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Abstract – In this work we propose a new sensor concept to evaluate the degradation of PV arrays due to soiling. It is based on I-V 
curve analysis coupled with artificial vision inspection of a reference PV module to quantify and identify the type of dirt. In order 
to assess the usefulness of this approach in the automatic scheduling of maintenance interventions in smart-grid PV modules, we 
developed a Simulink model of a DC nanogrid to test different control strategies. Early experimental results are also shown demon-
strating the feasibility of the approach. 

 
1. Introduction 

  
The diffusion of decentralised small-scale renewable power 

generation sources is giving a boost to the development of smart 
nanogrids, particularly to increase the sustainability of electric-
ity production and the efficiency of distribution. In order to en-
sure continuity of service, the reliability and maintainability of 
nanogrids are crucial problems that must be taken into account. 
Consequently, alongside management aspects connected with 
the generation and efficient use of renewable energy, there are 
also equally important aspects related with system maintenance 
and its automation via continuous monitoring. Monitoring and 
maintenance policies, in fact, can have a relevant impact on en-
ergy production, cost and waste, because they affect the quality 
and timing of restoring interventions and can significantly re-
duce downtime. 

Thanks to its ubiquity and to the progress of photovoltaic 
(PV) technologies – which prompted significant cost reduction 
in the last decade – solar energy often plays a key role in micro-
and nanogrids.  

The power output of PV installations depends on several 
factors: environmental factors such as solar irradiance, temper-
ature, dust deposition, and system factors such as module and 
inverter efficiencies; storage capabilities also play a significant 
role in the overall system performance by allowing some decou-
pling between energy production and demand. 

In the first place, the energy output of a PV module is di-
rectly related to the incoming solar energy, irradiance varying 
according to weather conditions and the sun position. The mod-
ule output current is approximately linearly dependent on the 
impinging irradiance level (G), hence the Maximum Power 
Point (MPP) is strongly related to irradiance. Consequently, 
module soiling due to dust accumulation etc., and the mainte-
nance countermeasures aimed at assuring adequate conversion 
efficiency over the PV plant lifetime, must be factored in when 
making life-cycle economic estimates for PV installations. 

Soiling is caused by dirt, dust and other particles covering 
the surface of the PV modules. The dust composition (pollutants, 
airborne liquid constituents, particulates, pollen), colour (due to 
different mineral composition) and the amount and type of soil-
ing vary widely with plant location. The dust properties and its 
deposition rate are also affected by ambient conditions including 
humidity, wind speed and direction, and seasonal variations [1]. 

To counter the effects of soiling, panels must be periodically 
cleaned. This can be carried out with manual, mechanised, or 
robotic action by either wet or dry solutions, or by electrody-
namic screen techniques. 

At present, most PV arrays are inspected and cleaned with 
a scheduling that typically does not depend on the actual state of 
dirtiness and its effect on energy production efficiency. Neglect-
ing the efficiency/maintenance trade-off may result in wasteful 
costs due to unnecessary cleaning actions. Therefore, an auto-
mated soiling sensing approach can be useful to develop a deci-
sion-making process accounting also for the trade-off between 
reliability of energy production, demand/offer matching, and 
cost. In this way, a supervisor can plan targeted interventions 
with optimal maintenance timing. 

Detection of dust deposition, concentrated dirt or any soil-
ing-related malfunction allows to decide when and what kind of 
cleaning is required, which calls for the development of a mon-
itoring system with smart data management to automatically 
plan maintenance interventions, by combining weather forecasts 
and historical data, irradiance sensors and soiling sensors, and 
applying predictive algorithms. Refs. [2], [3], [4], [5] show stud-
ies of PV module cleaning protocols, while analysis of the ef-
fects of dirt and dust deposition can be found in [6], [7], [8], [9], 
[10]. 

A few soiling detection kits for medium/large scale plants 
have already been developed and marketed. A non-exhaustive 
list is reported in refs. [11], [12], [13], [14], [15], [16], [17]. 
These systems base their operation on the comparison of electri-
cal measurements obtained from a clean reference module and 
from one exposed to soiling agents (except for the one in [14], 
which is based on LED and photodiode soiling ratio detection). 

This work addresses the problem of PV module perfor-
mance degradation due to soiling, with the aim of setting up a 
prototype sensor to detect dust deposition, thus helping distin-
guish between efficiency reduction due to dust and that due to 
degradation of PV modules or electronic components. The pro-
posed system, based on a dust detection approach using both 
electrical sensing and optical inspection, is designed to be a low-
cost solution for small-scale DC nanogrids operating either in 
grid-connected or islanded mode. In order to test the usefulness 
of the automated sensing approach, we developed a 
MATLAB/Simulink model of a smart nanogrid and estimated 
the economic benefits of the proposed approach and the opti-
mum cleaning intervention rates. 

 
2. Nanogrid Modeling 

 
We developed a model of a DC nanogrid using the 

MATLAB/Simulink environment with the aim of testing differ-
ent control strategies while assessing the usefulness of quantita-
tive knowledge of PV modules soiling for maintenance policy 



 

optimization. The Soiling Factor (SF) defined in [18] quantifies 
power losses due to dust accumulation by considering the per-
centage loss in equivalent irradiance reaching the module. The 
SF ratio is measured by the soiling sensor described in Section 3. 

The model can simulate both islanded mode and grid-con-
nected operation. 

Fig. 1 shows the model’s root level, where two independent 
nano-smart-grid (NSG) sub-models are instantiated. One (NSG 
Dirty) models the actual nanogrid operation, with a PV plant 
subjected to dust deposition effects; the other (NSG Clean) is a 
reference nanogrid model featuring perfectly clean PV modules. 
The NSG models run in parallel and are fed by the same scenario 
inputs, except for the soiling profile and the cleaning task acti-
vation trigger, which apply to NSG Dirty only. 

 

 
Fig. 1. Root level of the developed Simulink model. 

 
The root level of the model (Fig. 1) also features energy cost 

computation blocks yielding quantitative information about eco-
nomic losses due to soiling effects; economic losses are evalu-
ated differently, depending on the nanogrid operation mode (is-
landed or grid-connected). 

In the grid-connected scenario the focus is on the energy 
flow to and from the grid, and losses come from two main con-
tributions: the reduction of energy exported to the grid, and the 
increase of energy import from the grid during shortfall phases. 
Starting from the power flowing out of the nanogrid (Pgrid), we 
define exported (Pout) and imported (Pin) power flows (Eq. 1) 
which, integrated over time, yield the amounts of sold (Esold) and 
purchased (Epurch) energy (Eq. 2). The prices per kWh of sold 
and purchased energy (Rsold, and Rpurch, respectively) are then 
used to compute the revenue for energy sold (Csold) and the ex-
penditure for energy purchased (Cpurch) (Eq. 3), and the overall 
energy cost (Ctot) for the nanogrid (Eq. 4). 

 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = �
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 > 0

0, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ≤ 0 , 𝑃𝑃𝑔𝑔𝑖𝑖 = �
−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 < 0

0, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ≥ 0 (1) 

 
𝐸𝐸𝑠𝑠𝑜𝑜𝑠𝑠𝑔𝑔 = ∫ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 , 𝐸𝐸𝑝𝑝𝑜𝑜𝑔𝑔𝑝𝑝ℎ = ∫ 𝑃𝑃𝑔𝑔𝑖𝑖(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0  (2) 

 
𝐶𝐶𝑠𝑠𝑜𝑜𝑠𝑠𝑔𝑔 = 𝑅𝑅𝑠𝑠𝑜𝑜𝑠𝑠𝑔𝑔 ∙ 𝐸𝐸𝑠𝑠𝑜𝑜𝑠𝑠𝑔𝑔 ,      𝐶𝐶𝑝𝑝𝑜𝑜𝑔𝑔𝑝𝑝ℎ = 𝑅𝑅𝑝𝑝𝑜𝑜𝑔𝑔𝑝𝑝ℎ ∙ 𝐸𝐸𝑝𝑝𝑜𝑜𝑔𝑔𝑝𝑝ℎ (3) 
 
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑠𝑠𝑜𝑜𝑠𝑠𝑔𝑔 − 𝐶𝐶𝑝𝑝𝑜𝑜𝑔𝑔𝑝𝑝ℎ (4) 
 
These equations are applied to both Dirty and Clean NSG 

models and, finally, the loss due to soiling is computed as:  
 
𝐶𝐶𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑠𝑠𝑐𝑐𝑐𝑐𝑖𝑖 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑑𝑑 (5) 
 
When operating in islanded mode, losses come from the re- 

duction of energy production due to soiling resulting in extra 
load shedding relative to the clean PV scenario. Thus, in this 
case, the power profiles of off-forced loads are integrated, the 
value of unsold energy is computed based on the price per kWh, 
and, finally, the economic loss relative to the clean-PV scenario 
is determined. 

The cleaning task trigger and the total cost of cleaning in-
terventions are generated and computed by the Cleaning Sched-
uler and Costs block, starting from cleaning frequency set-point 
input. 

 
2.1 Nano-smart-grid (NSG) model 

 
Our NSG model (Fig. 2) represents a typical office environ-

ment, powered by PV plant, featuring an energy storage system 
and a few DC loads, such as LED lamps, laptops, printers, tab-
lets and smartphones. Fig. 2 in particular shows the NSG Dirty 
subsystem; NSG Clean differs from NSG Dirty in that the effects 
of dust deposition and cleaning interventions are neglected in the 
Scenario subsystem. 

 

 
Fig. 2. View of the NSG Simulink sub-model (dirty case). 

 
The Scenario block reads solar irradiance and load power 

profiles in workspace look-up-tables, as well as the values of 
ambient temperature and wind speed, and computes the SF as 
the integral over time of an average soiling rate that depends on 
the specific geographical location [19], [20]. SF saturates at 
80%, and is reset at 0% every time a rising edge coming from 
Cleaning Scheduler is detected, signaling that a cleaning task 
has been carried out. 

The PV Plant subsystem (Fig. 3) contains both the PV array 
model and the Maximum Power Point Tracking (MPPT) control 
algorithm. The PV module behaviour is described starting from 
1-diode model equations [21], to which we added a static ther-
mal model accounting for wind speed effect [22]. The 1-diode 
model parameters are computed starting from datasheet values. 
The MPPT controller can be enabled or disabled by the central 
control unit in order to achieve either MPPT or Load Power 
Tracking (LPT) operating modes. The latter is to be selected in 
islanded mode, when there is an excess of available energy, and 
storage is full. Under these conditions, the PV energy production 
is curtailed to satisfy load demand only. On the other hand, the 
MPPT controller observes the voltage setpoint and power output 
between the last 2 time-steps and determines the optimum cur-
rent operating point on a virtual I-V characteristic [23]. The ir-
radiance input (G) is reduced according to the SF, by computing 
a complementary cleanness factor (1-SF) (Fig. 3). 



 

 
Fig. 3. PV plant subsystem comprising PV module model, MPPT con-

troller, and the SF effect on the irradiance level. 
 
The Loads control block implements a load shedding algo-

rithm by assigning predefined priorities to loads. Knowing pri-
ority levels and load power profiles, according to the storage 
State of Charge (SoC) and PV power availability, loads are al-
lowed to be on or disconnected. 

The Storage subsystem models a lithium cell battery pack 
with its charging and control units based on a Constant Cur-
rent/Constant Voltage (CC/CV) algorithm [24] and taking into 
account elementary thermal and aging behaviour. The DP signal 
injects the excess power from the PV block into the grid when 
the battery is fully charged, or absorbs the PV power deficit from 
the grid when the battery is discharged. 

Finally, power balance is computed by the BUS Power Bal-
ance block, which calculates the energy flowing to the storage 
unit based on PV power production and load consumption. 

The Control Unit subsystem coordinates energy flows by 
determining whether enabling or disabling the MPPT mode. In 
grid-connected mode MPPT is always enabled and all loads are 
connected. 

 
2.2 Simulation results 

 
Fig. 4 gives an example of results for the NSG subsystem 

obtained under a 2-days long scenario under three different soil-
ing conditions: SF = 0 (clean modules), 10%, and 30%. Irradi-
ance data from PVGIS [25] refers to Parma, Italy, Azimuth = 0°, 
Slope = 30°; typical load power profiles are from [26]. 

Some parametric simulations involving the whole model 
have been carried out in order to evaluate the economic loss due 
to dust deposition. Different scenarios have been considered so 
as to take into account various economic conditions and SF ra-
tios. Results are given in Tab. 1, while an example of result is 
shown in Fig. 5 for the case of SF yearly increase rate of 0.06% 
(absolute), cost per cleaning intervention of 300 €, and energy 
price of 0.24 €/kWh and 0.18 €/kWh for buying and selling, re-
spectively. In all scenarios the final cost is evaluated just before 
the plant end-of-life (30 years). Tab. 1 shows that cleaning in-
terventions are much more convenient in grid-connected 
nanogrids. In islanded mode, on the other hand, often PV and 
storage systems are oversized in order to minimize the occur-
rence of load shedding. Therefore, the PV plant often operates 
in LPT mode, and performance loss due to soiling has no signif-
icant impact. It should be noted that in this paper the energy def-
icit (causing load shedding) was given the same economic value 
as that of energy purchased from the grid; this assumption has 
no universal value, and should therefore be modified depending 
on the specific operational context. 

 
Fig. 4. Simulation results obtained with 0 (clean PV array), 10%, and 
30% SF. Irradiance profile from June 21-22 scenario in Parma (Italy). 
PV array maximum power rate = 3 kWp, Azimuth = 0°, Slope = 30°. 

 
Cleaning 
cost [€/in-

tervention] 

Energy price 
[€/kWh] SF rate 

[%/year] 

Optimal scheduling 
interval [years] 

Buying Selling Grid 
connected Islanded 

150 0.18 0.13 0.015 3 10 
150 0.18 0.13 0.03 2 6 
150 0.18 0.13 0.06 1.5 3.75 
150 0.18 0.13 0.09 1 15.75 
150 0.18 0.13 0.12 1 15.75 
150 0.24 0.18 0.015 2.5 10 
150 0.24 0.18 0.03 1.75 6 
150 0.24 0.18 0.06 1.25 3.75 
150 0.24 0.18 0.09 1 15.75 
150 0.24 0.18 0.12 1 15.75 
200 0.18 0.13 0.015 3 15.75 
200 0.18 0.13 0.03 2.5 7.5 
200 0.18 0.13 0.06 1.5 15.75 
200 0.18 0.13 0.09 1.25 15.75 
200 0.18 0.13 0.12 1 15.75 
200 0.24 0.18 0.015 3 10 
200 0.24 0.18 0.03 2 6 
200 0.24 0.18 0.06 1.5 3.75 
200 0.24 0.18 0.09 1 15.75 
200 0.24 0.18 0.12 1 15.75 
290 0.18 0.13 0.015 3.75 15.75 
290 0.18 0.13 0.03 3 7.5 
290 0.18 0.13 0.06 2 15.75 
290 0.18 0.13 0.09 1.5 15.75 
290 0.18 0.13 0.12 1.5 15.75 
290 0.24 0.18 0.015 3 15.75 
290 0.24 0.18 0.03 2.5 7.5 
290 0.24 0.18 0.06 1.5 15.75 
290 0.24 0.18 0.09 1.5 15.75 
290 0.24 0.18 0.12 1 15.75 

Tab. 1. Comprehensive report of the results obtained with multi 
scenario simulations. 

 
3. Soiling Sensor 

  
The main goal of this work is the development of a soiling 

sensing approach that applies two techniques in parallel, namely, 
I-V curve analysis [27] and optical inspection [28], to quantify 
the degradation and qualify the dirt accumulated on PV modules, 
respectively. 



 

 
Fig. 5. A simulation scenario: case of 0.06%/year SF ratio, cleaning 

intervention cost of 300 €, energy cost of 0.24 €/kWh and 0.18 €/kWh 
for selling and buying respectively. 

 
The sensor consists of a small off-grid PV module employed 

as a reference for dust analysis. Detailed information about the 
two different modules employed in the experiments can be 
found in Tab. 2. We developed an acquisition board for module 
electrical performance characterization, and used a camera to 
take photos of the module to be processed by MATLAB optical 
analysis algorithms. 
 

S. E. Project SEM25M (c-Si) 
Open circuit voltage (Voc) 21.3 V 
Short circuit current (Isc) 1.6 A 
Maximum Power rating (Pmax) 25 W 
Active area (A) 1869 cm2 

 
ICO-SPT-40W (thin-film) 

Open circuit voltage (Voc) 24 V 
Short circuit current (Isc) 2.88 A 
Maximum Power rating (Pmax) 40 W 
Active area (A) 4293 cm2 

Tab. 2. Reference modules factory data. 
 
3.1. I-V curve analysis 
 

In order to measure the I-V curve of the PV reference mod-
ule we built an acquisition board (Fig. 6) equipped with a power 
MOSFET acting as an active load.  

 

 
Fig. 6. I-V slope acquisition board. 

 
An STM32 microcontroller generates a PWM wave, which 

is input to a low-pass filter. The duty-cycle is varied to obtain a 
DC voltage sweep that is applied to the transistor gate, thereby 
varying its channel resistance, from below threshold to fully-on 
state, hence obtaining a sweep from open circuit to short circuit 
for the PV module load.  

Under each load condition, the current and voltage across 

the module are sampled by the microcontroller ADC, after being 
properly conditioned by onboard signal attenuation circuits. The 
voltage drop across a shunt resistor is used to measure the mag-
nitude of the current. The acquisition board is also equipped with 
circuits suitable for measuring the ambient temperature and the 
cell temperature by means of PT1000 thermistors. The collected 
data are finally sent to a computer where a MATLAB script per-
forms the necessary processing tasks. The electrical and logical 
structure of the board is shown in Fig. 7. 

 

 
Fig. 7. Schematic diagram of the soiling sensing system. 

 
3.2. Optical inspection 

 
The optical analysis is performed by taking digital photos of 

the module from a fixed position. A MATLAB script processes 
the image by artificial vision algorithms to calculate the amount 
of the soiled area. The process starts with a photo of the clean 
module, which serves the purpose of the masking step that is 
necessary to cut out non-active areas, such as the frame and cell 
interconnect metallization. Four red markers serve as reference 
points for the geometric transformation that removes defor-
mation effects due to perspective. 

Fig. 8 shows the flowchart of the overall image analysis pro-
cess. First the image object is loaded and the position of the 
markers detected. Second, the image is binarized applying ap-
propriate color threshold levels. Third, the image is cropped and 
de-warped with the help of the markers. The image is then 
resized, if its size differs from the reference image. Finally, pixel 
analysis is performed, and the dust-covered area is determined. 
In addition, the algorithm detects sub-areas characterized by dif-
ferent kind of depositions, thus allowing to establish if the dust 
distribution is uniform or aggregated in spots. Quantitative data 
is output on the percentage of covered area, the area of the wid-
est spot (if any), and the prevailing color component (useful in 
determining the type of dirt). 

 
4. Results and discussion 

 
Experiments were performed artificially depositing a 

weighted amount of dust on the reference module. Dust is col-
lected from area surrounding the module. It is obtained by finely 
sieving some dry soil, resulting in a mixture of potting soil, sand, 
etc. This technique allows only particles with a diame-
ter < 0.5 mm to pass through. Then, dust is spread on the refer-
ence module, which was preventively cleaned. The selected 
amount of powder is quantified by means of a precision scale 
with 1 mg accuracy. To avoid powder to be dispersed, a thin 
layer of water is sprayed on the module. This also allows to em-
ulate the effects of rain and dew effects on dust deposition. Once 
the module has dried the analysis procedure starts: the I-V curve 
is acquired in parallel with irradiance, ambient temperature and 
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cell temperature (a PT1000 sensor is tightly attached behind the 
PV reference module in correspondence with a cell). Mean-
while, a photo of the module is taken and processed. 

In Fig. 9 we show some results obtained with I-V character-
istics extraction for different amount of dust, for a c-Si (Fig. 9a) 
and for a thin-film module (Fig. 9b). Tests are performed for 
each module at constant irradiance and ambient temperature.  

 

 
Fig. 8. Optical inspection algorithm flowchart. 

 

 
Fig. 9. I-V characteristics obtained for different soiling levels: a) c-Si 

module, while b) thin-film module. 
 

From each curve, the MPP is determined. MPPs are plotted 
in Fig. 10, normalized with respect to the STC value, showing a 
quite linear relationship between the amount of deposited dust 
and power loss. The extracted slopes are about 1.7·10-3 (g/m2)-1 
and 1.9·10-3 (g/m2)-1 for c-Si and thin-film, respectively. 

Optical analysis has also been performed on the reference 
modules. Results for two different dust distributions are shown 
in Fig. 11. Case a) shows a uniform powder distribution on a c-
Si module, resulting in a detected covered area of 36%; in case 

b) dust is deposited on a thin-film panel in non-uniform random 
stains, resulting in 10% coverage. 

Finally, Fig. 12 illustrates an early result obtained applying 
a new soiling technique in which dust is deposited using com-
pressed air. This allows to obtain uniformity levels similar to the 
ones reached with aerosol method [27] but much more quickly. 
In future experiments we will combine morphological and 
chemical analysis with this deposition technique with the aim of 
obtaining accurate qualitative and quantitative relationships be-
tween the amount of deposited dust and the MPP reduction. 

 

 
Fig. 10. Computed relationship between deposited dust density and 

normalized MPP. 
 

 

c-Si module 
 
G = 700 W/m2 

Tmod = 38 °C 

Thin-film module 
 
G = 900 W/m2 
Tmod = 44 °C 

Fig. 11. Optical analysis results. a) Uniform dust deposition on c-Si 
module (36% covered area); b) stain-like deposition on thin-film mod-
ule (10% covered area). The camera viewport is parallel to the ground 

while modules are tilted by about 28°. 
 

  
Fig. 12. Photo of the c-Si PV module with compressed-air deposited 
dust (left) and image after MATLAB elaboration (right). Estimated 

heavily covered area: about 30%. 

Got new image 
from camera

Red markers 
recognition

Image binarization
(color thresholding)

Clipping and geometric 
transformation

Dust deposition extent 
determination

Prevailing color 
estimation

End

  
 



 

5. Conclusions 
 

This work addresses the problem of PV module perfor-
mance degradation due to soiling, by developing a prototype 
sensing system for dust deposition, with the goal of distinguish-
ing the efficiency reduction due to dust from other degradation 
modes, and deploying cleaning interventions accordingly.  

In order to assess the usefulness of the automated sensing 
approach, and the optimization of cleaning protocols it allows, 
we have built a MATLAB/Simulink model of a smart-nano-grid 
and estimated the economic benefits of the proposed approach 
and the optimum cleaning intervention rates for various scenar-
ios differing by energy price, soiling rate, and operating mode 
(grid-connected or islanded).  

Early experiments show the feasibility of the proposed sens-
ing approach, which is based on a combination of electrical anal-
ysis and automated optical inspection.  

This solution can be used for automated smart maintenance 
of PV plants to reduce downtime and keep efficiency at its max-
imum, considering the trade-off between maintenance cost and 
losses due to soiling. 
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