

University of Parma Research Repository

Assessment of Salmonella survival in dry-cured Italian salami

This is the peer reviewd version of the followng article:

Original

Assessment of Salmonella survival in dry-cured Italian salami / Bonardi, Silvia; Bruini, Ilaria; Bolzoni, L.; Cozzolino, P.; Pierantoni, M.; Brindani, Franco; Bellotti, P.; Renzi, Marco; Pongolini, S.. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 262:(2017), pp. 99-106. [10.1016/j.ijfoodmicro.2017.09.016]

Availability: This version is available at: 11381/2830905 since: 2021-10-11T11:54:13Z

Publisher: Elsevier B.V.

Published DOI:10.1016/j.ijfoodmicro.2017.09.016

Terms of use:

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

note finali coverpage

(Article begins on next page)

2 3 4	Bonardi S. ^{a*} , Bruini I. ^a , Bolzoni L. ^b , Cozzolino P. ^c , Pierantoni M. ^c , Brindani F. ^a , Bellotti P. ^b ., Renzi M. ^d , Pongolini S. ^b					
5 6	^a Department of Veterinary Science, Unit of Food Inspection, University of Parma, Via del Taglio 10, 43126 Parma, Italy.					
7 8	^b Risk Analysis Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126 Parma, Italy.					
9	^c National Veterinary Service, Local Unit of Parma, Via Vasari 13/A, 43126 Parma, Italy.					
10 11 12 13 14 15 16 17 18 19 20	10, 43126 Parma, Italy.					
21	*Corresponding author:					
22	Silvia Bonardi					
23	Department of Veterinary Science, University of Parma					
24 25	Via del Taglio, 10, 43126, Parma, ITALY Phone: 0039 0521 032744					
25	E-mail: <u>silvia.bonardi@unipr.it</u>					
20						
28						
29						
30						
31						
32	Key words: Salmonella, pork, dry-curing, real-time PCR, MPN enumeration					
33						

Assessment of Salmonella survival in dry-cured Italian salami

34 1. Introduction

Italian salami are dry fermented sausages which have been produced for centuries with a variety of ingredients and manufacturing processes. Dry fermented sausages from Mediterranean countries are usually air dried, due to the favourable climate, and rarely smoked. Pork meat is the main ingredient and fungal starter cultures may be used on the external surface imparting a complexity of flavours to the product (Talon et al., 2004).

40 The use of sodium chloride (NaCl) is essential in dry fermented sausages to solubilize proteins and emulsify fat. Furthermore, NaCl can control the growth of undesirable bacteria responsible for 41 42 spoilage of meat and pathogenic bacteria (King et al., 2016). The usual amount of added salt is generally between 2-4% by weight (Ockerman and Basu, 2007) but its concentration increases in 43 final products due to the drying process (Zanardi et al., 2010). In addition to NaCl, other salts are 44 45 generally added to the pork and fat mixture, namely nitrates (maximum 150 mg/kg) and nitrites (maximum 150 mg/kg) to inhibit Clostridium botulinum (Hospital et al., 2016), enterobacteriaceae 46 and enterococci (Coloretti et al., 2008) and to favour the red colour of cured meat (Villaverde et al., 47 2014). 48

Salami manufactured in the Emilia-Romagna region of Northern Italy, where this study was
conducted, are generally made with pork only, and they have coarsely ground meat and 3-4 mm size
cubes of fat. Fresh meat is obtained from shoulder and belly and fat is normally pork backfat. After
grounding, salt, whole peppercorns and garlic are added in traditional products. Some formulations
include sugars and starter bacterial cultures. Salami are then stuffed into a pork casing and
commonly aged for 20 to 40 days according to their size (Mataragas et al., 2015). *Salmonella* ranks second among pathogens reported in the European Union (EU) as causative

agents of human foodborne-zoonotic diseases (EFSA and ECDC, 2016). In 2014, pork meat and
 products thereof were responsible for 9.3% of 225 foodborne outbreaks caused by *Salmonella*, thus
 representing the type of meat most frequently associated with salmonellosis in humans (EFSA and 2

ECDC, 2015). In Italy, consumption of salami was recently associated with both clustered and sporadic cases of salmonellosis due to *S*. Goaldcost (Scavia et al., 2013), *S*. Manhattan (Scaltriti et al., 2015), *S*. Typhimurium and *S*. Typhimurium monophasic variant (Andreoli et al., 2017; Luzzi et al., 2007). Other EU countries confirmed *Salmonella* outbreaks linked to salami, like Sweden in 2005, Norway in 2006 and Denmark in 2010 (Emberland et al., 2006; Hjertqvist et al., 2006; Kuhn et al., 2011).

65 Salmonella survival in cured meat products depends on dry-curing and physicochemical conditions 66 created by several parameters, which interact all together, like salt, nitrite, pH, water activity and temperature. For example, water activity decrease is a key factor for Salmonella inactivation, but its 67 effect depends also on contemporary pH decrease, as well as salt and nitrite concentration (Messier 68 et al., 1989). Different studies were performed on Italian traditional salami, which addressed the 69 70 fate of Salmonella under experimental conditions through artificial contamination (Mataragas et al., 2015; Nightingale et al., 2006). In these studies, composition and physicochemical conditions of 71 72 salami were specified. On the contrary, our study aimed to assess the behavior of Salmonella in 73 traditional salami, characterized by low standardization of production parameters, in field 74 conditions. In this context, to cover the variability of the production process, a large number of batches distributed among different producers were included in the study with the purpose of 75 assessing the effects of the basic physicochemical parameters (pH, aw, NaCl) regardless of the 76 77 heterogeneity of the actual products on the market.

In the EU, microbiological food-safety criteria are set by the Regulation EC 2073/2005 (European Commission, 2005), which identifies culture-based ISO methods as the analytical reference methods. ISO 6579 is the standard for *Salmonella* detection in foods. This method relies on several cultural steps and requires more than 5 days for conclusive results in case of positive samples. This is why, to meet the needs of the food industry, the same Regulation allows the use of alternative methods, generally more convenient and faster, under specified conditions. PCR-based methods are

among available alternatives and several studies have been performed to assess real-time PCR
protocols for the rapid and sensitive detection of *Salmonella* in foods in less than 24 h (Delibato et
al., 2014; Rodriguez-Lazaro et al., 2014).

Based on the above considerations, our study focuses on characteristic salami from Emilia 87 88 Romagna and the aims were: i) to determine the prevalence of Salmonella in the mixtures of minced raw pork and fat used for salami production, *ii*) to assess the effect of curing on the fate of 89 90 Salmonella in the end product by testing the batches of salami manufactured with the Salmonellapositive raw mixtures, iii) to investigate the influence of physicochemical parameters on Salmonella 91 contamination in dry-cured salami, iv) to measure the load of Salmonella in dry-cured salami, v) to 92 assess the effect of sample size on the probability of Salmonella detection, and vi) to investigate the 93 proportion of real-time PCR positive samples confirmed by ISO 6579. 94

95

96 2. Material and methods

97 2.1 Sample collection

From April to December 2015, 150 samples of ground raw mixtures (GRM) made of ground pork 98 and fat, collected from 150 different batches of starting material for salami processing, were tested 99 100 for Salmonella. Only pig meat and pig backfat were used for the salami manufacturing. The samples were collected in four production plants, here identified as A (47 samples), B (23 samples), 101 102 C (11 samples), D (69 samples) located in Emilia-Romagna region, Northern Italy. The plants were included in the study based on their willingness to take part to the study (five were asked to 103 participate) and the different number of samples collected from each plant was proportional to its 104 105 production capacity. Meat and fat suppliers of the four plants were many and, often, meat and fat from more than one supplier were mixed in the same batch of GRM. In our study the GRM samples 106 107 of the four companies were collected before addition of other ingredients and additives (salt,

nitrites, nitrates, ascorbates, black pepper) to avoid potential interference with *Salmonella* detection.
Nitrates and nitrates were added in compliance with the limits set by Regulation EU No 1129/2011
on food additives.

Whenever a GRM was positive for Salmonella, the derived batch of salami was tested for the 111 pathogen at the end of its curing period which ranged from 20 to 48 days according to the different 112 producers' protocols. Five salami (5 sampling units) per batch were tested. Since 21 GRM samples 113 were positive for Salmonella, 21 batches of salami (for a total of 105 salami) were analyzed at the 114 end of their curing. The total number of tested salami was 140, because 6 batches of salami out of 115 116 21 resulted contaminated by Salmonella, and were re-tested after a prolonged curing period of 21-38 days (for an additional 5 salami per batch). Furthermore, since one batch was still positive, 5 117 more salami were analyzed after an additional curing of 8 more days (total curing duration: 62 days) 118 119 (Table 1). The values of pH and aw and the content of NaCl were determined in the 140 tested salami. 120

121

122 2.2 Salmonella detection in ground raw mixture (GRM) and salami

123	Detection of Salmonella in both GRM and salami was performed by real-time PCR followed by
124	microbiological confirmation. A pre-enrichment broth was prepared suspending 25 g of sample in
125	225 ml of Buffered Peptone Water (BPW, Oxoid, Basingstoke, UK) and homogenizing for 2
126	minutes in a Stomacher blender. After 18 ± 2 h at 37 ± 1 °C DNA was extracted from 1 ml of the
127	pre-enrichment culture using SureFood PREP Salmonella Kit (R-Biopharm, Darmstadt, Germany)
128	and PCR master-mix was prepared with SureFast Salmonella ONE Kit (R-Biopharm) for a final
129	volume of 25 µl containing 5 µl of template DNA. PCR reactions were run on a Mx3005P QPCR
130	System (Agilent Technologies, Italy) with the following thermal program: a cycle of DNA
131	polymerase activation of 5 min at 95 °C followed by 45 amplification cycles of 15 s at 95 °C $$ and

132	50's at 60°C (annearing-extension step). The samples with a cycle threshold (C1) value lower than	
133	40 were considered positive. The other samples were considered negative for Salmonella.	
134	PCR positive samples underwent microbiological testing by ISO 6579:2002 starting from aliquots	
135	of 25 g and 50 g, the latter being resampled from the meat matrix, the former coinciding with the	
136	pre-enrichment step used for PCR. All meat samples were stored at 3°C (± 1°C) for up to 24 h $$	
137	before resampling. Presumptive isolates of Salmonella were assayed with O-omnivalent Salmonella	
138	serum by slide agglutination (Denka Seiken, Tokyo, Japan). Biochemical identification to the genus	
139	level was carried out with API® 20E system (bioMérieux, Marcy l'Etoile, France).	
140		
141		
142	2.3 Typing of Salmonella isolates	
143	Serotyping of isolates was performed following the White-Kauffmann-Le Minor scheme by slide	
144	agglutination with O and H antigen specific sera (DID, Milan, Italy; Biogenetics, Padua, Italy).	
145	Discrimination of S. enterica 4,[5],12:i:- from S. Typhimurium was done phenotypically by	
146	repeating phase inversion at least three times without evidence of expression of phase-two flagellar	
147	antigens and genotypically by PCR (Barco et al., 2011). PFGE was performed according to standard	
148	methods (PulseNet, 2010) with XbaI (Roche Italia, Milan, Italy) restriction of DNA.	
149		
150	2.4 Salmonella enumeration	
151	The miniaturized Most Probable Number technique according to ISO 6579-2:2012 was used for	
152	Salmonella enumeration in all PCR positive GRM and salami samples. Fifty grams of the sample	
153	were diluted 10 ⁻¹ in BPW and 2.5 ml of the initial dilution were inoculated in triplicate in the first	
154	column of a 12 multi-well microtiter plate. Two ml of sterile BPW were distributed in the wells of	
155	the remaining columns (three wells per column). Further dilutions of the samples were performed	

by sequentially transferring 0.5 ml from the wells of the first column to the wells of successive

157	columns. The plates were incubated at 37 ± 1 °C for 16-20 h. Thereafter, a 20 µl-aliquot from each			
158	well was inoculated in a 12 multi-well microtiter plate containing 2 ml of Modified Semi-Solid			
159	Rappaport-Vassiliadis (MSRV) per well. After incubation at $41.5 \pm 1^{\circ}$ C for $24 \pm 3h$, the wells			
160	showing a grey-white zone extending out of the inoculum drop were further tested by streaking a 10			
161	μl-loopful of the bacterial growth onto XLD (Oxoid) agar plates. Microtiter plates not showing			
162	bacterial growth were incubated for further 24 h \pm 3 h and were considered negative if bacterial			
163	growth was still absent. XLD agar plates were incubated at 37 ± 1 °C for 24 h and suspect colonies			
164	were subjected to ISO 6579 confirmation tests. Confirmed Salmonella colonies were used to			
165	estimate the MPN Salmonella/g.			
166				
167	2.5 Measure of pH, aw and NaCl content			
168	The pH value was measured on 5 g of salami homogenized in distilled water (10/1 water/sample,			
169	w/w) with a Crison micro pH 2001 instrument equipped with a Xerolyt 52-02 electrode (Crison			
170	Instruments, Barcelona, Spain). The a_W value was measured at 25 $^{\circ}C$ by an AquaLab series 4TE a_W			
171	meter (Decagon Devices, Inc., Pullman 99163, WA).			
172	Sodium chloride (NaCl) content was measured following the ISO 1841-1:1996 method for the			
173	determination of the chloride content of meat and meat products with NaCl contents equal to or			
174	greater than 1.0%.			
175				
176	2.6 Statistical analyses			

- 177 Statistical differences in the probability of cultural confirmation of PCR positive samples using
- 178 different sampling aliquots (namely, 25 g and 50 g) were evaluated through Fisher's exact tests.

179	We estimated the probability of detecting Salmonella by culture in PCR positive samples, starting
180	from aliquots of 25 g and 50 g, as a function of the PCR CT value. Specifically, two sets of
181	generalised linear models (GLM) with binomial error distribution and logit link function were built,
182	one for GRM and one for salami. The GLMs were built by using Salmonella detection by
183	microbiological assay as response variable, and the PCR CT value as explanatory variable. Each set
184	of GLMs included a model where the microbiological assays were carried out from sampling
185	aliquots of 25 g and a model with sampling aliquots of 50 g.

186 We assessed whether the detection of Salmonella in salami prepared from Salmonella-positive GRMs was related to the physicochemical parameters of the salami - namely pH, aw, and NaCl 187 content - and the enumeration of Salmonella (MPN) in GRM. Specifically, a generalised linear 188 189 mixed model (GLMM) with binomial error distribution and logit link function was built by using the detection of Salmonella by microbiological assay in salami, (starting from aliquots of 50 g) as 190 191 response variable (defined Salmonella), the physicochemical parameters (pH, aw, NaCl) and most 192 probable number of S. enterica in GRM (MPN) as fixed effects, and the production plant (called 193 plant) as random effect. The full GLMM can be written as follows:

194 $Salmonella \sim pH + aw + NaCl + MPN + (1 | plant)$

The response variable was modelled for dependence on predictor variables (fixed effects) using a forward stepwise selection procedure with log-likelihood ratio test to define the model providing the best prediction (Venables and Ripley, 2002). In addition, we tested through linear models whether physicochemical parameters of the salami were related to the curing time. Statistical analysis was carried out in the R 3.2.0 environment (R Development Core Team 2015), with "MASS", "Ime4", and "Imtest" packages.

201

202 **3. Results**

203 3.1 Detection and enumeration of Salmonella in ground raw mixture (GRM) samples

- The real-time PCR CT values were lower than 40.0 in 56 out of 150 (37%) GRM samples, ranging from 24.8 to 39.9. *Salmonella* was isolated from 21/56 (38%) of the PCR-positive samples. Therefore, the testing procedure used provided a prevalence of *Salmonella* in GRMs of 14% (21/150) (95% CI: 9–21) (Table 2).
- 208 As regards the effect of using 25 g or 50 g of GRM on cultural detection of Salmonella in PCR-
- 209 positive samples, the ISO-25 g method detected Salmonella in 13/21 (62 %) of all culture-
- confirmed samples, while the ISO-50 g procedure was positive in 21/21 (100 %) of the confirmed
- samples (Table 2). The difference between the two procedures (ISO-50 g vs. ISO-25 g) was
- statistically significant (Fisher exact's test, p-value < 0.01). In addition, the statistical analysis
- showed that the proportion of culture-confirmed samples in PCR-positive GRMs significantly
- decreased with increasing PCR CT values both for sampling aliquots of 25 g (p-value < 0.01) and
- 50 g (p-value < 0.0001) (Figure 1a). Moreover, the proportion of culture-confirmed samples in
- 216 PCR-positive GRMs was larger with sampling aliquots of 50 g than with aliquots of 25 g also for
- 217 low PCR CT-values (Figure 1a).

The MPN enumeration in the PCR-positive samples ranged from 31 MPN/g to < 1.3 MPN/g (Table
3), being <1.3 MPN/g in 17/21 (81 %) samples, corresponding to the limit of quantification of the

220 technique.

221 Seven Salmonella serovars were identified, with S. Derby (11/21; 52 %) as the most common,

followed by S. Typhimurium monophasic variant (antigenic formula 4,[5],12:i:-) (4/21; 19 %) and
S. Stanley (2/21; 10 %). S. London, S. Brandenburg, S. Goettingen and S. Rissen were identified in
one sample each (1/21; 5 %). Different *Xba*I PFGE profiles were found among the most common

serovars, *i.e.* six among *S*. Derby isolates (D1-D6) and four among the monophasic variant of *S*. *enterica* 4,[5],12:i:- (MT1-MT4). One PFGE type was identified for *S*. Stanley (S1) (Table 3).

227

228 3.2 Detection and enumeration of Salmonella in cured salami

229 The 21 batches of dry-cured salami manufactured with the Salmonella-contaminated GRMs were tested at the end of their regular curing (20- 48 days) (Table 1). Five sampling units per batch, 230 231 corresponding to a total of 105 salami, were tested. The real-time PCR CT values were lower than 40.0 for 41/105 (39.0%) salami, ranging from 23.7 to 39.3. The ISO-25 g and ISO-50 g methods 232 233 detected Salmonella in 10 and 12 samples respectively, giving an overall proportion of 12 out of 41 (29 %) culture-confirmed samples. Notably, two more culture-positive salami were found by the 234 235 MPN method; they were characterized by high CT-values (36.1 and 39.3). The culture-confirmed salami were 14/105 (13 %) (95% CI 8 -21), belonging to six different 236 237 batches, and the proportion of Salmonella-positive GRMs which ended up as contaminated batches of salami was 6/21 (29%). The 6 positive batches were re-tested (5 salami per batch, for a total of 238 239 30 salami) after a prolonged curing time varying from 21 to 38 days, according to the different 240 manufacturers. The total curing period of these products ranged from 49 to 86 days. Re-testing 241 ended up in 11/30 (37 %) PCR-positive salami, but only one was confirmed by the ISO method with a prevalence of culture-positive salami after prolonged curing of 1/30 (3 %) (details in Table 242 1). Confirmation rate of PCR-positive samples by cultural detection was 9% (1/11). 243 244

Since 1/30 salami (3 %) was still positive, 5 salami of the batch were re-tested after 8 more days
(overall curing time of the batch: 62 days). Three sampling units/5 (60 %) were positive by realtime PCR (CT-values from 37.4 to 39.5), but *Salmonella* could not be detected by culture. The
salami tested were 140 in total and were manufactured by three producers out of four (A, B and D)

248 (Table 1).

- Overall, 55 out of 140 salami (39%) were positive by real-time PCR. The statistical analysis 249 250 showed that the proportion of culture-confirmed samples in PCR-positive salami significantly decreased with the increase of CT values obtained in PCR both for aliquots of 25 g (p-value = < 251 252 0.001) and 50 g (p-value =< 0.001) (Figure 1b). Figure 1b showed that, unlike GRM samples, the proportion of culture-confirmed samples in PCR-positive salami was similar with sampling aliquots 253 254 of 50 g and 25 g also for low PCR CT-values. 255 The ISO-25 g method detected Salmonella in 11/15 (73%) of all culture-positive salami of the study 256 while ISO-50 g reached 87% (13/15). The difference between the two procedures was not 257 statistically significant (Fisher exact's test, p-value > 0.05). Two samples out of 15 (13 %) were 258 negative with both ISO-50 g and ISO-25 g, but positive by MPN enumeration. 259 The enumeration of Salmonella ranged from 8.7 MPN/g to 1.3 MPN/g in seven samples, and was < 1.3 MPN/g in the remaining eight. Salmonella isolates detected in the 15 positive salami were 16, as 260 one sample was contaminated by two different serovars. Sero- and PFGE typing results are shown 261 in Table 3. 262 Five Salmonella serovars were identified and Derby was the most prevalent (9/16; 56 %), followed 263 by London (2/16; 13 %), Panama (2/12; 13 %), Branderup (2/16; 13 %) and Goldcoast (1/16; 6 %) 264 265 Four PFGE profiles were identified among S. Derby isolates (D1, D4, D7, D8) and one of them
 - 266 (D4) was found in the corresponding GRM sample. Two PFGE profiles were found for S.
 - 267 Branderup (B1, B2). One PFGE type was identified for S. London, identical to the genotype
 - 268 detected in the corresponding GRM sample. PFGE analysis of S. Panama and S. Goldcoast could
 - 269 not identify a genomic profile, because of self-degrading DNA (Table 3).
 - 270

271 3.3 Physicochemical parameters: pH, aw and NaCl content

272 The pH values of salami prepared from culture-positive GRMs ranged from 5.30 to 6.48 (average 273 5.94). The pH values of the Salmonella-positive salami ranged from 5.56 to 6.29 (average 5.91). There were not observed pH differences between the samples with the highest Salmonella levels 274 275 (8.7 MPN/g, 2.7 MPN/g and 1.4 MPN/g) and the lowest (1.3 MPN/g and < 1.3 MPN/g) (Table 3). The water activity (a_w) values of salami ranged from 0.822 to 0.951 (average 0.903). The a_w values 276 277 of the Salmonella-positive salami ranged from 0.896 to 0.951 (average 0.919). The NaCl content of cured salami ranged from 2.25% to 4.80% (average 3.67%). The NaCl content of the Salmonella-278 positive salami ranged from 2.86% to 4.28% (average 3.50%). The physicochemical parameters of 279 280 Salmonella-positive salami are shown in Table 3. 281 Statistical analysis through GLMM of factors affecting the occurrence of Salmonella in salami 282 revealed that water activity (aw) and Salmonella count (MPN) in GRM used for the salami 283 production were included in the best model from forward stepwise selection (Table 4), while values of pH and NaCl content did not significantly affect the probability to find Salmonella in salami 284 285 samples. Analyses through linear models showed that the pH values in salami were not significantly affected by the curing time (slope = 0.0003, p-value > 0.05), while the values of a_w (slope = 0.001, 286 p-value < 0.001) and NaCl (slope = 0.01, p-value < 0.001) were negatively and positively affected 287 by the curing time, respectively. 288

289

290 4. Discussion

In Italy the proportion of human cases of salmonellosis attributed to pork is high compared with the other European Union Member States, being 73.2% (95% Credibility Interval 71.0 – 75.4) in 2009-2011, *vs.* 2.3% attributed to broilers, 2.1% to laying hens and 5.3% to turkeys. Only in Belgium the proportion was similar to Italy (74%), while in the other reporting countries it ranged from 4.9% ha formattato: Tipo di carattere: Corsivo

295	(Finland and Sweden) to 53% (Cyprus) (Pires et al., 2011). Another study attributed to pork 59.9%
296	to 53.9% of the human cases reported in Italy, whereas poultry meat and table eggs were considered
297	less important Salmonella sources, responsible for 24.4% to 31.0% and for 15.1% to 15.7% of the
298	cases, respectively (de Knegt et al., 2015). Survival of Salmonella in dry-cured pork salami can
299	contribute to the exposure of the Italian consumer and the results of our study are consistent with
300	this hypothesis.

302 4.1 Presence of Salmonella in GRM samples and dry-cured salami

- 303 Salmonella was isolated from 14 % of the GRM batches and a significant relationship was shown 304 between initial Salmonella load of GRMs and presence of the pathogen in salami at the end of 305 curing. These findings underline that hygienic conditions of raw materials are of great importance 306 for microbiological risk mitigation and that curing does not always ensure safe productions. A limited proportion (ranging from 27% for salami to 37% for GRMs) of PCR-positive samples 307 308 were culture-confirmed. Among the possible explanations could be the high sensitivity of real-time PCR that has been demonstrated by several studies. In this respect, Rodriguez-Lazaro et al. (2014) 309 observed that a real-time PCR protocol was able to detect down to 2-4 Salmonella CFU in 25 g of 310 different samples, including raw pork. That protocol was validated by Delibato et al. (2014), 311 312 showing that it was an excellent alternative to the ISO 6579:2002 standard with a limit of detection down to 10 CFU per 25 g. 313 Other possible explanations could be the ability of PCR to amplify DNA from dead bacteria 314
- 315 (Barbau-Piednoir et al., 2014; Li et al., 2013; Wolffs et al., 2005), as could be the case in cured
- salami, and the overgrowth of commensal flora in culture media, inhibiting or masking Salmonella
- 317 colonies in presence of low *Salmonella* loads, like those observed in this study.
- 318 As regards the size of sampling aliquots for microbiological testing, the increased probability of 13

319	confirming PCR-positive GRMs starting from 50 g instead of 25 g shows how critical the sample
320	size can be in low-contamination samples (Figure 1a). On the other hand, the probability of
321	confirming PCR-positive samples in cured salami was similar starting from 25 g and 50 g (Figure
322	1b). The different effect of sample size on the probability of confirmation observed between GRMs
323	and salami could be hypothetically due to a more homogeneous distribution of the viable pathogen
324	in salami compared to GRMs as a possible consequence of bacterial diffusion in the $\underline{first \ hours \ of}$
825	salami curing when bacteria can swarm in the food matrix. transition from GRM to salami.
326	Although Regulation (EC) 2073/2005 defines the food safety criterion for Salmonella in mineed
327	salami meat and (food category 1.8 - meat products intended to be eaten raw) as "absence in 25 g
328	in five sampling units" , ". Our our results highlight that <u>a larger sample sampling size unit c</u> ould be
329	reconsidered- for higher sensitivity at unit level. to improve food safety. For example, this could
330	increase the confirmation rate of a screening PCR when the CT values are high. Salmonella
331	regulations setting large [*] sample sizes exist outside Europe, as is the case of USA standards
332	(USDA/FSIS, 2014), which require a sample portion of 325 ± 6 g for <i>Salmonella</i> detection in raw
333	meat and rea dy to eat foods. In particular, a larger sample size should be considered when the CT
334	values of a screening PCR are high.

4.2 Salmonella serovars in GRMs and salami

337	Most samples of GRMs were contaminated by S. Derby and S. Typhimurium monophasic variant		
338	(antigenic formula 4,[5],12:i: -) and S. Derby was also prevalent in dry-cured salami. This result is		
339	consistent with the host-adapted nature of S. Derby known to be associated with pigs (Uzzau et al.,		
340	2000) and most common in Italian slaughter pigs (Bonardi et al., 2003; 2016; Piras et al., 2011). At		
341	the same time, this serotype is not devoid of pathogenic potential for humans, as foodborne		
342	infections by S. Derby have been recently reported in Spain (Arnedo-Pena et al., 2016), Germany		
343	(Frank et al., 2014), France (Kerouanton et al., 2013) and Italy (Enternet Reference Laboratory of 14		

344	Emilia-Romagna - surveillance data). S. Typhimurium monophasic variant also has been
345	increasingly reported in both pig populations and humans affected by salmonellosis in several
346	European countries (Argüello et al., 2014; Bonardi et al., 2016; EFSA and ECDC, 2016; Gossner et
347	al., 2012) and it and it was responsible for 46% of the human salmonellosis cases notified in Emilia-
348	Romagna region in 2015 (Enternet Reference Laboratory of Emilia-Romagna - surveillance data).
349	Serotyping and PFGE of isolates showed a variety of strains inside positive batches of cured salami
350	sometimes confirming the presence of the types detected in the corresponding GRMs and
351	sometimes not. This could be mostly the effect of typing limited numbers of colonies, normally
352	ranging from two to three per sample. A larger variety of serovars was detected in cured salami than
353	in GRMs. The larger sample portion tested for each salami batch (375 g; i.e. $25 \text{ g} + 50 \text{ g}$ times 5
354	sampling units) than for GRMs (75 g; i.e. 25 g + 50 g) could explain this difference. At the same
355	time, the presence of mixed populations of Salmonella in GRMs and their final products is
356	suggestive of a diverse and complex origin of the contamination, which could have been originated
357	from raw meat as well as from other ingredients, equipment and workers. For instance, pepper
358	added to GRMs has been demonstrated as a source of contamination in different outbreaks
359	(Gieraltowski et al., 2013; Jernberg et al., 2015). In addition, the role of the environment as
360	contamination source for pig meat was reported both in pig slaughterhouses (Andreoli et al., 2017;
361	Gomes-Neves et al., 2012;) and in salami producing plants (Andreoli et al., 2017).
362	
363	4.3 Influence of physicochemical parameters

364	Reduction of GRM contamination by <i>Salmonella</i> should be seen as a multicomponent action along
365	the pork production chain, including lowering of infection prevalence in swine population and
366	adoption of proper hygiene procedures during slaughter and meat processing. In our study, The the
367	aw lowering was the only factor able-statistically correlated to the reduction of to reduce Salmonella

368	persistence in cured salami, and this effect was related to the curing time. Nevertheless, standard
369	curing, as applied by the producers involved in the study, did not satisfactorily mitigate the risk of
370	Salmonella being present in the end product, as about 30% of the batches and 13% of the salami
371	produced from contaminated GRMs were still positive after curing. Conversely, additional curing
372	was effective in reducing Salmonella survival to below 1%.

373	Salmonella-negative	e salami at the end	d of curing confirms	that this parameter i	s critical for the safety
	~				

- 374 of dry-cured products (Lucke, 2000). <u>Regarding Salmonella</u> inactivation because of a_w lowering,
- B75 our data show a positive correlation between <u>aw</u> reduction and <u>Salmonella</u>-negative results in
- 376 contaminated batches of salami. Comparing our results to other studies on dry fermented Italian
- style salami, we found the lowest a_wvalue (0.986) ever reported in *Salmonella*-positive salami.
- 378 Other studies on Cacciatore, Milano and Felino salami reported awreduction values not lower than
- 879 0.930-0.940 in salami at the end of curing (Mataragas et al., 2015a; 2015b) and observed that
- 380 <u>Salmonella inactivation in these products was a multifactorial process influenced by pH and a</u>
- B81 lowering, together with fermentation temperature. <u>"Those studies were performed inoculating</u>
- $382 \qquad Salmonella (ranging from 10⁴ 10⁵ CFU/g to 10⁵ 10⁶ CFU/g) and monitoring its progression in$
- the final products (Mataragas et al., 2015a, 2015b). On the contrary, we tested natural contaminated
- 384 salami and followed *Salmonella* decrease during curing up to negativity of the samples, regardless
- B85 of the standard curing time proposed by the different producers. <u>Our results highlight that</u>
- B86 Salmonella, was still not inactivated at very low aw values (0.896-0.926) and this finding is
- 387 important for safety assurance of fermented products. Rispetto all'inattivazione di Salmonella con
- 388 all'abbassamento dall'aw, I nostril risultati indicano una correlazione tra l'abbassamento dell'aw e la negativizzazione dei salami. Comunque
- 889 abbiamo trovato salalmi positive fino a 0.896, più basso di valori considerati in altri studi su salami
- B90 italiani (dry fermented Italian style salami). IL limite di inattivazione di S. conseguente
- 391 allabbasamento dell'aw è certamnete inferior a 0,896. Come evisto dai due Mataragas cul controllo
- 392 di salmonella occorre consiedaret l'interaizone tra diversi fattori. Sottolneare che Hivelli

	ha formattato	
	ha formattato	
	ha formattato	····
	ha formattato	<u> </u>
	ha formattato	
	ha formattato	
	ha formattato	
	ha formattato	[]
	ha formattato	
1//	ha formattato	
//	ha formattato	
1	ha formattato	
///	ha formattato	
1/1	ha formattato	
7	ha formattato)
//	ha formattato	
7	ha formattato	
1	ha formattato	
1	ha formattato	
1	ha formattato)
1	ha formattato	[]
	ha formattato	
1	ha formattato	<u></u>
1	ha formattato	
Y	ha formattato	
Y	ha formattato	<u></u>
Y	ha formattato	
	ha formattato	[]
	ha formattato	
	ha formattato	<u></u>
	ha formattato	
	ha formattato	(
	ha formattato	<u></u>
	ha formattato	[]
1		<u> </u>

393	dicontaminazione rano quelli naturali!! The influence of a _w on the probability to obtain <i>Salmonella</i> -
394	negative salami at the end of curing confirms that this parameter is critical for the safety of dry-
395	cured products (Lucke, 2000). Water activity threshold values for Italian dry-cured salami have
396	been reported, indicating that <i>Salmonella</i> should be inhibited below 0.94 (Barbuti et al., 1993).
397	Nevertheless, our results show that a large proportion (80%) of Salmonella-positive salami had
398	values lower than 0.94 (0.896-0.926). Consistent with our results, a study on Italian Cacciatore and
399	Felino salami reported that the drop of a _w to 0.928-0.936 values during curing did not affect
400	<i>Salmonella</i> survival in the final products (Mataragas et al., 2015). Another study on dry fermented
401	sausages proposed a _w target values <u>≤</u> 0.90 to inhibit <i>Salmonella</i> (Lucke, 2000), which seem difficul
402	to reach in traditional Italian pork salami because of technological constraints.

The influence of curing duration on Salmonella survival is apparent in our study as is its reverse 403 404 correlation to aw, the only physicochemical parameter showing influence on Salmonella survival. In particular, extending curing by additional 21-38 days after the standard period of 20-48 days, the 405 406 prevalence of positive salami dropped from 13.3% to 3.3%. All initially positive batches turned out negative after an overall duration of curing varying between 49 and 86 days. Therefore, reduced 407 408 curing time appears to be one of the main risk factors in salami production, compromising the inhibition of Salmonella. For this reason, curing duration should be clearly considered by 409 manufacturers of traditional dry-cured salami as a critical safety factor. 410 411 In our study, NaCl and pH did not appear to influence the probability to obtain contaminated salami

at the end of curing in the context of our study. This could be due to values of those parameters far
from inhibiting levels for *Salmonella*. In this respect, Barbuti et al. (1993) reported an inhibitory
level for *Salmonella* of 6% NaCl, far above the highest value observed in a positive salami in our

415 study (i.e. 4.28%).

416 Different experimental studies on Italian pork salami were carried out, where the production

417	conditions, ingredients and additives concentration were kept under control, highlighting the role of
418	starter culture, temperature, relative humidity, pH and aw on Salmonella survival (Barbuti and
419	Parolari, 2002; Mataragas et al., 2015; Pisacane et al., 2015;). On the contrary, our study
420	investigated Salmonella contamination of salami in field conditions, consequently many processing
421	details (such as temperature and relative humidity) and the concentration of preservatives (nitrites,
422	nitrates, ascorbate) were not communicated by the manufactures. Unlike experimental studies, field
423	studies cannot control the majority of most of processing conditions, but they have the advantage of
424	referring to the products actually placed on the market, therefore representing the real consumer
425	exposure to Salmonella.

427 5. Conclusions

Although different pork products or infection routes could be involved in the transmission of 428 Salmonella from pigs to humans, our results highlight that production of traditional salami does not 429 always ensures safe cured products. This appears to be linked to excessively short curing, as 430 431 currently applied by the industry. This factor, associated with the considerable proportion of contaminated meat mixtures used as starting raw material in salami processing translates into a non-432 negligible risk to the consumers. Not surprisingly, we found that the probability of putting 433 434 contaminated products on the market was correlated to the contamination level of the raw material, 435 asking for more efforts to reduce the starting contamination. Therefore, the selection hygiene level 436 of raw meat is critical for safe production of ready-to-eat fermented products, together with the 437 improvement and maintenance of appropriate Good Hygienic Practices and Good Manufacturing 438 Practices to reduce environmental contamination.

- 439 Among the physicochemical parameters considered, in the study conditions, only a_w showed an
- 440 effect in reducing the probability of contamination at the end of curing, suggesting that production

441	of soft salami characterized by high aw values appears to negatively impact their microbiological
442	safety. Nevertheless, the addition of preservatives, such as nitrites and nitrates (maximum level 150
443	ppm each according to EU Regulation 1129/2011), may contribute to control Salmonella growth in
444	dried fermented sausages even when pH and aw values are permissive (Hospital et al., 2014).
445	Finally, the observed increased probability of detecting Salmonella by ISO 6579:2002 starting from
446	larger samples of GRMs (50g of sample vs. 25g) should be carefully considered in its potential
447	impact on food safety outcomes of both industry and competent authorities through their own-
448	checks and official controls, respectively.

450 Acknowledgements

- 451 The authors gratefully acknowledge Dott. Gisella Pizzin and Mrs. Ida Poli of the University of
- 452 Parma for their technical support and R-Biopharm for real-time PCR equipment.

453 Figure 1

454 Probabi	ity of culture-co	nfirmation of rea	l time PCR	positive sam	ples as a	function of	of the CT-value
-------------	-------------------	-------------------	------------	--------------	-----------	-------------	-----------------

- 455 of PCR for GRM (panel A) and cured salami (panel B). Blue and red lines represent the probability
- 456 of culture-confirmation for sampling aliquots of 25 g and 50 g, respectively. Solid lines represent
- 457 the best model fits; dashed lines represent the 95% confidence intervals. Blue and red dots represent
- the occurrence (top) or not (bottom) of a culture-confirmation for sampling aliquots of 25 g and 50
- 459 g, respectively.

460

461 References

462	1. Andreoli, G., Merla, C., Valle, C.D., Corpus, F., Morganti, M., D'incau, M., Colmegna, S.,
463	Marone, P., Fabbi, M., Barco, L., Carra, E., 2017. Foodborne salmonellosis in Italy:
464	Characterization of Salmonella enterica serovar Typhimurium and monophasic variant
465	4,[5],12:i- isolated from salami and human patients. J. Food Prot. 14, 632-639.
466	2. <u>1.</u> Anonymous, 2005. Regulation No 2073/2005 of 15 November 2015 on microbiological
467	eriteria for foodstuffs. O.J.E.U. L338, 1-26.
468	3. <u>1.</u> Anonymous, 2011. Regulation EU No 1129/2011 of 11 November 2011 amending Annex II
469	to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by
470	establishing a Union list of food additives. O.J.E.U. L 295, 1 177.
471	4-2. Argüello, H., Sørensen, G., Carvajal, A., Baggesen, D. L., Rubio, P., Pedersen, K., 2014.
472	Characterization of the emerging Salmonella 4,[5],12:i:- in Danish animal production
473	Foodborne Pathog. Dis. 11, 366-372.
474	5-3. Arnedo-Pena, A., Sabater-Vidal, S., Herrera-León, S., Bellido-Blasco, J.B., Silvestre-
475	Silvestre, E., Meseguer-Ferrer, N., Yague-Muñoz, A., Gil-Fortuño, M., Romeu-García, A.,
476	Moreno-Muñoz, R., 2016. An outbreak of monophasic and biphasic Salmonella
477	Typhimurium, and Salmonella Derby associated with the consumption of dried pork sausage
478	in Castellon (Spain). Enferm. Infecc. Microbiol. Clín. pii: S0213-005X(15)00452-8.
479	6.4. Barbau-Piednoir, E., Mahillon, J., Pillyser, J., Coucke, W., Roosens, N.H., Botteldoorn, N.,
480	2014. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar
481	Enteriditis. J. Microbiol. Methods 103, 131-137.
482	7-5.Barbuti, S., Maggi, A., Chisi, M., Dellapina, G., Campanini, M., 1993. Salmonella in
483	prodotti carnei: incidenza e caratterizzazione degli isolati. [Salmonella in meat products:
484	incidence and characterization of isolates - language Italian] Proceedings of the First Italian
485	Congress of Science and Technology of Food, Parma, Italy, $18t^{h} - 20^{th}$ October1993,

486	Chiriotti publisher.	
487	8.6.Barbuti S., Parolari G., 2002. Validation of manufacturing process to control pathogenic	ha formattato: Evidenziato
488	bacteria in typical dry fermented products. Meat Sci. 62, 323-329.	
489	9.7.Barco, L., Lettini, A.A., Ramon, E., Longo, A., Saccardin, C., Dalla Pozza, M.C., Ricci, A.,	
490	2011. A rapid and sensitive method to identify and differentiate Salmonella enterica	
491	serotype Typhimurium and Salmonella enterica serotype 4,[5],12:i:- by combining	
492	traditional serotyping and multiplex polymerase chain reaction. Foodborne Pathog. Dis. 8,	
493	741-743.	
494	10-8. Bonardi, S., Brindani, F., Pizzin, G., Lucidi, L., D'Incau, M., Liebana, E., Morabito,	
495	S., 2003. Detection of Salmonella spp., Yersinia enterocolitica and verocytotoxin-producing	
496	Escherichia coli O157 in pigs at slaughter in Italy. Int. J. Food Microbiol. 85, 101-110.	
497	11-9. Bonardi, S., Alpigiani, I., Bruini, I., Barilli, E., Brindani, F., Morganti, M., Cavallini,	
498	P. Bolzoni, L., Pongolini, S., 2016. Detection of Salmonella enterica in pigs at slaughter and	
499	comparison with human isolates in Italy. Int. J. Food Microbiol. 218, 44-50.	
500	12.10. Coloretti, F., Chiavari, C., Armaforte, E., Carri, S., Castagnetti, G.B., 2008.	
501	Combined use of starter cultures and preservatives to control production of biogenic amines	
502	and improve sensorial profile in low-acid salami. J. Agric. Food Chem. 56, 11238-11244.	
503	13.11. de Knegt LV, Pires S.M., Hald, T., 2015. Using surveillance and monitoring data of	
504	different origins in a Salmonella source attribution model: a European Union example with	
505	challenges and proposed solutions. Epidemiol. Infect. 143, 1148-1165.	
506	14.12. Delibato, E., Rodriguez-Lazaro, D., Gianfranceschi, M., De Cesare, A., Comin, D.,	
507	Gattuso, A., Hernandez, M., Sonnessa, M., Pasquali, F., Sreter-Lancz, Z., Saiz-Abajo, M.J.,	
508	Pérez-De-Juan, J., Butrón, J., Prukner-Radovcic, E., Horvatek Tomic, D., Johannessen,	
509	G.S., Jakočiūnė, D., Olsen, J.E., Chemaly, M., Le Gall, F., González-García, P., Lettini,	
510	A.A., Lukac, M., Quesne, S., Zampieron, C., De Santis, P., Lovari, S., Bertasi, B., Pavoni,	

511	E., Proroga, Y.T,. Capuano, F., Manfreda, G., De Medici, D., 2014. European validation of	
512	Real-Time PCR method for detection of Salmonella spp. in pork meat. Int. J. Food	
513	Microbiol. 184,134-138.	
514	15:13. EFSA (European Food Safety Agency) and ECDC (European Centre for Disease	
515	Prevention and Control), 2015. The European Union summary report on trends of zoonoses,	
516	zoonotic agents and food-borne outbreaks in 2014. EFSA Journal 13 (12), 4329.	
517	16.14. EFSA (European Food Safety Agency) and ECDC (European Centre for Disease	
518	Prevention and Control), 2016. The European Union summary report on trends of zoonoses,	
519	zoonotic agents and food-borne outbreaks in 2015. EFSA Journal 14 (12), 4634.	
520	17.15. Emberland, K.E., Nygård, K., Heier, B.T., Aavitsland, P., Lassen, J., Stavnes, T.L.,	
521	Gondrosen, B., 2006. Outbreak of Salmonella Kedougou in Norway associated with salami,	
522	April-June 2006. Euro Surveill., 11(7):E060706.3.	
523	<u>16. AnonymousEuropean Commission, 2005. Commission Regulation (EC) Regulation-No</u>	
524	2073/2005 of 15 November 2015 on microbiological criteria for foodstuffs. Off. J. Eur. U.	ha formattato: Evidenziato
524 525	<u>2073/2005 of 15 November 2015 on microbiological criteria for foodstuffs. <mark>Off, J. Eur, U-</mark> nion L338, 1-26.</u>	ha formattato: Evidenziato
		ha formattato: Evidenziato
525	nion <u>L338, 1-26.</u>	ha formattato: Evidenziato
525 526	nion L338, 1-26. <u>17. European Commission Anonymous</u> , 2011. Commission Regulation (EU) No 1129/2011 of 11	ha formattato: Evidenziato ha formattato: Evidenziato
525 526 527	nion L338, 1-26. <u>17. European CommissionAnonymous</u> , 2011. Commission Regulation (EU) No 1129/2011 of 11 <u>November 2011</u> -amending Annex II to Regulation (EC) No 1333/2008 of the European	
525 526 527 528	nion L338, 1-26. <u>17. European CommissionAnonymous</u> , 2011. Commission Regulation (EU) No 1129/2011 of 11 <u>November 2011</u> -amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur.	
525 526 527 528 529	nion L338, 1-26. <u>17. European CommissionAnonymous</u> , 2011. Commission Regulation (EU) No 1129/2011 of 11 <u>November 2011</u> -amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. <u>Union O.J.E.U.</u> L 295, 1-177.	
525 526 527 528 529 530	 nion L338, 1-26. <u>17. European CommissionAnonymous</u>, 2011. Commission Regulation (EU) No 1129/2011 of 11 November 2011-amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union O.J.E.U. L 295, 1-177. 18. Frank, C., Werber, D., Askar, M., Blümel, B., Rabsch, W., Simon, C., Sagebiel, D., 	
525 526 527 528 529 530 531	 nion L338, 1-26. <u>17. European CommissionAnonymous</u>, 2011. Commission Regulation (EU) No 1129/2011 of 11 <u>November 2011-amending Annex II to Regulation (EC) No 1333/2008 of the European</u> <u>Parliament and of the Council by establishing a Union list of food additives.</u> Off. J. Eur. <u>Union O.J.E.U.</u> L 295, 1-177. 18. Frank, C., Werber, D., Askar, M., Blümel, B., Rabsch, W., Simon, C., Sagebiel, D., Siffczyk, C., Wichmann-Schauer, H., 2014. Catering risky food to those at-risk: <i>Salmonella</i> 	
525 526 527 528 529 530 531 532	 nion L338, 1-26. 17. European CommissionAnonymous, 2011. Commission Regulation (EU) No 1129/2011 of 11 November 2011-amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union O.J.E.U. L 295, 1-177. 18. Frank, C., Werber, D., Askar, M., Blümel, B., Rabsch, W., Simon, C., Sagebiel, D., Siffczyk, C., Wichmann-Schauer, H., 2014. Catering risky food to those at-risk: Salmonella Derby outbreak among the elderly in Berlin, December 2013/January 2014. Proceedings of 	
525 526 527 528 529 530 531 532 533	 nion L338, 1-26. <u>17. European CommissionAnonymous, 2011. Commission Regulation (EU) No 1129/2011 of H</u> <u>November 2011-amending Annex II to Regulation (EC) No 1333/2008 of the European</u> Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. <u>Union O.J.E.U.</u> L 295, 1-177. 18. Frank, C., Werber, D., Askar, M., Blümel, B., Rabsch, W., Simon, C., Sagebiel, D., Siffczyk, C., Wichmann-Schauer, H., 2014. Catering risky food to those at-risk: <i>Salmonella</i> Derby outbreak among the elderly in Berlin, December 2013/January 2014. Proceedings of the European Scientific Conference on Applied Infectious Disease, Stockholm 5-7 	

537	Saathoff-Huber, L., Von Stein, D., Kissler, B., Parish, M., Elder, D., Howard-King, V.,
538	Besser, J., Sodha, S., Loharikar, A., Dalton, S., Williams, I., Barton Behravesh, C., 2013.
539	Nationwide outbreak of Salmonella Montevideo infections associated with contaminated
540	imported black and red pepper: warehouse membership cards provide critical clues to
541	identify the source. Epidemiol. Infect. 141,1244-1252.
542	20. Gomes-Neves, E., Antunes, P., Tavares, A., Themudo, P., Cardoso, M.F., Gärtner, F., Costa,
543	J.M., Peixe, L., 2012. Salmonella cross-contamination in swine abattoirs in Portugal:
544	Carcasses, meat and meat handlers. Int. J. Food Microbiol. 157, 82-87.
545	21. Gossner, C.M., van Cauteren, D., Le Hello, S., Weill, F.X., Terrien, E., Tessier, S., Janin,
546	C., Brisabois, A., Dusch, V., Vaillant, V., Jourdan-da Silva, N., 2012. Nationwide outbreak
547	of Salmonella enterica serotype 4,[5],12:i:- infection associated with consumption of dried
548	pork sausage, France, November to December 2011. Euro Surveill. 2012 Feb 2;17(5). pii:
549	20071.
550	22. Hjertqvist, M., Luzzi, I., Löfdahl, S., Olsson, A., Rådal, J., Andersson, Y., 2006. Unusual
551	phage pattern of Salmonella Typhimurium isolated from Swedish patients and Italian
552	salami. Euro Surveill. 11(2):E060209.3
553	23. Hospital, X.F., Hierro, E., Fernández, M., 2014. Effect of reducing nitrate and nitrite added
554	to dry fermented sausages on the survival of Salmonella Typhimurium. Food Res. Int. 62,
555	410-415.
556	24. Hospital, X.F., Hierro, E., Stringer, S., Fernández, M., 2016. A study on the toxigenesis by
557	Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. Int. J. Food
558	Microbiol. 218, 66-70.
559	25. Kerouanton, A., Rose, V., Weill, F.X., Granier, S.A., Denis, M, 2013. Genetic diversity and
560	antimicrobial resistance profiles of Salmonella enterica serotype Derby isolated from pigs,
561	pork, and humans in France. Foodborne Pathog. Dis. 10, 977-984.

562	26. King, A.M., Glass, K.A., Milkowski, A.L., Seman, D.L., Sindelar, J.J., 2016. Modelling the	
563	impact of ingoing sodium nitrite, sodium ascorbate, and residual nitrite concentrations on	
564	growth parameters of Listeria monocytogenes in cooked, cured pork sausage. J. Food Prot.	
565	79, 184-193.	
566	27. Kuhn, K., Torpdahl, M., Frank, C., Sigsgaard, K., Ethelberg, S., 2011. An outbreak of	
567	Salmonella Typhimurium traced back to salami, Denmark, April to June 2010. Euro	
568	Surveill. 12;16(19).	
569	28. ISO (International Organization for Standardization), 1996. Meat and meat products.	
570	Determination of chloride content - Part 1: Volhard method. ISO 1841-1:1996. Geneve,	
571	Switzerland.	
572	29. ISO (International Organization for Standardization), 2002. Microbiology of food and	
573	animal feeding stuffs. Horizontal method for the detection of Salmonella spp. ISO	
574	6579:2002. Geneve, Switzerland.	
575	30. ISO (International Organization for Standardization), 2012. Microbiology of food and	
576	animal feeding stuffs. Horizontal method for the detection, enumeration and serotyping of	
577	Salmonella. Part 2: enumeration by a miniaturized most probable number technique. ISO/TS	
578	6579-2:2012. Geneve, Switzerland.	
579	31. Jernberg, C., Hjertqvist, M., Sundborger, C., Castro, E., Lofdahl, M., Pääjärvi, A.,	Codice c
580	Sundqvist, L., Löf, E., 2015. Outbreak of Salmonella Enteritidis phage type 13a infection in	Codice c Codice c
581	Sweden linked to imported dried-vegetable spice mixes, December 2014 to July 2015. Euro	Codice c
582	Surveill. 20(30). pii: 21194.	Codice c Codice c
583	32. Li, M., Zhao, G., Liu, J., Gao, X., Zhang, Q., 2013. Effect of different heat treatments on the	Codice c
584	degradation of Salmonella nucleic acid. J. Food Saf. 33, 536-544.	Codice c
585	33. Lucke, FK. (2000). Quality and safety issues in fermented meat products. Lecture	
586	presented at the Joint Meeting of the Society of Applied Microbiology (UK) and the	
587	Estonian Society for Microbiology on "Microbiological Safety of Food" (Tartu, Estonia) 25	

 Codice campo modificato

 Codice campo modificato

588	34. Luzzi, I., Galetta, P., Massari, M., Rizzo, C., Dionisi, A.M., Filetici, E., Cawthorne, A.,	
589	Tozzi, A., Argentieri, M., Bilei, S., Busani, L., Gnesivo, C., Pendenza, A., Piccoli, A.,	
590	Napoli, P., Loffredo, L., Trinito, M.O., Santarelli, E., Ciofi degli Atti, M.L., 2007. An Easter	
591	outbreak of Salmonella Typhimurium DT 104A associated with traditional pork salami in	
592	Italy. Euro Surveill.;12(4):E11-2	
593	34.35. Mataragas, M., Bellio, A., Rovetto, S., Astegiano, S., Greci, C., Hertel, C., Decastelli	ha formattato: Italiano (Italia), Evidenziato
		ha formattato: Evidenziato
594	L., Cocolin, L., 2015a. Quantification of persistence of the food-borne pathogens <i>Listeria</i>	ha formattato: Italiano (Italia), Evidenziato
595	monocytogenes, and Salmonella enterica, during manufacture of Italian fermented sausages.	ha formattato: Evidenziato
		ha formattato: Italiano (Italia), Evidenziato
596	Food Control 47, 552-559.	ha formattato: Evidenziato
		ha formattato: Inglese (Stati Uniti), Evidenziato
597 598	 35.36. Mataragas, M., Bellio, A., Rovetto, F., Astegiano, S., Decastelli, L., Cocolin, L., 2015b. Risk-based control of food-borne pathogens <i>Listeria monocytogenes</i> and <i>Salmonella</i> 	ha formattato: Tipo di carattere: Corsivo, Inglese (Stati Uniti), Evidenziato
550	20100. Risk bused control of food come pathogens hister a monocytogenes and sumonenta	ha formattato: Tipo di carattere: Corsivo, Evidenziato
599	enterica in the Italian fermented sausages Cacciatore and Felino. Meat Sci. 103, 39-45.	ha formattato: Tipo di carattere: Corsivo, Inglese (Stati Uniti), Evidenziato
600	36.37. Messier, S., Smith, H.J., Tittiger, F., 1989. Survival of Salmonella typhimurium and	ha formattato: Inglese (Stati Uniti), Evidenziato
601	Stanhulogoggus guyaus in Conce colomi of verying solt concentration Con. I. Vot. Dog. 52	ha formattato: Tipo di carattere: Corsivo, Evidenziato
602	<i>Staphylococcus aureus</i> in Genoa salami of varying salt concentration. Can. J. Vet. Res. 53, 84-86.	ha formattato: Tipo di carattere: Corsivo, Inglese (Stati Uniti), Evidenziato
002	01.00.	ha formattato: Tipo di carattere: Corsivo, Evidenziato
603	37.38. Nightingale, K.K., Thippareddi, H., Phebus, R.K., Marsden, J.L., Nutsch, A.L., 2006.	ha formattato: Evidenziato
		Codice campo modificato
604	Validation of a traditional Italian-style salami manufacturing process for control of	Codice campo modificato
605	Salmonella and Listeria monocytogenes. J. Food Prot. 69, 794-800.	Codice campo modificato
		Codice campo modificato
606	38.39. Ockerman, H. W., Basu, L., 2007. Production and consumption of fermented meat	Codice campo modificato
607	products. In: Toldrá, F. (Ed.), Handbook of fermented meat and poultry. Blackwell	Codice campo modificato
		Codice campo modificato
608	Publishing, Iowa, pp. 9-15.	
609	39.40. Piras, F., Brown, D.J., Meloni, D., Mureddu, A., Mazzette, R., 2011. Investigation of	
610	Salmonella enterica in Sardinian slaughter pigs: prevalence, serotype and genotype	
611	characterization. Int. J. Food Microbiol. 151, 201-209.	
612	40.41. Pires, S.M., de Knegt L., Hald, T., 2011. Estimation of the relative contribution of	
613	different food and animal sources to human Salmonella infections in the European Union.	

614	Question No EFSA-Q-2010-00685. Published as an external scientific report on 28 July
615	2011: http://:www.efsa.europa.eu/en/supporting/pub/184e.htm
616	41.42. Pisacane, V., Callegari, M.L., Puglisi E., Dallolio G., Rebecchi A., 2015. Microbial
617	analyses of traditional Italian salami reveal microorganisms transfer from the natural casing
618	to the meat matrix. Int. J. Food Microbiol. 207, 57-65.
619	42:43. PulseNet, 2010. One-day (24-28 h) standardized laboratory protocol for molecular
620	subtyping of Escherichia coli O157:H7, Salmonella serotypes, Shigella sonnei, and Shigella
621	flexneri by Pulsed Field Gel Electrophoresis (PFGE). PulseNet Int., 1-16.
622	43:44. R Development Core Team, 2015. R: A Language and Environment for Statistical
623	Computing. R Foundation for Statistical Computing, Vienna.
624	44.45. Rodriguez-Lazaro, D., Gonzalez-García, P., Delibato, E., De Medici, D., García-
625	Gimeno, R.M., Valero, A., Hernandez, M., 2014. Next day Salmonella spp. detection
626	method based on real-time PCR for meat, dairy and vegetable food products. Int. J. Food
627	Microbiol. 184,113-120.
628	45.46. Scaltriti, E., Sassera, D., Comandatore, F., Morganti, M., Mandalari, C., Gaiarsa, S.,
629	Bandi, C., Zehender, G., Bolzoni, L., Casadei, G., Pongolini, S., 2015. Differential single
630	nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica
631	serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel
632	electrophoresis. J Clin Microbiol 53:1227–1238.
633	46.47. Scavia, G., Ciaravino, G., Luzzi, I., Lenglet, A., Ricci, A., Barco. L., Pavan, A.,
634	Zaffanella, F., Dionisi, A.M., 2013. A multistate epidemic outbreak of Salmonella
635	Goldcoast infection in humans, June 2009 to March 2010: the investigation in Italy. Euro
636	Surveill. 18 (11), 20424.
637	47.48. Talon, R., Leroy-Satrin, S., Fadda, S., 2004. Dry fermented sausages. In: Hui, Y. H.,
638	Goddik, L. M., Josephsen, J., Stanfield, P. S., Hansen, A. S., Nip, W. K., Toldrá, F. (Eds.),

639	Handbook of food and beverage fermentation technology. Marcel Dekker, New York , pp.
640	397-416.
641	48.49. USDA/ FSIS (United States Department of Agriculture/ Food Safety and Inspection
642	Service), 2014. Laboratory Guidebook MLG 4.08 "Isolation and Identification of
643	Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish Products and Carcass and
644	Environmental Sponges" Revised 06/29/14.
645	49.50. Uzzau, S., Brown, D.J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesús, J., Platt,
646	D.J., Olsen, J.E., 2000. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect.
647	125, 229-255.
648	50.51. Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics. S. Springer, New York,
649	USA.
650	51.52. Villaverde, A., Morcuende, D., Estévez, M., 2014. Effect of curing agents on the oxidative
651	and nitrosative damage to meat proteins during processing of fermented sausages. J. Food
652	Sci. 79, C1331-1342.
653	52.53. Wolffs, P., Norling, B., Radstrom, P., 2005. Risk assessment of false-positive quantitative
654	real-time PCR results in food, due to detection of DNA originating from dead cells. J.
655	Microbiol. Methods 60, 315-323.
656	53.54. Zanardi, E., Ghidini, S., Conter, M., Ianieri, A., 2010. Mineral composition of Italian salami
657	and effect of NaCl partial replacement on compositional, physico-chemical and sensory
658	parameters. Meat Sci. 86, 742-747.