by expanding the analytic solutions in their unitary domain in superblocks

using positive coefficients.

The difference between the “short” B` , “semi-short” C[a,b] and “long” L∆
[a,b] superblocks

is the difference δ in conformal dimension between the lowest bosonic block and the highest

bosonic block appearing in the decomposition of a superblock. Specifically, we have

short : g1d
∆,∆̃

, . . . , g1d
∆+2,∆̃

(δ = 2) ,

semi-short : g1d
∆,∆̃

, . . . , g1d
∆+3,∆̃

(δ = 3) ,

long : g1d
∆,∆̃

, . . . , g1d
∆+4,∆̃

(δ = 4) .

(A.8)
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Once the superconformal blocks Ga,bO have been determined, we can extract the corre-

sponding functions fa,bO,i and constants F a,bO . First, given a function G(χ, ζ1, ζ2), we define

the following functions in χ:

E[G]m,n ≡
(

∂m∂n

∂ζm1 ∂ζ
n
2

G(χ, ζ1, ζ2)

X2

)∣∣ζ1=ζ2=χ

. (A.9)

Then, using these functions, we obtain

F 0,0
O = E[G0,0

O ]0,0 = G0,0
O (χ, χ, χ) , f0,0

O,1 =
1

2
E[G0,0

O ]0,2 ,

f0,0
O,2 = 2E[G0,0

O ]0,1 +

(
1

2
− χ

)
E[G0,0

O ]0,2 , f0,0
O,3 =

E[G0,0
O ]2,2
4

−
E[G0,0

O ]1,2 + ∂χE[G0,0
O ]0,2

2χ
,

F 1,1
O = G1,1

O (χ, χ, χ) , f1,1
O =

χ

2
E

[
1√
X
G1,1
O

]
0,2

, (A.10)

F 1,−1
O = G1,−1

O (χ, χ, χ) . f1,−1
O =

χ

2
E

[
X̃√
X
G1,−1
O

]
0,2

,

In the above, it is very important that the blocks satisfy the superconformal Ward identities.

Conversely, given the functions (A.10), we can reconstruct the full superblocks by using

G0,0
O =D1

[
χ2f0,0

1;O

]
+D2

[χ
2

(
f0,0

2;O−f
0,0
1;O

)]
+D3

[
χ
(
χ2f0,0

3;O+f0,0
1;O+χ∂χf

0,0
1;O

)]
+X2F 0,0

O ,

G1,1
O =

√
X
[
D
(
χ2f1,1
O

)
+XF 1,1

O

]
, (A.11)

G1,−1
O =

√
X

X̃

[
D
(
χ2f1,−1
O

)
+XF 1,−1

O

]
,

where (the factor D3 = χ(χ−ζ1)2(χ−ζ2)2

ζ2
1ζ

2
2

is a normalization)

D =
(
2χ−1 − ζ−1

1 − ζ−1
2

)
− χ2

(
ζ−1

1 − χ−1
) (
ζ−1

2 − χ−1
) ∂

∂χ
,

D1 = χ2
(
χ−2 − ζ−1

1 ζ−1
2

)
− χ3

(
ζ−1

1 − χ−1
) (
ζ−1

2 − χ−1
) ∂

∂χ
,

D2 =
χ4

ζ1ζ2

(
χ−2 − ζ−1

1 ζ−1
2

)
− χ5

ζ1ζ2

(
ζ−1

1 − χ−1
) (
ζ−1

2 − χ−1
) ∂

∂χ
.

(A.12)

Hence, we having the explicit superblocks Ga,bO is equivalent to having the functions fa,bO,i and

constants F a,bO . The constants F a,bO are easy to list, for they are equal to one for the short

operators O = B` and are zero otherwise. The remaining functions, as well as the explicit

superblocks are listed in an auxiliary Mathematica file named “SuperBlocksResults.nb”.

Different notation for the D1 system. It is convenient when discussing the full mixed

system to write the blocks G0,0
O appearing in the expansion of A{1,1,1,1} and A{2,2,2,2} in

the same way, namely as in (A.11). Since A{1,1,1,1} is only quadratic in ζ−1
i , it is possible

to also write it in a simpler way as in (2.11). Writing the superblocks appearing in the
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decomposition of A{1,1,1,1} (and only them!) as G0,0
O = XFO + DfO(χ) and equating them

to the expression in (A.11), we get

F 0,0
O = FO , f0,0

1;O =
fO(χ)

χ3
, f0,0

2;O =
fO(χ) + 2FOχ

2

χ3
, f0,0

3;O =
2fO(χ)− χf ′O(χ)

χ5
.

(A.13)

This dictionary allows one to translate from the (2.11) notation to the (A.11) easily as

required.

B Comments on the derivation of the crossing equations

This appendix contains comments relative to the derivation of the “irreducible” crossing

equation (4.9) starting from (4.3) and (4.7).

The first part involving the irreducible crossing equations for A{1,1,1,1} is already writ-

ten in (4.5). Then, the first crossing equation of (4.7) deals with A{2,2,2,2}. It must be

decomposed into the six R-symmetry structures of (A.3), giving six equations that are not

independent. They are satisfied iff the following three equations are satisfied:

∑
O∈D2×D2

C2
2,2,O


[f0,0

1,O]a

[f0,0
2,O]s

[f0,0
3,O]a

 = 0 , (B.1)

where we refer to (4.6) for the definition of [f ]s/a. Note that all the structure constants in

the direct channel are real. Hence, all the coefficients appearing in the decomposition are

positive. Applying the same procedure to the remaining crossing equations leads to

∑
Õ∈D1×D2

C2
12Õ

[
f1,1
O

]
s

=
∑

Õ∈D1×D2

(C∗
12Õ)2

[
f1,1
O

]
s

= 0 . (B.2)

for the A{1,2,1,2} equation (the complex conjugate one is for A{2,1,2,1}) and to

∑
O∈D1×D1

C11OC22O

(
F 0,0
O

χf0,0
1,O(χ)

)
+

∑
Õ∈D1×D2

|C12Õ|
2

(
−F 1,−1

Õ
f1,−1

Õ (1− χ)

)
= 0 , (B.3)

for the one relating A{1,1,2,2} to A{1,2,2,1}. The first line in (B.3) is the minibootstrap

equation (2.26) since F 0,0
O = 1 = F 1,−1

Õ if O/Õ are short and is zero otherwise. The

minibootstrap equation is solved as C2
1,2,3 = 1 +C1,1,2C2,2,2−C2

1,1,2, thus eliminating C2
1,2,3

out of the game.

We can rewrite the second line of (B.3) together with (B.2) as a system of equations

in the variables aÕ ≡ ReC12Õ and bÕ ≡ ImC12Õ. Then C2
12Õ = a2

Õ − b
2
Õ + 2iaÕbÕ and

(C∗
12Õ)2 = a2

Õ−b
2
Õ−2iaÕbÕ Thus, taking the real and imaginary part of the two equations
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of (B.2), we get since the blocks are real the equations

∑
Õ∈D1×D2

(
aÕ bÕ

)[f1,1

Õ

]
s

0

0 −
[
f1,1

Õ

]
s

( aÕ
bÕ

)
= 0 ,

∑
Õ∈D1×D2

(
aÕ bÕ

) 0
[
f1,1

Õ

]
s[

f1,1

Õ

]
s

0

( aÕ
bÕ

)
= 0 .

(B.4)

The remaining ones (B.3) can also be rewritten in a similar way, where we also use

0 =
∑

C11OC22Oχf
0,0
1,O(χ) +

∑
|C12Õ|

2f1,−1

Õ (1− χ)

⇔

{
0 =

∑
C11OC22O[χf0,0

1,O(χ)]s +
∑
|C12Õ|

2[f1,−1

Õ (χ)]s

0 =
∑
C11OC22O[χf0,0

1,O(χ)]a −
∑
|C12Õ|

2[f1,−1

Õ (χ)]a
,

(B.5)

in order to decouple the even from the odd parts of the equation. Combining all the

crossing equations into one then directly leads to (4.9) in the main text.

C The analytic solutions to the crossing equations

It is easy to produce simple four point functions by taking linear combinations of products

of super-propagators defined in (2.4) and imposing that conformal weights and the relevant

permutation symmetry are reproduced correctly. Below we present such four-point func-

tions together with their conformal block decomposition. Knowing these simple solutions

is useful when exploring the parameter space of all solutions to crossing.

The separate analytic solutions. The most general analytic solutions to the crossing

equations produced by using the super-propagators (2.4) lead to the following A functions:

Aanalytic
{1,1,1,1} = 1 +

X

X̃
+ ξX ,

Aanalytic
{2,2,2,2} = 1 +

(
X

X̃

)2

+ ξ′1X
2 + ξ′2

X

X̃
+ ξ′3

(
X2

X̃
+ X

)
,

Aanalytic
{1,1,2,2} = Aanalytic

{2,2,1,1} = 1 + υ1X +
υ2X

X̃
,

Aanalytic
{1,2,1,2} = Aanalytic

{2,1,2,1} = X3/2

(
υ′1 +

υ′2
X

+
υ′2
X̃

)
,

Aanalytic
{1,2,2,1} =

√
X

X̃

(
υ2 + υ1X +

X

X̃

)
,

(C.1)

where we have used the shorthands (2.9) and the ξ, ξ′i, υi and υ′i are a-priori free parameters

that are subject to unitarity and to identifications coming from comparing different block

decompositions.
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One can expand the solutions in superblocks (we remind that G0,0
I = 1). One finds

Aanalytic
{1,1,1,1}= 1+(1+ξ)G0,0

B2
+

1−ξ
2
G0,0
C[2,0]

+

∞∑
∆=2

√
π(∆−1)Γ(∆+3)

22∆+1Γ
(
∆+ 3

2

) 1+(−1)∆ξ

2
G0,0

L∆
[0,0]

,

Aanalytic
{2,2,2,2}= 1+

(
ξ′2 +ξ′3

)
G0,0
B2

+
(
1+ξ′1 +ξ′3

)
G0,0
B4

+
ξ′2−ξ′3

2
G0,0
C[2,0]

+
(
1−ξ′1

)
G0,0
C[2,2]

+
2+2ξ′1−ξ′3

6
G0,0
C[4,0]

+
∞∑

∆=2

(∆−3)(∆−2)(∆−1)(∆+5)(∆+6)(5)∆−2

225×4∆−1
(

7
2

)
∆−2

[
1+(−1)∆ξ′1

+
180ξ′2

(∆−3)(∆−2)(∆+5)(∆+6)
+

36
(
∆2 +3∆+6(−1)∆(∆(∆+3)−5)−10

)
ξ′3

(∆−3)(∆−2)(∆−1)(∆+4)(∆+5)(∆+6)

]
G0,0

L∆
[0,0]

+
∞∑

∆=4

(∆−3)∆(∆+1)(9)∆−4

27×4∆−4
(

11
2

)
∆−4

[
1+(−1)∆ξ′1 +

36
(
1+(−1)∆

)
(∆+2)(∆+4)(∆2−1)

ξ′3

]
G0,0

L∆
[0,2]

+

∞∑
∆=4

(∆−3)∆(∆+5)
(
∆2 +3∆−4

)
(7)∆−4

189×4∆−2
(

11
2

)
∆−4

[
1+(−1)∆+1ξ′1

+
36
(
(−1)∆−1

)
ξ′3

(∆−2)∆(∆+3)(∆+5)

]
G0,0

L∆
[2,0]

, (C.2)

for the first two functions. The last remaining function that is expanded in the direct

channel blocks is

Aanalytic
{1,1,2,2} = 1 + (υ1 + υ2)G0,0

B2
+
υ2 − υ1

2
G0,0
C[2,0]

+
∞∑

∆=2

√
π(∆− 1)Γ(∆ + 3)

4∆+1Γ
(
∆ + 3

2

) (
(−1)∆υ1 + υ2

)
G0,0

L∆
[0,0]

.
(C.3)

Finally, for the mixed correlation functions, one obtains the block decomposition

Aanalytic
{1,2,1,2} = υ′2 G

1,1
B1

+ (υ′1 + υ′2)G1,1
B3

+
1

3
(υ′2 − 2υ′1)G1,1

C[2,1]

+

∞∑
∆=3

(∆− 2)(∆ + 2)(∆ + 3)(4)∆−3

(
υ′2 − 1

6(−1)∆−2(∆ + 1)(∆ + 2)υ′1
)

35× 22∆−3
(

9
2

)
∆−3

G1,1

L∆
[0,1]

,

Aanalytic
{1,2,2,1} = υ2 G1,−1

B1
+ (υ1 + 1)G1,−1

B3
+

(
2

3
− υ1

3

)
G1,−1
C[2,1]

(C.4)

+
∞∑

∆=3

(∆− 2)(∆ + 2)(∆ + 3)(4)∆−3

(
1
6(∆ + 1)(∆ + 2)− (−1)∆υ1

)
35× 22∆−3

(
9
2

)
∆−3

G1,−1

L∆
[0,1]

.

The solutions taken together. We can take the solutions (C.1) as together describing

a mixed D1, D2 system of correlation functions. In so doing, some of the parameters become

identified since the structure constants such as C1,2,3 appearing in different channels have

to agree. The solution to all the constraints is to reparametrize (C.1) through

υ1 = η2 − 1 , υ′1 = η2 − ξ − 1 , υ2 = υ′2 = 1 + ξ ,

ξ′1 = 1− ω3 , ξ′2 =

(
η2 + ξ

)2
ξ + 1

+ 2ω1 − 3ω2 − ω3 + 2 , ξ′3 = 3ω2 + ω3 − 2 . (C.5)
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Some OPE coefficients then read

C1,1,2 =
√

1+ξ , C2

1,1,S
(2)
[2,0]

=
1−ξ

2
C1,2,3 = η ,

C2,2,2 =
η2 +ξ√

1+ξ
, C2

2,2,2′ = 2ω1 , C2
2,2,4 = 3ω2 , (C.6)

C2

2,2,S
(2)
[2,0]

= 2+
C2

2,2,2

2
+ω1−3ω2−ω3 , C2

2,2,S
(4)
[4,0]

=
2−ω2−ω3

2
C2

2,2,S
(4)
[2,2]

=ω3 ,

together with C2

1,2,S
(3)
[2,1]

= 1 − η2

3 . In the above, we’ve used the identity (2.21) for the

semi-short blocks.

It follows that ξ ∈ {−1, 1} due to unitarity and that η, ω1, ω2 and ω3 have to be

positive. There are also other positivity conditions due to unitarity. For example, from

comparing Aanalytic
{1,2,1,2} to Aanalytic

{1,2,2,1}, we find a constraint on η. Summarizing:

− 1 ≤ ξ ≤ 1 , 0 ≤
√

max(0, 3ξ)
!
≤ η

!
≤
√

2 + ξ ≤
√

3 . (C.7)

The conditions on the parameters ωi are more annoying to state and we omit them since

they are not needed.

The leading order strong coupling solution given in (3.22) corresponds to (C.1) with

the reparametrization (C.5) and

ξ = 1 , η2 = 3 , ω1 = ω3 = 0 , ω2 = 2 . (C.8)

Notice that for these values of the parameters there are no long at unitarity bound in the

conformal block decomposition, i.e. C-type multiplets appearing in the OPE decomposition,

see (C.6).

We remark that the analytic solutions (C.1) with the reparametrization (C.5) contain

the most peculiar unitary solution, namely on with Aanalytic
{1,2,1,2} = 0. This corresponds to

ξ = −1 and η = 0 and leads to the explosion of the upper bound on ∆[0,1] for small values

of ∆[0,0], see figure 5. For that solution, the value of C2,2,2 diverges.

Free gauge theory solutions. We can connect the solution Aanalytic
{1,1,1,1} in (C.1) to free

gauge theory. It is obvious that in a free gauge theory, the normalized 4-pt function is

〈D1(1)D1(2)D1(3)D1(4) 〉 = (12)(34) + (14)(23) + ξ(13)(24) , (C.9)

with the parameter ξ given by (κab is the Killing form and the T a are appropriately nor-

malized generators of the algebra)

ξ =
κacκbdTrR(T aT bT cT d)

κabκcdTrR(T aT bT cT d)
= 1− 1

2

Cas2(Adj)

Cas2(R)
. (C.10)

One can use the index of a representation Ind(R) to write Cas2(R) = Ind(R)
dim(R)dim(Adj).

Then a program such as LieART [85] permits to compute ξ for various algebras and rep-

resentations and to in particular to find the minimal value of ξ. For example, for SU(N)

and R the fundamental representation, we get ξ = −(N2 − 1)−1. We show some allowed

values in figure 13. The smallest possible value of ξ that we obtain is for the fundamental

representation of SU(2), for which ξ = −1
3 .
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Figure 13. Left: we show the possible values of ξ in the free theories with gauge groups SU(N).

The minimal value ξ = −(N2 − 1)−1 is plotted in a dashed curve. Right: minimal value of ξ as

a function of the rank for various types of gauge groups. We remind of the identities: B2 = C2,

A3 = D3. Since A1 =SU(2)=SP(2) and B2 = C2=SP(4), the minimal value is saturated by the

symplectic groups.

Figure 14. Examples of contributions to the 8-pt correlation function of D1 using the modified

Wick contraction rule depending on a parameter ξ.

A special solution with modified Wick contractions. We can obtain a special

solution with C2,2,2′ = 0 in which the multiplicity of the D` operators is equal to one.

In this theory, we define D` = 1√
`!

: D`1 : and compute the correlation function using a

modified Wick contraction prescription. Specifically, we add one factor of the parameter ξ

to each crossing of the contraction lines when the operators are drawn on a circle, as shown

in figure 14. The resulting solution has the OPE coefficients

C1,1,2 =
√

1 + ξ , C2,2,2 = (1 + ξ)3/2 , C1,2,3 =

√
1 + ξ

(
1 + ξ + ξ2

)√
1 + 2ξ + 2ξ2 + ξ3

,

C2,2,2′ = 0 , C2,2,4 =
(ξ + 1)

(
ξ2 + 1

) (
ξ2 + ξ + 1

)√
(ξ + 1)2 (ξ4 + ξ3 + 2ξ2 + ξ + 1)

,

(C.11)

and is unitary for all ξ ∈ (−1, 1]. The point ξ = −1 technically cannot be included since

in this case no operator of type B2 appears in the OPE of D1 × D1 and hence we cannot

define D2 as 1√
2

: D2
1 :. Nevertheless, we can get arbitrarily close to it. On the r.h.s. of

figure 10 this solution corresponds to a curve interpolating between the point (0, 0) and

the point (
√

2, 2
√

2) as ξ varies between −1 and 1.
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D First order perturbation of 〈D1D1D1D1〉(1,0)

In this appendix, we want to perform a first order perturbation like in section 6.2 but

these time starting from the point (∆[0,0], C
2
1,1,2) = (1, 0) of figure 6, which corresponds to

ξ = −1 in (C.1). Specifically, the solution of crossing corresponding to the point (1, 0) is

given by the free Wick contraction

〈D1D1D1D1〉(1,0) = (12)(34)− (13)(24) + (14)(23) , (D.1)

where (ij) denotes the super-propagator defined in (2.4). In the parametrization (2.11)

this corresponds to f (0) = χ(2χ−1)
χ−1 and F (0) = 1 from which one extracts the CFT data:

(1, 0) : a
(0)
B2

= 0, a
(0)
C[2,0]

= 1, a
(0)
∆ =

Γ(∆ + 3)Γ(∆ + 1)(∆− 1)

Γ(2∆ + 2)
, S(0) = {3, 5, 7, . . . } .

(D.2)

In this case we will make use of the following identities:

fC[2,0]

(
χ

χ− 1

)
− fC[2,0]

(χ) = 0 ,

f
(1)
C[2,0]

(
χ

χ− 1

)
− f (1)
C[2,0]

(χ) = log(1− χ) fC[2,0]
(χ) ,

(D.3)

together with

f
(`)
∆

(
χ

χ− 1

)
− f (`)

∆ (χ) =


0 ` = 0

log(1− χ) f∆(χ) ` = 1

2 log(1− χ) f
(1)
∆ (χ) + log(1− χ)2 f∆(χ) ` = 2

. . .

(D.4)

for ∆ ∈ {3, 5, . . . } and

fB2

(
χ

χ− 1

)
− fB2(χ) = h

(1)
B2

(χ) + h
(2)
B2

(χ) log(1− χ) , (D.5)

with h
(1)
B2

(χ) = (2−χ)
(χ−1)χ(χ2 + 6χ− 6), h

(2)
B2

(χ) = 12(1−χ)
χ2 . Using these identities, we can write

the analogue of (6.14) as

f
(1)
log

(
χ

χ− 1

)
= f

(1)
log (χ) , f

(1)

log0

(
χ

χ− 1

)
− f (1)

log0(χ)− log(1− χ) f
(1)
log (χ) = a

(1)
B2
hB2(χ) .

(D.6)

Using the parametrization (6.7) and the same argument as in section 6.2 we obtain the

system of equations

r

(
χ

χ−1

)
−r(χ) = 0 , r(χ)−χ2 r

(
1

1−χ

)
=

(
χ

χ−1

)2

r(1−χ)−a(1)
B2
h

(2)
B2

(χ) ,

q

(
χ

χ−1

)
−q(χ) = −a(1)

B2
h

(1)
B2

(χ) , q(χ)+

(
χ

χ−1

)2

q(1−χ) = 0 . (D.7)
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The only rational solution to this system of equations appears to be

r(χ) = R

(
χ2

χ− 1

)
, R(t) = 6a

(1)
B2
t2(t2 − 5t+ 5) ,

q(χ) =
χ(2χ− 1)

χ− 1
Q(χ(1− χ)) , Q(t) = a

(1)
B2
t−2(3t3 + t2 + 9t− 6) ,

(D.8)

which implies that

γ
(1)
∆ = − 1

24
a

(1)
B2

4∏
k=−1

(∆ + k) , γ
(1)
C[2,0]

= 0 a
(1)
C[2,0]

= −5 a
(1)
B2
. (D.9)

Due to the fast growth of the anomalous dimension with ∆, this perturbation seems reliable

only for a
(1)
B2
∼ 10−6. As previously discussed, this region is hard to probe numerically

and the Λ = ∞ rough extrapolation is still far away for ∆[0,0] close to one. As the gap

∆[0,0] = 1 + ε and γ
(1)
C[2,0]

+ · · · = 1 + ε 0 + . . . , the analysis just performed suggests that

aB2(∆[0,0]) ∼
√

∆[0,0] − 1 + . . . , ∆[0,0] ∼ 1 . (D.10)

Thus, we expect the lower bound curve of figure 6 to follow a square root rather than a

power law behavior in the vicinity of the point (∆[0,0], C
2
1,1,2) = (1, 0).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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