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CT: Computed Tomography 

US: ultrasound 

TIME: Tumor Immune MicroEnvironment 

PD-L1: Programmed Death Ligand-1 

TILs: Tumor Infiltrating Lymphocytes 

PD-1: Programmed cell Death protein-1 

CT-SFs: CT-derived Semantic Features 

TXT: texture 

EFC: effect 

MRG: margins 

CT-RFs: CT-derived Radiomic Features 

ROC: Receiver Operating Characteristic 

AUC: Area Under the Curve 

ICI: Immune Checkpoint Inhibitor 
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GLDM: Gray Level Dependence Matrix  

GLRLM: Gray Level Run Length Matrix  

GLSZM: Gray Level Size Zone Matrix 
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Abstract 

Objectives: Qualitative and quantitative CT imaging features might intercept the 

multifaceted tumor immune microenvironment (TIME), providing a non-invasive approach to 

design new prognostic models in NSCLC patients. 

Materials and Methods: Our study population consisted of 100 surgically resected NSCLC 

patients among which 31 served as a validation cohort for quantitative image analysis. TIME 

was classified according to PD-L1 expression and the magnitude of Tumor Infiltrating 

Lymphocytes (TILs) and further defined as hot or cold by the tissue analysis of effector 

(CD8-to-CD3high/PD-1-to-CD8low) or inert (CD8-to-CD3low/PD-1-to-CD8high) phenotypes. CT 

datasets acted as source for qualitative (semantic, CT-SFs) and quantitative (radiomic, CT-

RFs) features which were correlated with clinico-pathological and TIME profiles to determine 

their impact on survival outcome.  

Results: Specific CT-SFs (texture [TXT], effect [EFC]  and margins [MRG]) strongly 

correlated to PD-L1 and TILs status and showed significant impact on survival outcome 

(TXT, HR:3.39, 95% CI 1.12-10-27, P<0.05; EFC, HR:0.41, 95% CI 0.18-0.93, P<0.05; 

MRG, HR:1.93, 95% CI 0.88-4.25, P=0.09). Seven CT derived radiomic features were able 

to sharply discriminate cases with hot (inflamed) vs cold (desert) TIME, which also exhibited 

opposite OS (long vs short, HR:0.09, 95% CI 0.04-0.23, P<0.001) and DFS (long vs short, 

HR:0.31, 95% CI 0.16-0.58, P<0.001). Moreover, we identified 6 prognostic radiomic 

features among which ClusterProminence displayed the highest statistical significance 

(HR:0.13, 95% CI 0.06-0.31, P<0.001). These findings were independently validated in an 

additional cohort of NSCLC (HR:0.11, 95% CI 0.03-0.40, P=0.001). Finally, in our training 

cohort we developed a multiparametric prognostic model, interlacing TIME and clinico-

pathological characteristics with CT-SFs (ROC curve AUC:0.83, 95% CI 0.71-0.92, 

P<0.001) or CT-RFs (AUC: 0.91, 95% CI 0.83-0.99, P<0.001), which appeared to 



 5 

outperform pTNM staging (AUC: 0.66, 95% CI 0.51-0.80, P<0.05) in the risk assessment of 

NSCLC. 

Conclusion: Higher order CT extracted features associated with specific TIME profiles may 

reveal a radio-immune signature with prognostic impact on resected NSCLC. 

 

Keywords: lung cancer, CT imaging, immune contexture, radiomics, prognostic signature 
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1. Introduction 

In the past ten years several non-invasive strategies emerged as alternative ways to 

prevent or treat cancer patients, including NSCLC [1]. Advanced surgical procedures [2,3] 

coupled with the genomic characterization of the disease on circulating tumor DNA from 

exosomes or tumor cells (liquid biopsy), improved the path to a rapid diagnosis, finally 

avoiding patient discomfort [4].  

Parallel to next generation sequencing (NGS) applications, several imaged-based 

systems have been exploited to implement cancer management from diagnosis to outcome 

[5,6]. For example, the high throughput data mining approach of radiologic images 

(radiomics) demonstrated the ability to define tumor masses by inferring volumetric, 

densitometric and morphological features [7–9].  

 The basic idea of radiomics is to overcome the “eye limited resolution” diagnosis 

intrinsic to computed tomography (CT), magnetic resonance imaging (MRI) and positron 

emission tomography (PET) techniques by extrapolating high-computed data to resolute 

qualitatively and quantitatively complex images. If radiomics can resolve images in numbers, 

numbers can be used to define statistically testable algorithms, generate machine-learning 

approaches to define patterns, predict outcome or unveil hidden insights [10–12]. The 

relevance of this strategy in cancer has been established by the National Cancer Institute 

(NCI) imaging program, that promoted the Quantitative Imaging Network (QIN) initiative to 

provide clinical grade biomarkers for cancer detection, prognosis and prediction of response 

to therapy [13,14].  

 Several reports showed the prognostic/predictive power of CT, MRI, PET and 

ultrasound (US) based radiomics in different neoplasms [15], also revealing associations 

with pathological Tumor-Node-Metastasis (pTNM) staging, histotype, mutational status, 
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genotypic characteristics (radiogenomic), tumor metabolism and immune-related processes 

[6,16–21].  

In spite of the striking success of immunotherapy, the potential correlation of imaging 

data with cancer immune profile has been only partially investigated [22]. Recent studies 

have identified radiomic based biomarkers of response to immune checkpoint inhibitors (ICI) 

in melanoma and NSCLC [23–25]. Accordingly, a radiomic signature for CD8+ cells has 

been proposed as predictor of ICI efficacy in advanced solid tumors [24].  

 Based on the assessment of tumor infiltrating lymphocytes (TILs) and  PD-L1 score, 

new classifications of the tumor immune microenvironment (TIME) exhibited prognostic and 

predictive significance in ICI treated NSCLC patients [26–29]. 

 The question whether radiologic features may reflect specific TIME characteristics 

remains unanswered, although under intense scrutiny. For example, TILs signatures have 

been correlated with defined imaging texture [22] or changes in tissue inflammatory cells 

composition may sustain a pseudoprogressive radiological patterns in NSCLC [30,31]. 

These observations indicate that the longstanding knowledge on cancer immunity cycle may 

be reprised by high-computed radiomics ultimately decoding TIME profiles. 

 The aim of the present study was to develop and validate a prognostic model 

intersecting radiologic and immunophenotypic features in surgically resected NSCLC 

patients. By this approach, we defined a radio-immune signature with significant impact on 

clinical outcome. Our findings suggest that a strategy involving TIME and CT imaging 

analysis might be endowed with potential predictive power in advanced lung cancer settings. 
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2. Materials and Methods 

2.1 Study Population  

Our study was approved by the Institutional research Review Board for human studies 

(Ethical Committee) of the University-Hospital of Parma (278/2018/OSS*/AOUPR) and in 

accord with principles listed in the Helsinki declaration. Informed consent was waived. 

From January 2011 to December 2015 we collected information from patients with a 

diagnosis of primary NSCLC stage I to IIIa, undergoing lung resections with curative intent 

at the Unit of Thoracic Surgery at the University-Hospital of Parma. All cases were scored 

according to the staging system from the 7th American Joint Committee on Cancer (AJCC, 

[32]). One hundred patients (69 belonging to training and 31 to validation cohorts) fulfilled 

the following inclusion criteria: a) stage I to stage III disease; b) diagnosis of NSCLC with 

complete pathologic report; c) available preoperative thin-section CT images (Picture 

Archiving and Communication System, PACS) within three months before surgery; d) 

adequacy of tissue samples for immunohistochemical (IHC) analysis; e) available complete 

clinical records. Main exclusion criteria were represented by: a) history of drug abuse or 

medications with potential impact on lung diseases; b) active pneumonitis at the time of CT 

scan. A schematic representation of patient selection according to the above described 

criteria is shown in Supplementary Figure S1. 

 
2.2 Morphometric and Immunohistochemical Analysis 

Tissue sections (5 μm thick) were cut from formalin-fixed, paraffin-embedded blocks 

containing surgically resected tumor samples. Sections were stained with hematoxylin eosin 

(H&E), Masson’s Trichrome and scored for morphometric and IHC analyses (see Data in 

Brief for details).  

 
2.3 Definition of TIME 
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To integrate TIME-derived features in our prognostic algorithm we used two different 

approaches. The first was based on PD-L1 levels and CD3+ TILs incidence, as per general 

reported criteria that define type I to IV categories of immune contexture [33]. A second 

approach was adopted to implement this rather simplistic evaluation of TIME. Specifically, 

we computed the fraction of CD8+ cytotoxic cells over the total CD3+ T cell population 

together with the extent of the expression of PD-1 inhibitory receptor on CD8+ TILs. Both 

represents individual estimated TILs parameters whose relative contribution depicts an 

active or quiescent TIME functional state, as suggested by other reports [34,35]. Thus, we 

defined TIME as “hot” when displaying PD-L1high, CD8-to-CD3high and PD-1-to-CD8low and 

“cold” when PD-L1low, CD8-to-CD3low and PD-1-to-CD8high. High and low subsets were 

established according to cut-offs based on CART tree analysis for CD8-to-CD3 and PD-1-

to-CD8 ratios, while for all other investigated parameters median values were employed. In 

addition to CD8 and PD-1, the population of effector phenotypes was investigated by the 

IHC detection of CD57 (NK) and Granzyme B while suppressor subpopulations were defined 

by the expression of CD25 and FOXP3 (Treg) CD4+ lymphocytes.  

A detailed description of our TIME classifications is available in the associated manuscript 

(Data in Brief). 

 
2.4 CT Examination  

CT scans were performed by two CT scanners, either a 6-slice (Emotion 6; Siemens 

Healthineers, Forchheim, Germany) or a second-generation dual-source 128-slice 

(Somatom Definition Flash; Siemens Healthineers) scanner. All scans were acquired at end-

inspiration in craniocaudal direction, capturing the entire lung volume from the apices to the 

pleural recesses and reconstructed with a slice thickness ranging 1–2.5 mm. For the 

purpose of this study, the Digital Imaging and Communications in Medicine (DICOM) 

datasets were retrieved from PACS.  
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2.4.1 Qualitative analysis 

CT datasets reconstructed on lung and mediastinal window settings were qualitatively 

analyzed by a dedicated reader (PP, 3 years-experience in chest imaging), who reviewed 

all CT images and, following reported criteria [36,37], defined five categories of semantic 

features (SFs): shape, margins, texture, structure and effect on parenchyma.  

A senior thoracic radiologist (NS, 13 years-experience in chest imaging) reviewed the 

scoring system and final decision was made in consensus. A detailed description of this 

analysis is reported in the associated manuscript (Data in Brief). 

2.4.2 Quantitative analysis 

All CT datasets were uploaded into a dedicated open-source software for quantitative 

analyses (3dSlicer 4.9.0, www.slicer.org [38]), to extract all radiomic features (RFs).  

Tumors were semi-automatically delineated every three images by means of manually 

drawn regions of interest (ROIs) and a dedicated interpolation algorithm tool was launched 

to calculate a volume of interest (VOI), encompassing the whole lesions. The reader was 

allowed to modify VOI boundaries in case of inadequate segmentation. RF extraction was 

performed by a dedicated function embedded into the segmentation software 

(SlicerRadiomics). Overall, 841 RFs were computed, originating from eight main classes: 1. 

shape based; 2. first order statistics; 3. gray level co-occurrence matrix (GLCM); 4. gray 

level dependence matrix (GLDM); 5. gray level run length matrix (GLRLM); 6. gray level size 

zone matrix (GLSZM); 7. neighboring gray tone difference matrix (NGTDM); 8. wavelet 

transform. To test consistency of RFs extraction, a subset of the study population composed 

of twenty patients (33.3 %) was independently evaluated by a second radiologist (GM, with 

6 years-experience in chest imaging).  

To reinforce the specificity and reliability of our radiomic approach, CT-RFs from 13 control 

tissues (10 lymph nodes and 3 skeletal muscles) of patients not affected by neoplastic 
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diseases and 60 NSCLC lesions belonging to our training cohort were simultaneously 

extracted and subjected to cluster analysis (see Data in Brief for detail). 

2.4.3 Validation Cohort 

To assess the validity of our RF-signature and diminish inter-observer variability due to 

operators with different experience, we repeated our radiomic analysis in additional 31 

NSCLC cases. Semi-automatic segmentations were performed by the same reader who 

was involved in the segmentation of a subset of the test population (GM) and by a junior 

reader (with 1 year-experience in chest imaging), trained for the purposes of lesions’ 

segmentations.  

 
2.5 Statistical Analysis 

The Fisher’s exact test was used to examine the differences in categorical variables, and 

the Mann-Whitney U test to detect differences in continuous variables between groups of 

patients, given that the distribution of data was not normal (Kolmogorov-Smirnov test). 

Overall survival (OS) and disease-free survival (DFS) were estimated by means of the 

Kaplan Meier method. OS was defined as the interval from surgery or start of treatment to 

death from any cause, or the last date the patient was known to be alive; DFS was defined 

as the interval from surgery to the evidence of recurrence disease, or death, or the last date 

the patient was known to be recurrence-free or alive. Both OS and DFS data were censored 

at 5 years. Receiver operating characteristic (ROC) curves were used to test the sensitivity 

and specificity of a marker, with the area under the curve (AUC) being given with its 95% 

confidence interval (CI).  

Log-rank test was performed to determine the difference in survival between groups. OS 

and DFS data were then analysed through Cox regression multivariate models. 

Classification and regression tree (CART) analysis identified specific cut-off values that 

segregated patients by clinical outcomes. P value of 0.05 was set as a threshold of statistical 
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significance. IBM SPSS Statistics v 25.0 (IBM) and Stata 13 with Cart module (Statacorp) 

were used to perform all computational analyses. Heatmaps and matrix analyses were 

performed by freely available modules in “Morpheus” software (Broad, Institute, Cambridge, 

MA, USA).  

2.5.1 Radiomic signature and combined predictive models 

To intersect TIME with radiomic images, we validated an internal pipeline where the tumor 

volume of interest (VOI) (Figure 3A) was used to extract scalable features, CT-RFs (n=841), 

collectively ascribable to one original- and eight wavelet-related major classes (Figure 3B).  

The first step toward our supervised analysis in search of a radio-immune signature was to 

exclude redundant radiomic features by a matrix correlation, setting a threshold at 0.7.  

Next, we conducted univariate correlation test by Mann-Whitney U test evaluating the clinical 

impact of CT-RFs; the features showing significant level of correlation (P < 0.05) were 

selected. The designated CT-RFs, considered as continuous variables, were then 

challenged in a Cox proportional-hazard model. Finally, we developed multiparametric 

prediction models of overall survival, defined from a linear combination and regression 

coefficients of significant clinico-pathological, TIME and CT-imaging features. Model 

validation was performed with repeated 10-fold cross-validation, and the discrimination 

ability of the generated models was evaluated with ROC curves and their area under the 

curve (AUC) values. 
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3. Results 

3.1 Patient Population 

The training set involved 39 squamous cell carcinomas (SCC) and 30 adenocarcinomas 

(ADC) among which 42%, were in stage I (A and B), 33.3% in stage II (A and B) and 24.7% 

in stage IIIA. NSCLC samples were obtained by lobectomy (72%), pneumonectomy (18%) 

and atypical segmental resection (10%). 

EGFR and KRAS mutation involved, respectively, 13% and 10% of tested ADC cases. 

Clinico-pathological characteristics of our patient population are reported in Figure 1A and 

Supplementary Table S1. 

To partly overcome the limitation of sample size, we supported our results including 

a validation cohort of 31 clinico-pathologically matched NSCLC (Supplementary Table S1). 

Noticeably, the entire population of 100 NSCLC patients reached a follow-up of 60 months. 

The impact of clinico-pathological characteristics on survival outcome is reported in 

Table 1 and Supplementary Figure S2. Importantly, as documented by Cox Regression 

hazard models, the prognostic significance of N status in terms of OS was apparent on both 

uni- and multi-variate analysis, while its impact on DFS resulted significant only on univariate 

model. 

 
3.2 Distinctive tumor immune contextures predict survival outcome  

To define a tumor immune signature, we immunohistochemically assessed PD-L1 levels 

and the incidence of effector and suppressor subpopulations of TILs as major determinants 

of TIME characteristics (Figure 1B).   

As predicted by our previous experience [29], PD-L1 levels, TILs incidence and the 

distribution of the four defined immune classes [32], significantly varied across patients and 

histotype (Figure 1A, B).   
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The distribution of the four defined immune classes [33] showed that more than 1/3 

of our NSCLC cohort belonged to class II implying a rather desert immune contexture 

(Figure 1A). The quantitative assessment and the relative contribution of PD-L1 and TILs 

phenotypes to the composition of these classes of TIME are reported in Supplementary 

Table S2.  

Collectively, immune categories (Figure 1Ci and Supplementary Figure S3) or 

individual descriptors (PD-L1 and TILs) did not correlate with survival (Table 1). On the 

opposite, distinct immunophenotypic features predicted the clinical outcome on both 

univariate and multivariate analysis (Table 1). High CD8-to-CD3 ratio resulted in increased 

OS (HR: 0.426, P=0.05) and DFS (HR: 0.330, P=0.001), while low PD-1-to-CD8 ratio 

positively affected OS (HR: 2.955, P=0.007) (Figure 1Cii, iii and Supplementary Figure S3). 

When challenged on multivariate analysis (Table 1), PD-1-to-CD8 ratio maintained a 

statistically significant impact on OS (P=0.005), while CD8-to-CD3 ratio conditioned only 

DFS (P=0.027).  

Thus, we integrated these two phenotypic descriptors with PD-L1 status to distinguish 

“hot” and “cold” TIME (Figure 1D) and test their prognostic significance. These two defined 

subsets were equally distributed in our study population, similarly involving 17% of patients. 

displaying hot (PD-L1high, CD8-to-CD3high and PD-1-to-CD8low) and cold (PD-L1low, CD8-to-

CD3low and PD-1-to-CD8high) TIME. Importantly, the comparative analysis of NSCLC 

patients carrying these distinctive immune categories depicted different prognostic profiles 

(Figure 1E). Prolonged OS (Figure 1Ei) and DFS (Figure 1Eii) were documented in patients 

carrying hot vs cold TIME (median OS: not reached [NR] vs 11 months, HR: 0.124, 95% CI 

0.068-0.356, P<0.001; median DFS: NR vs 5 months; HR: 0.348, 95% CI 0.232-0.795, 

P<0.001), while intermediate survival duration was observed in the remaining cases. 

 
3.3 Semantic imaging features impact on prognosis and encompass specific TIME 
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To initially assess the impact of qualitative CT descriptors on patients’ outcome we analyzed 

shape, margins, texture, structure and effect on parenchyma, whose clinical relevance in 

NSCLC had been previously demonstrated [39].  

The distribution of semantic CT features in our cohort of patients is reported in 

Supplementary Table S3. We observed that association of clinical parameters with CT-SFs 

could identify specific patterns of NSCLC. For example, active smoking correlates with CT 

non-homogeneous structure (P<0.05), while higher incidence of well-defined margins 

(P<0.05) was present in ex- and never smokers (data not shown).  

NSCLC patients with lesions displaying evidence of parenchyma reaction, classified 

as effect, had significantly higher OS (HR: 0.411, P=0.033) compared to their counterpart 

(Table 1, Figure 2A), although without a parallel impact on DFS (Supplementary Figure S4). 

In addition, solid texture was associated with sustained OS (HR: 3.397, P=0.021) and DFS 

(HR: 2.615, P=0.031), while spiculated margins appeared to shorten OS (P=0.099) (Figure 

2A, Supplementary Figure S4). Interestingly, CT effect and margins significantly correlated 

to OS (P<0.01) at multivariate analysis (Table 1).  

 As first step toward the integration of different risk scoring approaches, we correlated 

CT-SFs with tumor immune profiles. High PD-L1 levels were detected in radiologic lesions 

displaying a solid texture and any effects on the surrounding parenchyma (P<0.05), while 

well-defined CT margins were typically observed in TILs-rich cases (P<0.05) (Figure 2B). A 

prominent lymphocyte infiltrate was also associated with CT evidence of tumor effect (Figure 

2C).  

A prominent lymphocyte infiltrate was also associated with CT evidence of tumor 

effect (Figure 2B). The evaluation of CT-SFs occurrence according to the 4 main TIME 

categories indicated that nearly 80% of NSCLC samples displaying an intrinsic inductive 

TIME (Type III) exhibited CT effect on lung parenchyma (not shown). 
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These data collectively indicate that qualitative image analysis may decipher 

distinctive NSCLC immune contextures, potentially providing non-invasive prognostic tools. 

 
3.4 Radiomic features enclose distinct prognostic profiles  

To intersect TIME with radiomic images, we validated an internal pipeline where the tumor 

volume of interest (VOI) (Figure 3A) was used to extract scalable features, CT-RFs (n=841), 

grouped into one original and eight wavelet-related major classes (Figure 3B).  

To estimate similarity matrix between CT-RFs, after an accurate process of feature 

extraction and preliminary analyses (Figure 3A, B), the generated  heatmap displayed very 

clear block boundaries for CT-RFs belonging to same classes along the diagonal axis (R2 = 

1) or far from it indicating strong intra and weak inter-classes CT-RFs correlations (Figure 

3C).  

If the 841 CT-RFs are correlated variables, one could imagine using algorithms for 

dimensionality reduction. Thus, we applied principal component analysis (PCA) to CT-RFs 

extracted from 60 NSCLC and 13 normal tissues (10 uninvolved lymph nodes, 3 skeletal 

muscles). As shown in Figure 3D, two vectors contain nearly the 50% of data variance, 

sufficient to preliminary distinguish tumor versus normal samples.  

To further confirm our PCA results, we applied on the same data set an unsupervised 

hierarchical clustering analysis and demonstrated that normal and tumor samples cluster in 

different branches, indicating that tissue heterogeneity may be intercepted by radiomic 

features (Figure 3E).  

We then asked whether CT-RFs were differentially distributed within NSCLC 

subtypes and we calculated the mean of expression of each CT-RFs in ADC and SCC. As 

shown by circle plots (Figure 3D), the nine radiomic classes were equally represented in the 

two histotypes, suggesting that the detection of inter-tumor differences requires the 

integration of radiomics with more featured tissue characteristics such as the immune 
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microenvironment. 

Next, following a supervised feature selection process, we documented that o assess 

the impact of CT-RFs on survival outcome, we applied a Cox proportional hazard model on 

the 841 radiomic features considered as continuous variables. Matrix correlation analysis 

excluded redundant CT-RFs, narrowing to six the number of clinically relevant features 

(Figure 3E). Individual CT-RFs cut-off values obtained by CART Tree analysis segregated 

patients in two distinctive prognostic groups. high values of 6 CT-RFs, wavelet- 

ClusterProminence, ClusterTendency, GrayLevelVariance, DifferenceVariance, Contrast 

and SumSquare, significantly correlated with a favourable prognosis (Figure 3E, F and 

Supplementary Figure S5). Moreover, wavelet-LLH_glcm_ClusterProminence emerged on 

uni- and multi-variate analysis as a potential radiomic predictor of clinical outcome 

(Supplementary Table S2), given that cases with high values of the feature had significantly 

increased OS (multivariate Cox regression analysis, HR:0.16, 95% CI 0.04-0.601, P=0.01) 

and DFS (HR: 0.32, 95% CI 0.16-0.43, P=0.001).  

Finally, to assess the performance of our six-feature radiomic signature, we applied 

the same approach to CT images from 31 clinico-pathologically matched NSCLC 

representing the validation cohort. As apparent in Figure 3 E, F and Supplementary Figure 

S5, we confirmed the power of all 6 CT-RFs in segregating patients according to survival 

outcome. In addition, we validated the favourable impact of ClusterProminence of positive 

pixel values, which resulted in 26 months gain in OS (HR:0.11, 95% CI 0.03-0.40, P=0.001) 

(Figure 3F). 

 
3.5 Identification of Radio-Immune Signatures 

The first step toward our supervised analysis in search of a radio-immune signature was to 

exclude redundant radiomic features by a matrix correlation setting a threshold at 0.7. Then, 

Following a stratification of patients according to high or low levels of single TIME 
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benchmark, we identified radiomic traits that discriminate specific immune parameters. 

Specifically, high PD-L1 levels were predominantly translated at CT imaging into high values 

of Cluster-related wavelet features, while NonUniformity-related CT-RFs were highly 

expressed in CD8+ rich TIME (Figure 3G, H).  

Next, to establish a radiomic profile of hot and cold TIME (Figure 4Ai-ii), we obtained 

80 differentially expressed CT-RFs (Figure 4Aiii), subsequently narrowed to Following a 

correlation matrix analysis to exclude redundancy, we detected 7 highly represented in hot 

(hCT-RFs) and 1 exclusively associated to cold TIME (cCT-RFs, Figure 4B). The ability of 

these signature-related CT-RFs to distinguish patients according to TIME category (P<0.01) 

was revealed by the area under the curve (AUC) of the receiver operator characteristic 

(ROC) curve and its confidence interval (Figure 4B).  

 
3.6 Prediction Models of Survival Outcome 

In order to establish a prognostic score, we integrated predetermined risk factors from TIME 

(low CD8-to-CD3 and high PD-1-to-CD8) with qualitative CT imaging (no effect and 

spiculated margins) (Figure 5Ai, ii). We first combined CD8-to-CD3 ratio and radiologic 

margins, documenting significantly reduced OS and DFS (Figure 5Bi and Supplementary 

Figure S6) in the presence of at least one risk factor (OS=HR:2.66, 95% CI 1.03-6.89, 

P=0.035; DFS=HR:2.45, 95% CI 1.22-4.91, P=0.011). Next, PD-1-to-CD8 ratio was 

integrated with effect at CT imaging, revealing that high incidence of PD-1 receptor on CD8+ 

TILs combined with no effect had negative impact on OS (HR:16.86, 95% CI 2.27-25.72, 

P<0.001), while not reaching a statistical significance in terms of DFS (HR:1.81, 95% CI 

0.92-3.58, P=0.07) (Figure 5Bii and Supplementary Figure S6). The discrimination ability of 

these two prognostic models was clearly apparent in the corresponding ROC curves 

(Supplementary Figure S7).  
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A similar prognostic model was generated by merging TIME with wavelet-

LLH_glcm_ClusterProminence (Figure 5Aiii), the CT-RF that individually exhibited the 

highest prognostic significance (Figure 3H). As documented by Kaplan Meier (Figure 5Ci-ii 

and Supplementary Figure S5) and ROC (Supplementary Figure S7) curves, high PD-1-to-

CD8 and low CD8-to-CD3 ratios merged with low ClusterProminence negatively affected 

OS (PD-1-to-CD8, HR:12.17, 95% CI 4.10-16.44, P<0.001; CD8-to-CD3, HR:8.76, 95% CI 

2.05-17.45, P<0.001) and DFS (PD-1-to-CD8, HR:2.32, 95% CI 1.25-4.29, P=0.005; CD8-

to-CD3, HR:1.72, 95% CI 0.89-3.31, P=0.080).  

Finally, we integrated significant clinico-pathological (N status and pathologic stage), 

TIME (PD-1-to-CD8 and CD8-to-CD3) and CT-imaging features (CT-SFs: effect and 

margins; CT-RFs: wavelet-LLH_ClusterProminence) in multiparametric prediction models of 

overall survival. The statistical predictive power of the two obtained models, discerned by 

semantic or radiomic descriptors, was assessed by ROC curve. As shown in Figure 5Biii, 

combining CT-SFs with clinico-pathological and TIME parameters, we achieved high 

sensitivity and specificity (AUC=0.82, 95% CI 0.71-0.93, P<0.001). Furthermore, our CT-

RFs-based model (Figure 5Ciii) reached 0.91 AUC (95% CI 0.83-0.99, P<0.001), underlining 

the clinical relevance of a “radio-immuno-pathological” approach in the risk assessment of 

surgically resected NSCLC patients.  

 
4. Discussion 

Approximately 30% of NSCLC patients are diagnosed with early stage disease and undergo 

surgery with curative intent. The 5-year survival rates range from 30% among stage IIIA 

patients to 90% among those with stage IA, while the risk of recurrence dramatically 

accounts for 30% to 55% of disease relapse within 5 years from surgery [40,41]. This 

frustrating reality enforces the development of more accurate risk stratification models 

based on multi-omics approaches [42], further aiming at the identification of patients who 
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can benefit from adjuvant treatments including chemo- and immuno-therapy [40]. Moreover, 

the limited population of advanced NSCLC patients who can benefit from immunotherapy 

underscores the urgent demand of the definition of prognostic and predictive biomarkers. . 

In this regard, a promising approach able to predict the response to ICI in NSCLC has been 

proposed by the longitudinal assessment of radiomics signatures (delta-radiomics) [25]. 

In both resectable and metastatic settings, radiomics rapidly emerged as an 

innovative approach to achieve a patient- and tumor-specific management through 

diagnostic non-invasive tools. High throughput extracted imaging in addition to offer 

objective measurements of intra-tumor heterogeneity in NSCLC [6,16,43] when integrated 

with pTNM and tissue features may implement the actual risk stratification models 

[20,22,44–46]. The combination of TNM staging with radiomic features, describing density 

(Statistics Energy), compactness (Shape Compactness) and intratumor heterogeneity (Gray 

Level Nonuniformity), outperformed the prognostic value of TNM alone in early stage lung 

and head and neck cancers [22]. The same integrated prognostic index was subsequently 

validated in a cohort of stage IV disease [47]. 

However, less clear appears how radiomics can capture the complexity of tumor 

microenvironment. This represents a relevant issue since TIME is rapidly emerging as 

potential biomarker of response in the era of immunotherapy [26,27,48]. Important advances 

have been made in TIME characterization, focused on PD-L1 status, TILs density and 

phenotype, and activating or inhibitory signaling pathways [28,29]. Moreover, classifying 

cancers into T cell-inflamed or "hot" tumors (PD-L1high, CD8high, IFN-γ signature) versus non-

inflamed or "cold" tumors (immune-excluded and immune-desert) [34], might predict survival 

and ICI response. In agreement with these observations, our “hot” or “cold” TIME, although 

differently assessed, defined prognostic classes of NSCLC and can be indeed distinguished 

by specific CT-RFs. Although aware that intercepting the heterogeneous and dynamic 

nature of TIME would require repeated biopsies, we proposed here an approach to non-
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invasively translate tumor immune microenvironment into CT imaging features, ultimately 

providing a radio-immune signature.  

Qualitative (semantic) description of CT tumor images, such margins, texture and 

effect, holds an established clinical relevance in NSCLC [39]. For instance, “spiculated 

margins” are a marker of aggressiveness with a negative prognostic impact on survival 

outcome [39,49]. Interestingly, in addition to confirm this evidence in our cohort of lung 

cancer patients, we observed that tumors exhibiting this specific CT-SF carry a TILs poor 

immune microenvironment. On the opposite, tumor effect on the surrounding parenchyma 

appeared to correlate with improved survival. A potential explanation of this unexpected 

result may relate to high PD-L1 levels and CD3+ TILs content in corresponding tissue 

samples. This finding refers to the idea that inflamed tumors exhibit a favorable prognostic 

impact when triggering tissue reactions able to counteract cancer invasiveness. 

Interestingly, a predictive radio-immune signature based on the abundance of TILs in the 

peritumoral area was recently documented in ICI treated NSCLC [25]. 

Thus, a tumor microenvironment reflecting a dynamic host immune response 

influences CT images, and this information can be detected by computed approaches.  

A step forward from semantic CT analysis is radiomics, whose role has been 

repeatedly challenged against clinical and histologic standard as a predictor of biological 

behavior [20,22]. However, as emerging field, radiomics lacks standardized approaches 

both from platform and analysis perspectives, as larger populations scored with radio-

immune analyses are warranted [5]. So far, most large-scale studies investigating radio-

immune correlates were either conducted in a minority of NSCLC cases (n: 22/351,[20]; n: 

18/75, [24]) or restricted to one (CD8+ TILs, [24]) or two (CD3 and PD-L1, [50]) TIME 

parameters. Conversely, we obtained informative insights on radio-immune profiles, by the 

integration of CT-RFs, established in training (n:60) and validation (n:31) sets of NSCLC 

patients, with multiple immunophenotypic characteristics. We demonstrated that cluster- 
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and non-uniformity-related CT-RFs identified an inflamed tumor immune contexture, 

characterized, respectively, by high PD-L1 levels and effector TILs subsets, validated 

markers of high intra-tumor heterogeneity [16,22].  

Moreover, we established and validated the impact on survival of wavelet-

LLH_glcm_Cluster Prominence, a feature considered as a measure of the skewness and 

asymmetry. Although the clinical significance of this CT-extracted feature has not been 

explored yet, PET-derived GLCM Cluster Prominence was directly associated with breast 

cancer tumor grade [51].  

Limitations of the present study have to be acknowledged. First, the relatively small 

sample size that potentially attenuates our conclusive remarks. Nonetheless, the adequate 

patient follow-up (60 months) and the presence of a validation cohort may partially cover 

this issue. Another limitation is intrinsic to radiomic approach and it is related to the actual 

poor interpretation of high-throughput extracted data and lack of methodological 

standardization to reach validated and reproducible features with impact on patient survival.  

Additionally, patients were scanned by means of different CT scanners with different 

acquisition parameters, thus potentially yielding intrinsic variability in CT-RFs quantitative 

measurements. However, this limitation reflects daily medical practice which requires the 

use of multiple platforms to accomplish diagnostic demands. 

Based on our findings, the integration of radiomic, immunophenotypic and clinico-

pathological parameters may implement the actual risk stratification models, especially for  

surgically resected NSCLC cases that harbor a more aggressive course independently from 

pTNM. It is our intent to extend this patient-centered non-invasive approach to the prevalent 

cohort of unresectable and advanced NSCLC, with the aim to predict response to treatment.  

 

5. Conclusion  
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In closing, qualitative and quantitative analysis of CT images integrated with specific TIME 

features may provide new risk assessment models potentially able to outperform the 

prognostic value of standard pTNM staging system in NSCLC. 
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Table 1. Explanatory prognostic factors in Cox proportional Hazards models.  

 

 
OS: overall survival; DFS: disease free survival; Sex (Male = 0, Female = 1), Age (continue variable), Smoking 
status (0 = negative smoking history, 1 = positive smoking history), Histotype (ADC = 0, SCC = 1), Staging, N 
status, PD-L1 expression, CD3, CD8, CD8/CD3, PD-1 expression, PD-1/CD8 (continue variables). Statistical 
results with P<0.05 are bolded.  
aUnivariate analysis is carried out without any adjustment. bMultivariate analysis is carried out considering parameters statistically 
significant in univariate model. 
  

OS Univariatea  Multivariateb 
HR CI (95%) χ2 p value  HR CI (95%) χ2 p value 

Sex 2.059 0.878-4.826 2.875 0.090 
 

1.056 0.389-2.869 
 

0.915 
Age 0.971 0.925-1.020 1.401 0.237 

     

Smoking 0.933 0.509-1.709 0.051 0.821 
     

Histotype 0.642 0.292-1.408 1.243 0.269 
     

Staging 1.789 1.104-2.899 5.847 0.018 
 

1.024 0.291-2.333 
 

0.716 
N status 1.875 1.125-3.126 6.192 0.013 

 
1.823 1.016-3.270 

 
0.044 

PD-L1 1.308 0.557-3.069 0.383 0.537 
     

CD3 0.722 0.213-2.442 0.277 0.600 
     

CD8 0.625 0.265-1.475 1.174 0.283 
     

CD8/CD3 0.426 0.174-1.039 3.736 0.050 
 

0.671 0.334-2.825 
 

0.056 
PD-1 0.906 0.356-2.307 0.043 0.906 

     

PD-1/CD8 2.955 1.290-6.669 7.203 0.010 
 

3.779 1.490-9.585 
 

0.005 
Shape 0.771 0.346-1.718 0.407 0.525 

     

Texture 3.397 1.124-10.272 5.299 0.030 
 

1.563 0.254-9.633 
 

0.630 
Efffect 0.411 0.181-0.193 4.840 0.033 

 
0.276 0.114-0.670 

 
0.004 

Structure 1.143 0.494-0.249 0.098 0.755 
     

Margins 1.939 0.883-4.257 2.821 0.093 
 

4.076 1.541-10.780 
 

0.005 

DFS Univariatea  Multivariateb 
HR CI (95%) χ2 p value  HR CI (95%) χ2 p value 

Sex 2.205 1.134-4.291 5.702 0.020  0.945 0.403-2.217  0.897 
Age 0.928 0.886-0.971 2.545 0.080      
Smoking 0.906 0.562-1.461 0.165 0.685      
Histotype 0.272 0.144-0.515 10.036 0.003  0.418 0.207-0.844  0.015 
Staging 1.320 0.891-1.956 1.935 0.166      
N status 1.522 1.037-2.232 4.741 0.032  1.114 0.737-1.682  0.609 
PD-L1 1.043 0.539-2.019 0.015 0.901      
CD3 1.391 0.607-3.186 0.613 0.436      
CD8 0.739 0.394-1.387 0.892 0.347      
CD8/CD3 0.330 0.166-0.657 10.892 0.002  0.430 0.204-0.907  0.027 
PD-1 0.864 0.422-1.768 0.161 0.688      
PD-1/CD8 1.284 0.660-2.467 0.546 0.461      
Shape 1.017 0.558-1.853 0.003 0.956      
Texture 2.615 1.091-6.271 5.007 0.031  2.185 0.693-6.890  0.182 
Efffect 0.809 0.444-1.474 0.480 0.809      
Structure 1.100 0.590-2.048 0.090 0.765      
Margins 1.321 0.715-2.439 0.790 0.374  2.023 1.046-3.912  0.036 
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