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1Institute for Liberal Arts and Sciences,
Kyoto University, Kyoto 606-8501, Japan

2Department of Mathematics, National Cheng Kung University, Tainan 70101, Taiwan and
3Department of Mathematical, Physical and Computer Sciences,

University of Parma, 43124 Parma, Italy
(Dated: July 15, 2021)

A polyatomic gas with slow relaxation of the internal modes in contact with a solid boundary
is considered. In a previous paper [K. Aoki et al., Phys. Rev. E 102, 023104 (2020)], the two-
temperature Navier–Stokes system, i.e., a set of compressible Navier–Stokes equations with the
translational and internal temperatures, was derived from the ellipsoidal-statistical (ES) model of
the Boltzmann equation for a polyatomic gas under the assumption that the Knudsen number is
small and the ratio of the collisional mean free time to the relaxation time of the internal modes is as
small as the Knudsen number. In the present study, the appropriate boundary conditions for the two-
temperature Navier–Stokes system are derived by the analysis of the Knudsen layer on the basis of
the ES model for a polyatomic gas and the Maxwell-type diffuse-specular reflection condition on the
boundary. The resulting boundary conditions, which are of the type of slip boundary conditions,
are summarized, together with the two-temperature Navier–Stokes equations, in a form that is
applicable to practical applications immediately.

I. INTRODUCTION

Rarefied polyatomic gas flows play increasingly important roles in non-equilibrium gas dy-
namics and its applications. For these flows, one needs kinetic theory based on the Boltzmann
equation, which can be written in an abstract form using the transition probabilities of micro-
scopic states of molecules during molecular collisions [1–9]. However, the transition probabil-
ities, which depend on the detailed structure of molecules and thus on individual gases, are
not known for many polyatomic gases. Therefore, it is hard to directly apply the Boltzmann
equation for practical flow problems.
To avoid this difficulty, two different approaches are often taken, in addition to the direct

simulation Monte Carlo (DSMC) method [10], which will not be discussed in this paper. One
approach is to use kinetic model equations, such as the models of the Bhatnagar–Gross–Krook
(BGK) type, that have dramatically simplified collision integrals and satisfy some basic prop-
erties of the original Boltzmann equation [11–25]. The other is to use macroscopic or fluid
equations that are simpler than the kinetic models but are expected to be accurate when the
state of the gas is close to a local equilibrium. In the present study, we consider the latter
approach.
There have been many attempts to construct macroscopic equations on the basis of kinetic

theory or purely macroscopic considerations [6, 8, 21, 26–34]. One of the standard approaches
is to derive equations of Euler and Navier–Stokes types using the Chapman–Enskog procedure
[35] from the Boltzmann equation [6, 8, 28, 33, 34]. In the case of a polyatomic gas, the
standard Chapman–Enskog expansion leads to the ordinary Navier–Stokes equations with a
single temperature and with bulk viscosity. However, for a gas in which the characteristic
(or relaxation) times of different internal modes of a molecule differ significantly, the ordinary
Navier–Stokes equations with a single temperature are not sufficient to describe flow properties
[28, 31, 33].
In order to reduce the difficulty, some authors have derived the Euler- or Navier–Stokes-

type equations with multi temperatures associated with the translational motion and with the
internal modes of a molecule on the basis of the Boltzmann equation, taking into account the
differences in the relaxation times of different internal modes [1, 28, 33, 34]. However, although
accurate theoretically, these approaches require a large amount of information on the molecular
structure, containing numerical and empirical formulas and some assumptions, for individual
gases. Therefore, for practical applications, it was desirable to construct handy and overall
fluid-dynamic models that do not depend on the detailed molecular structure but contain only
overall information.
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To answer this problem, four of the present authors proposed a handy set of macroscopic
equations of Navier–Stokes type with two temperatures, which they called the two-temperature
Navier–Stokes equations (or system) [36]. Unlike the previous studies [1, 28, 33], the starting
point was not the original Boltzmann equation but the polyatomic version of the ellipsoidal-
statistical (ES) model, which is one of the widely used kinetic models proposed in [16] and
re-derived in a systematic way in [37]. The ES model contains a parameter that is of the order
of the ratio of the mean free time of the gas molecules to the relaxation time of the internal
modes. Under the assumption that this parameter is as small as the Knudsen number, the
Chapman–Enskog expansion [35] was carried out to derive the two-temperature Navier–Stokes
equations. Since the number of parameters contained in the ES model is much less than the
original Boltzmann equation, the transport properties of the resulting two-temperature Navier–
Stokes system in terms of the parameters are much simpler and perfectly explicit. Therefore, it
has a wide applicability to practical flow problems. In fact, the system was successfully applied
to the problem of the structure of a stationary shock wave in CO2 gas [36, 38].
However, since most of practical flow problems contain solid boundaries, we need appropriate

boundary conditions in order to enlarge the applicability of the two-temperature Navier–Stokes
equations. The appropriate boundary conditions for the standard Navier–Stokes equations with
a single temperature have been obtained for a polyatomic gas in [39] on the basis of the ES
model, following the procedure in [40] for a monatomic gas. In the present study, we will
derive the appropriate boundary conditions for the two-temperature Navier–Stokes equations
[36], starting from the ES model, together with the condition of diffuse-specular reflection on
the boundaries (the so-called Maxwell-type condition), and following the method in [39]. The
essence of the procedure lies in the analysis of the Knudsen layer adjacent to the boundary.
The adoption of the ES model, which is consistent with the two-temperature Navier–Stokes
equations, facilitates the analysis of the Knudsen layer and enables to obtain the explicit form
of the boundary conditions, which are of the form of slip conditions, as we will see in Sec. VII.
It should be emphasized that it is a great advantage of the two-temperature Navier–Stokes
equations to have clear boundary conditions, compared with other types of moment equations.
Here, the following remark is in order. Let us consider the case of a monatomic gas. The

(compressible) Navier–Stokes equations correspond to the first-order Chapman–Enskog solu-
tion, which formally satisfies the Boltzmann equation up to the order of the Knudsen number
(Kn). Therefore, the boundary conditions for the Navier–Stokes equations should be con-
structed in such a manner that the kinetic boundary condition for the Boltzmann equation
is satisfied up to the order of Kn, and the resulting conditions are of the form of slip condi-
tions, as pointed out in [40]. In this sense, the usual no-slip conditions, which correspond to
satisfying the kinetic boundary condition only at the zeroth order in Kn, are not consistent,
and use is to be made of the slip boundary conditions for the Navier–Stokes equations. The
same remark applies to the case of a polyatomic gas, including the boundary conditions for the
two-temperature Navier–Stokes equations.
The paper is organized as follows. After this introduction, the slip boundary conditions for

the two-temperature Navier–Stokes equations, which are the main results of the paper, are
summarized in Sec. II, where the original kinetic problem and the assumptions are stated, and
the two-temperature Navier–Stokes equations are also summarized. The ES model and its initial
and boundary conditions are mentioned in Sec. III, and their dimensionless forms are presented
in Sec. IV. In Sec. V, the parameter setting for a polyatomic gas with slow relaxation of the
internal modes is explained, and the first-order Chapman–Enskog solution, which corresponds
to the two-temperature Navier–Stokes system, is summarized. The Knudsen-layer is introduced
in Sec. VI, and its analysis is carried out to derive the slip boundary conditions in Secs. VI and
VII. The two-temperature Navier–Stokes equations and the derived slip boundary conditions
are summarized in dimensional form in Sec. VIII. Section IX is devoted to brief remarks. In
addition, the main text is supplemented by four appendices.

II. SUMMARY OF MAIN RESULTS

Our aim is to construct the boundary conditions for the two-temperature Navier–Stokes
equations derived in [36]. For this purpose, we need to start with the description of the problem
in the framework of kinetic theory. One will see how the analysis of the kinetic problem provides
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the desired boundary conditions in the following sections. However, since the analysis takes
several pages, we will summarize the main results, together with some necessary information,
in this section.

A. Problem and assumptions

The basic kinetic problem is described as follows. Let us consider a polyatomic (or diatomic)
ideal gas in contact with solid boundaries of arbitrary but smooth shape. The gas may extend to
infinity, and no external force acts on the gas molecules. We investigate the unsteady behavior
of the gas under the following assumptions:

(i) The behavior of the gas is described by the ES model of the Boltzmann equation for a
polyatomic gas [16, 37].

(ii) The boundaries do not deform and undergo a rigid-body motion, and the gas-surface
interaction is described by the Maxwell-type diffuse-specular reflection.

(iii) The Knudsen number, which is the ratio of the mean free path (or the mean free time)
of the gas molecules at the reference equilibrium state at rest to the characteristic length
(or the characteristic time) of the system, is sufficiently small.

(iv) The gas is such that the internal modes relax much slower than the translational mode. To
be more precise, the ratio of the mean free time of the gas molecules to the characteristic
(or relaxation) time of the internal modes is as small as the Knudsen number.

(v) At the initial time, the boundaries are at rest and have a uniform temperature, and the
gas is in the equilibrium state at rest with the same temperature. After the initial time,
the boundaries may start moving smoothly, and their temperature may change smoothly
in time and position. (For the problems including infinities, the corresponding initial state
and slow variations should be assumed at infinities.)

We put assumption (v) to avoid the occurrence of the initial layer and that of the interaction
between the initial layer and the Knudsen layer during the initial stage for the sake of theoretical
rigor (cf. [40]). Assumption (v) may be relaxed if we admit the inaccuracy during the initial
stage with the duration of the order of the mean free time.

B. Notation and parameters

Let us denote by δ the number of the internal degrees of freedom of the gas molecule, where
δ is a constant such that δ ≥ 2. Then, the specific heat at constant volume cv, that at constant
pressure cp, and the ratio of the specific heats γ = cp/cv are all constant and are expressed as

cv =
δ + 3

2
R, cp =

δ + 5

2
R, γ =

δ + 5

δ + 3
. (1)

Here, R is the gas constant per unit mass and is related to the Boltzmann constant kB and the
mass of a molecule m by R = kB/m.
Let t be the time variable and X (or Xi) be the position vector in the physical space.

Let ρ denote the density, v (or vi) the flow velocity, Ttr the temperature associated with the
translational energy, Tint the temperature associated with the energy of the internal modes,
and T the temperature. The kinetic definitions of these macroscopic quantities are given in
Eqs. (18d), (18e), and (18g)–(18i) in Sec. III A, respectively.
The ES model, which will be detailed in Sec. III A and Appendix A, contains two adjustable

parameters ν ∈ [−1/2, 1) and θ ∈ [0, 1], as well as a function Ac(T ) of the temperature T such
that Ac(T )ρ indicates the collision frequency of the gas molecules. These quantities are related
to the viscosity µ(T ), the bulk viscosity µb(T ), and the thermal conductivity λ(T ) as shown by
Eq. (A7a)–(A7c) in Appendix A 2. As the result, the Prandtl number Pr = cpµ/λ is expressed
in terms of ν and θ by Eq. (A8).
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C. Two-temperature Navier–Stokes equations

In this subsection, we summarize the two-temperature Navier–Stokes equations, derived in
[36], in the dimensionless form. Their dimensional form is shown in Sec. VIII.
Let us denote by L the reference length, t0 the reference time, ρ0 the reference density, and

T0 the reference temperature. In the present study, we choose t0 as

t0 = L/(2RT0)
1/2, (2)

which corresponds to the so-called fluid-dynamic scaling. Now we introduce the dimensionless
quantities [t̂, xi, ρ̂, v̂i, T̂tr, T̂int, T̂ , Âc(T̂ )], which correspond to the original dimensional
quantities [t, Xi, ρ, vi, Ttr, Tint, T , Ac(T )], by the following relations:

t̂ = t/t0, xi = Xi/L, ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)
1/2,

(T̂tr, T̂int, T̂ ) = (Ttr, Tint, T )/T0, Âc(T̂ ) = Ac(T )/Ac(T0).
(3)

According to assumption (iii) in Sec. IIA, the Knudsen number Kn, defined by Kn = l0/L, is
small, where l0 is the mean free path of the gas molecules at the reference equilibrium state at
rest with density ρ0 and temperature T0 [cf. Eq. (A5) in Appendix A1]. In the present paper,
we use the small parameter ϵ:

ϵ =

√
π

2
Kn =

√
π

2

l0
L

≪ 1, (4)

in place of Kn. As will be explained in Sec. VA, the ratio of the mean free time of the gas
molecules to the characteristic (or relaxation) time of the internal modes is represented by the
parameter θ included in the ES model. Therefore, assumption (iv) in Sec. IIA indicates the
following setting:

θ = αϵ≪ 1, (5)

where α is a positive constant (parameter) of the order of unity. It follows from Eq. (A9) that
small values of θ indicate large values of the ratio µb/µ of the bulk viscosity to the viscosity.
Therefore, we can also say that we are considering gases with large bulk viscosities.
The two-temperature Navier–Stokes equations, which have been derived from the ES model

by the Chapman–Enskog expansion under the condition (5), have the following form [36]:

∂ρ̂

∂t̂
+
∂(ρ̂v̂j)

∂xj
= 0, (6a)

∂(ρ̂v̂i)

∂t̂
+
∂(ρ̂v̂iv̂j)

∂xj
+

1

2

∂(ρ̂T̂tr)

∂xi
=

1

2
ϵ
∂

∂xj

[
Γµ(T̂ , T̂tr)

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)]
, (6b)

∂

∂t̂

[
ρ̂

(
3

2
T̂tr + v̂2i

)]
+

∂

∂xj

[
ρ̂v̂j

(
5

2
T̂tr + v̂2i

)]
− 3

2
αÂc(T̂ )ρ̂

2(T̂ − T̂tr)

=
5

4
ϵ
∂

∂xj

[
Γλ(T̂ , T̂tr)

∂T̂tr
∂xj

]
+ ϵ

∂

∂xj

[
Γµ(T̂ , T̂tr)v̂i

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)]
, (6c)

∂(ρ̂T̂int)

∂t̂
+
∂(ρ̂v̂j T̂int)

∂xj
− αÂc(T̂ )ρ̂

2(T̂ − T̂int) =
1

2
ϵ
∂

∂xj

[
Γλ(T̂ , T̂tr)

∂T̂int
∂xj

]
, (6d)

where

Γµ(T̂ , T̂tr) =
T̂tr

(1− ν)Âc(T̂ )
, Γλ(T̂ , T̂tr) =

T̂tr

Âc(T̂ )
, (7)

and T̂ = (3T̂tr + δT̂int)/(3 + δ). These are the equations for ρ̂, v̂i, T̂tr, and T̂int and contain the
parameters ϵ, ν, and α. Here and in what follows, we basically use the summation convention,
i.e., aibi =

∑3
i=1 aibi, a

2
i =

∑3
i=1 a

2
i , etc. It is shown in Appendix B that the ordinary Navier–

Stokes equations with a single temperature can be recovered from Eq. (6).
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D. Slip boundary conditions: Main results

The slip boundary conditions for the two-temperature Navier–Stokes equations, which are
obtained by the analysis of the Knudsen layer detailed in Secs. VI and VII, are the main
results in this paper. Their dimensionless form is summarized below. See Sec. VIII for their
dimensional form.
Let Xw (or Xwi) be the position of a point on the boundary, vw (or vwi) and Tw be, respec-

tively, the velocity and temperature of the boundary at the point Xw. Let us denote by n (or
ni) the unit normal vector to the boundary, pointing into the gas, at Xw and by t (or ti) an
arbitrary unit tangential vector to the boundary at the same point. Following the notion of
fields, we understand that the arguments of vw, Tw, n, and t are (t, Xw). Then, we introduce

the dimensionless quantities (xwi, v̂wi, T̂w) corresponding to (Xwi, vwi, Tw) by

xwi = Xwi/L, v̂wi = vwi/(2RT0)
1/2, T̂w = Tw/T0. (8)

The kinetic boundary condition for the ES model is the Maxwell-type condition, which is a
linear combination of the diffuse reflection, with coefficient ac (0 ≤ ac ≤ 1), and the specular
reflection, with coefficient 1 − ac [see assumption (ii) in Sec. IIA]. The coefficient ac is the
so-called accommodation coefficient, giving the specular reflection when ac = 0 and the diffuse
reflection when ac = 1. In the present paper, we exclude the case of specular reflection assuming
that ac is strictly positive. The explicit form of the kinetic boundary condition is given by
Eq. (25) in Sec. III B in the dimensional form and by Eq. (41) in Sec. IVB in the dimensionless
form.
Under the Maxwell-type condition, the ES model gives the following slip boundary conditions

for Eq. (6):

(v̂i − v̂wi)ni = 0, (9a)

(v̂i − v̂wi)ti = ϵcIv
T̂

1/2
w

Âc(T̂w)

1

ρ̂

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
nitj + ϵcIT

1

Âc(T̂w)

1

ρ̂

∂T̂w
∂xi

ti, (9b)

T̂tr − T̂w = ϵcIIv
T̂w

Âc(T̂w)

1

ρ̂

∂v̂i
∂xj

ninj + ϵcIIT
T̂

1/2
w

Âc(T̂w)

1

ρ̂

∂T̂tr
∂xi

ni, (9c)

T̂int − T̂w = ϵc̃IIT
T̂

1/2
w

Âc(T̂w)

1

ρ̂

∂T̂int
∂xi

ni, (9d)

where the quantities ρ̂, v̂i, T̂tr, and T̂int as well as their derivatives are all evaluated at the
boundary x = xw. The coefficients cIv, c

I
T , c

II
v , cIIT , and c̃IIT , which are called the slip coefficients,

depend on the parameters ν (except cIT and c̃IIT ) and ac. Leaving the details of the analysis
determining the slip coefficients to Sec. VII, we show only their resulting numerical values here.
It is noted that the coefficients cIv, c

I
T , and c̃

II
T satisfy the following relations:

cIv =
1

1− ν
cIvBGK, cIT = cITBGK, c̃IIT = cIvBGK, (10)

where cIvBGK and cITBGK are, respectively, the shear-slip and thermal-slip (creep) coefficients
for the BGK model [41, 42] for a monatomic gas (see Sec. VIIC for the details). Therefore, the
coefficients cIv, c

I
T , and c̃

II
T are obtained immediately from the known values in the literature.

The numerical values of cIvBGK and cITBGK, taken from [43], are tabulated in Table I for various
values of ac.
In contrast, a new numerical analysis is required to obtain the numerical values of cIIv and

cIIT (see Sec. VIIC and Appendix D). We show the resulting numerical values in Tables II
and III for various values of the parameter ν and the accommodation coefficient ac. The range
−1/2 ≤ ν ≤ 1/2 corresponds to the range 2/(3 − θ) ≤ Pr ≤ 2/(1 + θ) of the Prandtl number,
and ν = 0 (i.e., Pr = 1) corresponds to the BGK model. It is noted that the values of cIIv and
cIIT for ac = 1 and ν = −0.5 and 0 had been obtained in [44, 45] and that the values in Tables

II and III agree with the corresponding values (i.e., c
(0)
5 and c

(0)
1 , respectively) in [44, 45] up to

four to five decimal places. With the numerical data in Tables II and III, one can easily obtain
the values of cIIv and cIIT at arbitrary ν and ac by appropriate interpolation.
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TABLE I. Values of cIvBGK and cITBGK [43].

ac cIvBGK cITBGK

0.1 17.10313 0.2641783

0.2 8.224902 0.2781510

0.3 5.255112 0.2919238

0.4 3.762619 0.3055019

0.5 2.861190 0.3188906

0.6 2.255410 0.3320949

0.7 1.818667 0.3451195

0.8 1.487654 0.3579692

0.9 1.227198 0.3706483

1.0 1.016191 0.3831612

TABLE II. Values of cIIv .

ac ν = −0.5 ν = −0.4 ν = −0.3 ν = −0.2 ν = −0.1

0.1 0.229056 0.245551 0.264600 0.286847 0.313171

0.2 0.235862 0.252963 0.272726 0.295826 0.323182

0.3 0.242643 0.260334 0.280791 0.304717 0.333070

0.4 0.249400 0.267666 0.288797 0.313522 0.342836

0.5 0.256135 0.274961 0.296747 0.322244 0.352485

0.6 0.262849 0.282221 0.304641 0.330886 0.362018

0.7 0.269545 0.289446 0.312481 0.339448 0.371439

0.8 0.276224 0.296640 0.320270 0.347934 0.380750

0.9 0.282887 0.303802 0.328010 0.356345 0.389955

1.0 0.289536 0.310936 0.335700 0.364684 0.399056

ac ν = 0 ν = 0.1 ν = 0.3 ν = 0.5

0.1 0.344801 0.383520 0.494486 0.695347

0.2 0.356088 0.396415 0.512244 0.722726

0.3 0.367200 0.409062 0.529488 0.748894

0.4 0.378141 0.421470 0.546243 0.773934

0.5 0.388917 0.433645 0.562528 0.797920

0.6 0.399532 0.445596 0.578365 0.820919

0.7 0.409989 0.457328 0.593771 0.842994

0.8 0.420294 0.468848 0.608765 0.864202

0.9 0.430449 0.480163 0.623364 0.884595

1.0 0.440460 0.491277 0.637583 0.904222

If we plot cIIv versus ac for fixed values of ν, we find that cIIv is almost linear with respect
to ac (the plot is omitted). Similarly, if we plot cIIv versus 1/(1 − ν), we can observe that cIIv
is almost proportional to 1/(1 − ν) (the plot is omitted). These facts suggest an approximate
numerical fit of the following simple form:

cIIv ≈ k1ac + k2
1− ν

, k1 = 0.1046, k2 = 0.3358. (11)

This formula can reproduce the values in Table II within the error of 1 percent for −0.3 ≤ ν ≤
0.1; 1.6 percent for ν = −0.5, −0.4, and 0.3; and 3 percent for ν = 0.5. On the other hand, it is
seen from Table III that cIIT is almost independent of ν. Therefore, neglecting the dependence
of cIIT on ν, one can propose the following simple numerical fit for cIIT :

cIIT ≈ k3 − ac
ac

, k3 = 2.302. (12)
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TABLE III. Values of cIIT .

ac ν = −0.5 ν = −0.4 ν = −0.3 ν = −0.2 ν = −0.1

0.1 21.4458 21.4465 21.4472 21.4480 21.4490

0.2 10.3436 10.3442 10.3449 10.3456 10.3465

0.3 6.62711 6.62763 6.62822 6.62888 6.62964

0.4 4.75734 4.75780 4.75832 4.75891 4.75957

0.5 3.62652 3.62692 3.62738 3.62789 3.62846

0.6 2.86536 2.86571 2.86611 2.86655 2.86705

0.7 2.31560 2.31591 2.31625 2.31663 2.31705

0.8 1.89811 1.89837 1.89866 1.89898 1.89933

0.9 1.56890 1.56912 1.56936 1.56963 1.56993

1.0 1.30160 1.30178 1.30198 1.30220 1.30244

ac ν = 0 ν = 0.1 ν = 0.3 ν = 0.5

0.1 21.4501 21.4515 21.4550 21.4607

0.2 10.3475 10.3486 10.3517 10.3566

0.3 6.63052 6.63154 6.63423 6.63841

0.4 4.76033 4.76122 4.76354 4.76711

0.5 3.62913 3.62989 3.63188 3.63489

0.6 2.86762 2.86827 2.86996 2.87248

0.7 2.31753 2.31809 2.31951 2.32161

0.8 1.89974 1.90021 1.90139 1.90311

0.9 1.57026 1.57065 1.57162 1.57301

1.0 1.30272 1.30303 1.30381 1.30492

This formula can reproduce the values in Table III within the error of 1 percent for ac = 0.3,
0.4, 0.5, 0.9, and 1; 1.5 percent for ac = 0.6, 0.7, and 0.8; 1.7 percent for ac = 0.2; and 2.7
percent for ac = 0.1.
The boundary conditions (9) should be supplemented by the initial condition. If we admit

the inaccuracy in the initial stage 0 < t̂ < O(mean free time) in practical applications, we may
ignore assumption (v) in Sec. II A and assume the following initial conditions:

ρ̂ = ρ̂in(x), v̂ = v̂in(x), T̂tr = T̂ in
tr (x), T̂int = T̂ in

int(x), at t̂ = 0, (13)

where ρ̂in(x), v̂in(x), T̂ in
tr (x), and T̂

in
int(x) are appropriately chosen functions (see Sec. VIID for

the discussion about this point).

E. Remarks on applications

We now have the complete system consisting of the two-temperature Navier–Stokes equations
(6), the slip boundary conditions (9), and the initial conditions (13). However, in order to
apply the system to practical problems, we have to identify the parameters ϵ, ν, and θ (or

α) [cf. Eq. (5)] and the function Âc(T̂ ) from the properties of the gas under consideration.
The accommodation coefficient ac, which depends also on the property of the boundary, is
excluded in this discussion. A conventional way to identify the parameters and Âc(T̂ ) is to
use the data of transport coefficients of the gas, since the data of shear and bulk viscosities
and the thermal conductivity (or the Prandtl number) are often available. Here, we should
note that these transport coefficients make sense under the ordinary Navier–Stokes constitutive
laws (A6). Therefore, we use the expressions (A7a)–(A9) of the transport coefficients in terms
of ν, θ, and Ac(T ). To be more specific, we first determine ν and θ from the data of µb/µ
and Pr, which are often available, using Eqs. (A8) and (A9). The parameter θ thus obtained
should be small, otherwise the two-temperature Navier–Stokes equations are not valid. Then,
knowing the temperature dependence of the viscosity µ from the data, we determine Ac(T )
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from Eq. (A7a). Once Ac(T ) is determined, its dimensionless counterpart Âc(T̂ ) is determined
by Eq. (3), and then ϵ by Eqs. (4) and (A5).

F. Examples of real gases

Now we provide some examples of real gases. We consider the gases with large bulk viscosities
listed in Table IV. The data for the viscosity µ, the ratio of the specific heats γ, and the Prandtl
number Pr, which are at T = 300K and p = 101kPa, are taken from [46], whereas those for
the ratio µb/µ, which are at T = 300K, are taken from [47]. Note that for the ES model, µ
does not depend on p. From these data, one obtains the values of θ and ν in Table IV by using
Eqs. (A8) and (A9).

TABLE IV. Thermophysical properties of some gases with large bulk
viscosities.

µ [10−6Pa · s] s γ Pr µb/µ θ × 103 ν

H2 8.955a 0.67 1.406a 0.7072a 28b 13.2 −0.420

CO2 14.91a 0.83 1.293a 0.767a 3849b 0.127 −0.304

SF6 15.24a 0.90 1.097a 0.806a 320b 2.21 −0.241

CH4 11.43a 0.83 1.305a 0.7630a 240b 1.98 −0.311

C2H4 10.30a 0.97 1.245a 0.7718a 130b 4.20 −0.297

C3H8 8.219a 0.97 1.136a 0.6853a 240b 3.23 −0.461

a Value at 300K, 101kPa in [46].
b Value at 300K in [47].

With ν in Table IV, we can obtain the values of the slip coefficients for each gas. The values
of cIv, c

I
T , and c̃

II
T are obtained immediately from Eq. (10) and Table I. The values of cIIv and

cIIT are obtained from Tables II and III or Eqs. (11) and (12). The results for ac = 0.2, 0.5,
and 1 are shown in Table V, where “interpolation” indicates the values obtained by a simple
linear interpolation, with respect to 1/(1−ν), using the two neighboring values in Tables II and
III, and “numerical” indicates the numerical result based on the method outlined in Appendix
D. It is seen that the interpolation based on Tables II and III is sufficient to obtain accurate
values.

In order to determine Ac(T ), we assume the following power law with respect to T for the
viscosity µ:

µ(T ) = µ(300K)× (T/300K)s, (14)

and determine the exponent s using the method of least squares on the basis of the data provided
in [46]. The obtained value of s for each gas is also shown in Table IV. Equation (14) with these
values of s reproduces the data of µ given in [48] quite well in the temperature range 250–1300
K for CO2 and 250–600 K for SF6, CH4, and C2H4. Equations (A7a) and (A8) then give

Ac(T ) = Ac(300K)× (T/300K)1−s, Ac(300K) = (RPr)× [300K/µ(300K)], (15)

and thus Âc(T̂ ) = T̂ 1−s. With this Ac(T ), the reference mean free path l0 is obtained by
Eq. (A5). Then, the parameters ϵ and α are determined by Eqs. (4) and (5), respectively.

III. ES MODEL AND ITS INITIAL AND BOUNDARY CONDITIONS

In this and the following sections (Secs. III–VII), we will describe the steps that have led
to our results summarized in Sec. II. First, the basic kinetic problem, which is described in
Sec. IIA, is formulated in this section.
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TABLE V. Values of cIIv and cIIT for some gases.

cIIv cIIT
ac Eq. (11) interpolation numerical Eq. (12) interpolation numerical

H2 0.2 0.251211 0.249350 0.249348 10.5100 10.3441 10.3441

0.5 0.273310 0.270984 0.270979 3.60400 3.62684 3.62684

1.0 0.310141 0.306415 0.306410 1.30200 1.30174 1.30174

CO2 0.2 0.273558 0.271877 0.271877 10.5100 10.3449 10.3448

0.5 0.297623 0.295811 0.295810 3.60400 3.62736 3.62736

1.0 0.337730 0.334637 0.334635 1.30200 1.30197 1.30197

SF6 0.2 0.287446 0.285905 0.285899 10.5100 10.3453 10.3453

0.5 0.312732 0.311293 0.311283 3.60400 3.62767 3.62767

1.0 0.354875 0.352236 0.352224 1.30200 1.30211 1.30210

CH4 0.2 0.272098 0.270404 0.270403 10.5100 10.3448 10.3448

0.5 0.296034 0.294188 0.294184 3.60400 3.62733 3.62732

1.0 0.335927 0.332791 0.332787 1.30200 1.30196 1.30195

C2H4 0.2 0.275035 0.273367 0.273367 10.5100 10.3449 10.3449

0.5 0.299229 0.297455 0.297453 3.60400 3.62739 3.62739

1.0 0.339553 0.336504 0.336503 1.30200 1.30199 1.30198

C3H8 0.2 0.244162 0.242253 0.242250 10.5100 10.3438 10.3438

0.5 0.265640 0.263171 0.263164 3.60400 3.62667 3.62667

1.0 0.301437 0.297534 0.297527 1.30200 1.30167 1.30167

A. ES model

We first describe the ES model for a polyatomic gas that was proposed in [16] and re-derived
in a systematic way in [37]. Its basic properties are shown in Appendix A.

We have introduced the number of the internal degrees of freedom δ, the time variable t, and
the space position vector X in Sec. II B. In addition, let ξ (or ξi) be the molecular velocity and
E be the energy per unit mass associated with the internal modes (i.e., the combined energy
for the δ modes), which is continuous ranging from 0 to ∞. We denote the number of the gas
molecules, at time t, contained in an infinitesimal volume dXdξdE around a point (X, ξ, E) in
the seven-dimensional (extended) phase space consisting of X, ξ, and E by

1

m
f(t, X, ξ, E)dXdξdE . (16)

Therefore, f(t, X, ξ, E) is the mass density in the seven-dimensional phase space. We call
f(t, X, ξ, E) the velocity-energy distribution function of the gas molecules. It is governed by
the ES model of the Boltzmann equation for a polyatomic gas [16, 37], which can be written in
the following form:

∂f

∂t
+ ξi

∂f

∂Xi
= Q(f), (17)

where

Q(f) = Ac(T )ρ(G − f), (18a)
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G =
ρEδ/2−1

(2π)3/2(detT)1/2(RTrel)δ/2Γ(δ/2)

× exp

(
−1

2
(T−1)ij(ξi − vi)(ξj − vj)−

E
RTrel

)
, (18b)

(T)ij = (1− θ)[(1− ν)RTtrδij + νpij/ρ] + θRTδij , (18c)

ρ =

∫∫ ∞

0

fdEdξ, (18d)

vi =
1

ρ

∫∫ ∞

0

ξifdEdξ, (18e)

pij =

∫∫ ∞

0

(ξi − vi)(ξj − vj)fdEdξ, (18f)

Ttr =
1

3Rρ

∫∫ ∞

0

|ξ − v|2fdEdξ, (18g)

Tint =
2

δRρ

∫∫ ∞

0

EfdEdξ, (18h)

T =
3Ttr + δTint

3 + δ
, (18i)

Trel = θT + (1− θ)Tint. (18j)

Here, ρ, vi, Ttr, Tint, and T are the macroscopic quantities already appeared in Sec. II B, pij
is the stress tensor, dξ = dξ1dξ2dξ3, and the domain of integration with respect to ξ is its
whole space R3. The symbol δij indicates the Kronecker delta, ν ∈ [−1/2, 1) and θ ∈ [0, 1]
are the adjustable parameters mentioned in Sec. II B, and Ac(T ), also appeared in Sec. II B, is
a function of T such that Ac(T )ρ is the collision frequency of the gas molecules. In addition,
Γ(z) is the gamma function defined by

Γ(z) =

∫ ∞

0

sz−1e−sds, (19)

T is the 3 × 3 matrix with its (i, j) component defined by Eq. (18c), and detT and T−1 are,
respectively, its determinant and inverse.
The other important macroscopic quantities, the pressure p and the heat-flow vector qi, are

defined by

p = RρT, (20)

and

qi = q(tr)i + q(int)i, (21a)

q(tr)i =
1

2

∫∫ ∞

0

(ξi − vi)|ξ − v|2fdEdξ, (21b)

q(int)i =

∫∫ ∞

0

(ξi − vi)EfdEdξ, (21c)

where Eq. (20) is the equation of state.
It should be noted that in [16], the variable I, which is related to our E as E = I2/δ, is used

as an independent variable instead of E . See [49] or Appendix A in [50] for the relation between
the notation in [16] and that of the present paper (see also [24]). In addition, the case with
θ = 0, which is excluded in [16], is included here, and it plays an important role in the present
analysis. In the ES model (17), the energy associated with the internal modes is expressed
by a single continuous variable E . Some models also use a continuous energy variable (e.g.,
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[13, 17, 24]), whereas the others use a discrete energy variable (e.g., [11, 12, 14, 15]). However,
the corresponding macroscopic equations are analogous in both cases (see, e.g., [20]). Some
mathematical studies of the ES model for a polyatomic gas are found in [51, 52].

Finally, we mention how the ES model for a monatomic gas is recovered from Eq. (17) (see
Sec. 7 in [52]). Let us introduce the marginal distribution function F (t, X, ξ):

F (t, X, ξ) =

∫ ∞

0

f(t, X, ξ, E)dE . (22)

If we integrate both sides of Eq. (17) with respect to E from 0 to ∞, let θ = 0, and interpret
Ttr as the temperature T , then, we obtain the equation for F , which is exactly the same as the
ES model for a monatomic gas [16]. The linearized version of this property will be used in the
Knudsen-layer analysis later.

B. Initial and boundary conditions

The local equilibrium for Eq. (17) is shown in Eq. (A1). Correspondingly, the global equilib-
rium distribution f0 with the uniform density ρ0 (reference density) and the uniform tempera-
ture T0 (reference temperature) is given by

f0 =
ρ0Eδ/2−1

(2πRT0)3/2(RT0)δ/2Γ(δ/2)
exp

(
− |ξ|2

2RT0
− E
RT0

)
. (23)

According to assumption (v) in Sec. II A, the initial condition for f is given at time t = 0 by

f(0, X, ξ, E) = f0. (24)

We will relax this condition later for practical applications.

From the form of the local equilibrium distribution (A1), the Maxwell-type boundary condi-
tion is written as follows:

f(t, Xw, ξ, E) = (1− ac)Rf(t, Xw, ξ, E)

+ ac
ρwEδ/2−1

(2πRTw)3/2(RTw)δ/2Γ(δ/2)
exp

(
−|ξ − vw|2

2RTw
− E
RTw

)
,

for (ξ − vw) · n > 0, (25a)

ρw = −
(

2π

RTw

)1/2 ∫
(ξ−vw)·n<0

∫ ∞

0

(ξ − vw) · nf(t, Xw, ξ, E)dEdξ, (25b)

where R indicates the reflection operator defined by

Rg(ξi) = g(ξi − 2(ξj − vwj)njni), (26)

with an arbitrary function g(ξ) of ξ. It should be recalled that the quantities Xw, vw, Tw, and
n, as well as the accommodation coefficient ac (0 < ac ≤ 1), have already appeared in Sec. IID.

Note that this boundary condition satisfies the condition that there is no instantaneous mass
flow across the boundary, i.e.,∫∫ ∞

0

(ξ − vw) · nf(t, Xw, ξ, E)dEdξ = 0. (27)

To be consistent with assumption (v), vw = 0 and Tw = T0 should hold at t = 0, and Xw (thus,
vw), Tw, and n are assumed to change smoothly with t. In practical applications, however, this
condition may be relaxed occasionally.
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IV. DIMENSIONLESS SYSTEM

We should recall that the dimensionless quantities [t̂, xi, ρ̂, v̂i, T̂tr, T̂int, T̂ , Âc(T̂ ), xwi, v̂wi,

T̂w], as well as the reference quantities L, t0, ρ0, and T0 with t0 being chosen as Eq. (2), have
been introduced in Secs. II C and IID [cf. Eqs. (3) and (8)]. In addition, we let p0 = Rρ0T0 be
the reference pressure.

Now we introduce the additional dimensionless quantities [ζi, Ê , f̂ , Ĝ, T̂rel, p̂ij , p̂, q̂(tr)i, q̂(int)i,
q̂i], which correspond to the original dimensional quantities [ξi, E , f , G, Trel, pij , p, q(tr)i, q(int)i,
qi], by the following relations:

ζi = ξi/(2RT0)
1/2, Ê = E/RT0, (f̂ , Ĝ) = (f, G)/2ρ0(2RT0)−5/2,

T̂rel = Trel/T0, p̂ij = pij/p0, p̂ = p/p0,

(q̂(tr)i, q̂(int)i, q̂i) = (q(tr)i, q(int)i, qi)/p0(2RT0)
1/2.

(28)

We occasionally use the bold-faced letters x, ζ, v̂, q̂, xw, and v̂w in place of xi, ζi, v̂i, q̂i, xwi,
and v̂wi, respectively.

A. Dimensionless form of ES model

With Eqs. (3) and (28), the ES model (17) is transformed into the following dimensionless
form:

∂f̂

∂t̂
+ ζi

∂f̂

∂xi
=

1

ϵ
Q̂(f̂), (29)

where

Q̂(f̂) = Âc(T̂ )ρ̂(Ĝ − f̂), (30a)

Ĝ =
ρ̂

π3/2(detT̂)1/2 T̂
δ/2
rel Γ(δ/2)

Êδ/2−1 exp

(
−(T̂−1)ij(ζi − v̂i)(ζj − v̂j)−

Ê
T̂rel

)
, (30b)

(T̂)ij = (1− θ)[(1− ν)T̂trδij + νp̂ij/ρ̂] + θT̂ δij , (30c)

ρ̂ =

∫∫ ∞

0

f̂dÊdζ, (30d)

v̂i =
1

ρ̂

∫∫ ∞

0

ζif̂dÊdζ, (30e)

p̂ij = 2

∫∫ ∞

0

(ζi − v̂i)(ζj − v̂j)f̂dÊdζ, (30f)

T̂tr =
2

3ρ̂

∫∫ ∞

0

(ζk − v̂k)
2f̂dÊdζ, (30g)

T̂int =
2

δρ̂

∫∫ ∞

0

Ê f̂dÊdζ, (30h)

T̂ =
3T̂tr + δT̂int

3 + δ
, (30i)

T̂rel = θT̂ + (1− θ)T̂int. (30j)

Here, ϵ is a small parameter of the order of the Knudsen number defined by Eq. (4), dζ =
dζ1dζ2dζ3, and the domain of integration with respect to ζ is the whole space (R3) of ζ.

The dimensionless pressure p̂ and heat-flow vector q̂i, corresponding to Eqs. (20) and (21),
are given by

p̂ = ρ̂T̂ , (31)
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and

q̂i = q̂(tr)i + q̂(int)i, (32a)

q̂(tr)i =

∫∫ ∞

0

(ζi − v̂i)|ζ − v̂|2f̂dÊdζ, (32b)

q̂(int)i =

∫∫ ∞

0

(ζi − v̂i)Ê f̂dÊdζ. (32c)

The dimensionless form of the first two basic properties of the ES model shown in Ap-
pendix A1 is described as follows:

Equilibrium: Q̂(f̂) = 0 is equivalent to the fact that f̂ is the dimensionless local equilibrium
given by

f̂eq =
ρ̂Êδ/2−1

(πT̂ )3/2T̂ δ/2Γ(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê
T̂

)
, (33)

where ρ̂, v̂, and T̂ are arbitrary functions of t̂ and x.

Conservations: For an arbitrary function ĝ(t̂, x, ζ, Ê), the relation∫∫ ∞

0

φ̂rQ̂(ĝ)dÊdζ = 0, (34)

holds, where φ̂r (r = 0, ..., 4) are the dimensionless collision invariants, i.e.,

φ̂0 = 1, φ̂i = ζi (i = 1, 2, 3), φ̂4 = |ζ|2 + Ê . (35)

Here, we should note that when the parameter θ vanishes, these equilibrium and conservation
properties take slightly different forms. Their dimensional versions are shown in Appendix A 3
in [53], and the dimensionless versions are stated as follows (see Sec. III B in [36]):

Equilibrium: Q̂(f̂)|θ=0 = 0 is equivalent to the fact that f̂ is the (dimensionless) local equilib-
rium of the form

f̂eq =
ρ̂ Êδ/2−1

(πT̂tr)3/2T̂
δ/2
int Γ(δ/2)

exp

(
−|ζ − v̂|2

T̂tr
− Ê
T̂int

)
, (36)

where ρ̂, v̂, T̂tr, and T̂int are arbitrary dimensionless functions of t̂ and x.

Conservations: For an arbitrary function ĝ(t̂, x, ζ, Ê), the relation∫∫ ∞

0

ϕ̂rQ̂(ĝ)|θ=0dÊdζ = 0, (37)

holds, where ϕ̂r (r = 0, ..., 5) are the (dimensionless) collision invariants, i.e.,

ϕ̂0 = 1, ϕ̂i = ζi (i = 1, 2, 3), ϕ̂4 = |ζ|2, ϕ̂5 = Ê . (38)

These properties for θ = 0 play important roles in the present study.

B. Dimensionless form of initial and boundary conditions

The dimensionless form of the initial condition (24) can be written in the following form:

f̂(0, x, ζ, Ê) = f̂0, (39)
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where

f̂0 = [Γ(δ/2)]−1E(ζ)Êδ/2−1e−Ê , ζ = |ζ| = (ζ2i )
1/2, E(ζ) = π−3/2 exp(−ζ2). (40)

With the dimensionless quantities defined by Eq. (8), the boundary condition (25) is non-
dimensionalized as follows:

f̂(t̂, xw, ζ, Ê) = (1− ac)R̂f̂(t̂, xw, ζ, Ê)

+ ac
ρ̂wÊδ/2−1

(πT̂w)3/2T̂
δ/2
w Γ(δ/2)

exp

(
−|ζ − v̂w|2

T̂w
− Ê
T̂w

)
,

for (ζ − v̂w) · n > 0, (41a)

ρ̂w = −2

(
π

T̂w

)1/2 ∫
(ζ−v̂w)·n<0

∫ ∞

0

(ζ − v̂w) · nf̂(t̂, xw, ζ, Ê)dÊdζ, (41b)

where R̂ is the dimensionless reflection operator, corresponding to Eq. (26), acting on any
function ĝ of ζi, i.e.,

R̂ĝ(ζi) = ĝ(ζi − 2(ζj − v̂wj)njni). (42)

Corresponding to Eq. (27), the following condition holds on the boundary:∫∫ ∞

0

(ζ − v̂w) · nf̂(t̂, xw, ζ, Ê)dÊdζ = 0. (43)

We note that v̂w = 0 and T̂w = 1 at t̂ = 0, and xw (thus v̂w), T̂w, and n are assumed to change
smoothly in t̂ though this restriction may be relaxed occasionally in practical applications.

V. TWO-TEMPERATURE NAVIER–STOKES EQUATIONS

A. Preliminary remarks

In [36], the two-temperature Navier–Stokes equations have been derived from the ES model
in the case where the parameter θ, as well as the Knudsen number Kn, is small, that is, under
the setting (5). The background of this assumption is explained in Sec. II E in [36]. However,
a brief description of its essence is given below.
As can be seen from Eq. (A9) in Appendix A 2, small θ indicates large values of the ratio µb/µ,

where µ is the (shear) viscosity and µb the bulk viscosity [cf. Eqs. (A6) and (A7) in Appendix
A2]. On the other hand, as is seen from Eq. (A10) in Appendix A 2, small θ corresponds to slow
relaxation of the internal modes. These two statements are consistent because it is a common
understanding that large bulk viscosity is related to the slow relaxation of the internal modes
[47, 54]. Therefore, the condition (5) targets the behavior in the near continuum regime of a gas
with slow relaxation of the internal modes or with large bulk viscosity. The two-temperature
Navier–Stokes equations are the consequence of the Chapman–Enskog expansion under the
condition (5).
As mentioned in Sec. II F, some gases have large bulk viscosities, more precisely, large values

of the ratio µb/µ of the bulk viscosity to the viscosity (see Table IV in Sec. II F). The reader
is referred to [47] and p. 30 in [55] concerning gases with large bulk viscosities. It is noted that
the impact of large bulk viscosity for H2 gas flows is investigated in [56]. Here, it should also be
mentioned that some authors are doubtful about the large values of µb/µ for CO2 gas [33, 57].
However, as in [36], we here follow the view that µb/µ is large for CO2 gas.

The standard Chapman–Enskog expansion for small ϵ applied to the ES model leads to the
ordinary Navier–Stokes equations with the single temperature and with the bulk viscosity [16]
(cf. Appendix A 2). In this case, it is implicitly assumed that the parameter θ is of the order
of unity. When θ is small, therefore, one expects that the ordinary Navier–Stokes equations
are not valid and a new system of equations is required. For this reason, we considered the
parameter setting (5) and, as the result, derived the two-temperature Navier–Stokes equations,
which have been summarized in Sec. II C.
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B. Chapman–Enskog solution and two-temperature Navier–Stokes equations

In this subsection, we summarize the result of the Chapman–Enskog expansion carried out
in [36] to derive the two-temperature Navier–Stokes equations (6). Let us put aside the initial
and boundary conditions (39) and (41).

If the Chapman–Enskog procedure is applied to the ES model (29) under the assumption

(5), the solution f̂ is expressed in the expansion of the following form:

f̂ = f̂ (0) + f̂ (1)ϵ+ f̂ (2)ϵ2 + · · · . (44)

Here, the leading-order term f̂ (0) is given by the local equilibrium distribution (36) for θ = 0,
i.e.,

f̂ (0) =
ρ̂ Êδ/2−1

(πT̂tr)3/2T̂
δ/2
int Γ(δ/2)

exp

(
−|ζ − v̂|2

T̂tr
− Ê
T̂int

)
, (45)

and the first-order term f̂ (1) is given as

f̂ (1) =− 1

Âc(T̂ )ρ̂
f̂ (0)

{
1

1− ν

[
(ζi − v̂i)(ζj − v̂j)

T̂tr
− 1

3

(ζk − v̂k)
2

T̂tr
δij

](
∂v̂i
∂xj

+
∂v̂j
∂xi

)
+

(ζj − v̂j)

T̂tr

[
(ζk − v̂k)

2

T̂tr
− 5

2

]
∂T̂tr
∂xj

+
(ζj − v̂j)

T̂int

(
Ê
T̂int

− δ

2

)
∂T̂int
∂xj

}
. (46)

The expansion is designed in such a way that the macroscopic quantities ρ̂, v̂, T̂tr, and T̂int in
Eqs. (30d), (30e), (30g), and (30h) are not expanded and are generated by the leading-order

term f̂ (0), that is,

ρ̂ =

∫∫ ∞

0

f̂ (0)dÊdζ, (47a)

v̂i =
1

ρ̂

∫∫ ∞

0

ζif̂
(0)dÊdζ, (47b)

T̂tr =
2

3ρ̂

∫∫ ∞

0

(ζk − v̂k)
2f̂ (0)dÊdζ, (47c)

T̂int =
2

δρ̂

∫∫ ∞

0

Ê f̂ (0)dÊdζ. (47d)

This is equivalent to imposing the following condition for the higher-order terms f̂ (1), f̂ (2), . . . :∫∫ ∞

0

ϕ̂rf̂
(m)dÊdζ = 0, (r = 0, . . . , 5; m = 1, 2, . . . ), (48)

where ϕ̂r (r = 0, ..., 5) are defined by Eq. (38).

In accordance with Eq. (44), other macroscopic quantities p̂ij , q̂i, q̂(tr)i, q̂(int)i, and T̂rel are
expanded as

ĥ = ĥ(0) + ĥ(1)ϵ+ · · · , (ĥ = p̂ij , q̂i, q̂(tr)i, q̂(int)i, and T̂rel). (49)

Here, the coefficients for p̂ij , q̂i, q̂(tr)i, and q̂(int)i are obtained by substituting Eqs. (44) and
(49) into Eqs. (30f) and (32), i.e.,

p̂
(m)
ij = 2

∫∫ ∞

0

(ζi − v̂i)(ζj − v̂j)f̂
(m)dÊdζ, (m = 0, 1, . . . ), (50)

and

q̂
(m)
i = q̂

(m)
(tr)i + q̂

(m)
(int)i, (m = 0, 1, . . . ), (51a)

q̂
(m)
(tr)i =

∫∫ ∞

0

(ζi − v̂i)|ζ − v̂|2f̂ (m)dÊdζ, (51b)

q̂
(m)
(int)i =

∫∫ ∞

0

(ζi − v̂i)Ê f̂ (m)dÊdζ, (51c)
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and those for T̂rel are obtained from Eqs. (30j) and (5), i.e.,

T̂
(0)
rel = T̂int, T̂

(1)
rel = α(T̂ − T̂int), T̂

(m+2)
rel = 0, (m = 0, 1, . . . ), (52)

where T̂ is determined by Eq. (30i) and thus is not expanded in ϵ.

If we use f̂ = f̂ (0) + f̂ (1)ϵ + O(ϵ2) with Eqs. (45) and (46) in Eqs. (49), (50), and (51), we
obtain the following expressions of p̂ij , q̂(tr)i, q̂(int)i, and q̂i:

p̂ij = ρ̂T̂trδij − Γµ(T̂ , T̂tr)

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)
ϵ+O(ϵ2), (53a)

q̂(tr)i = −5

4
Γλ(T̂ , T̂tr)

∂T̂tr
∂xi

ϵ+O(ϵ2), (53b)

q̂(int)i = −δ
4
Γλ(T̂ , T̂tr)

∂T̂int
∂xi

ϵ+O(ϵ2), (53c)

q̂i = q̂(tr)i + q̂(int)i, (53d)

where Γµ(T̂ , T̂tr) and Γλ(T̂ , T̂tr) are defined by Eq. (7).
The two-temperature Navier–Stokes equations, which correspond to the first-order solution

f̂ = f̂ (0) + f̂ (1)ϵ and whose constitutive laws are given by Eq. (53) with O(ϵ2) terms being

neglected, are the equations for ρ̂, v̂i, T̂tr, and T̂int and take the form of Eq. (6). One can derive
the equation for the conservation of the total energy from Eqs. (6c) and (6d), that is,

∂

∂t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2i

)]
+

∂

∂xj

[
ρ̂v̂j

(
3 + δ

2
T̂ + T̂tr + v̂2i

)]
=

1

2
ϵ
∂

∂xj

[
Γλ(T̂ , T̂tr)

(
3 + δ

2

∂T̂

∂xj
+
∂T̂tr
∂xj

)]

+ ϵ
∂

∂xj

[
Γµ(T̂ , T̂tr)v̂i

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)]
. (54)

Equation (54) may be used in place of Eq. (6c) or (6d). The two-temperature Navier–Stokes
equations can be reduced to the ordinary Navier–Stokes equations with a single temperature
by considering the case when α is large. The procedure is explained in Appendix B.

C. No-slip conditions and their inconsistency

Now, let us consider the initial and boundary conditions (39) and (41). If we assume

ρ̂ = 1, v̂ = 0, T̂tr = T̂int = 1, at t̂ = 0, (55)

then the Chapman–Enskog solution, Eq. (44) with Eqs. (45) and (46), satisfies Eq. (39) up to

O(ϵ) because ∂v̂i/∂xj = 0, ∂T̂tr/∂xi = 0, and ∂T̂int/∂xi = 0 hold. Therefore, under assumption
(v) in Sec. II A, Eq. (55) is the correct initial condition for Eq. (6).

Next, we consider the boundary condition (41). Since the leading-order term f̂ (0) of the
Chapman–Enskog solution is a local equilibrium distribution with two temperatures [Eq. (45)],
it can be made to satisfy Eq. (41) by assuming that

v̂ = v̂w, T̂tr = T̂int = T̂w, at x = xw. (56)

In this way, we are able to satisfy the boundary condition (41) at the zeroth order of ϵ with the
choice (56). Equation (56) is the so-called no-slip boundary conditions for the two-temperature
Navier–Stokes equations (6).

However, to be consistent with the fact that the first-order Chapman–Enskog solution f̂ =

f̂ (0) + f̂ (1)ϵ, which corresponds to the two-temperature Navier–Stokes equations, satisfies the
ES model (29) formally up to O(ϵ), we need to satisfy the boundary condition (41) also up
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to O(ϵ). If we try to do so with f̂ = f̂ (0) + f̂ (1)ϵ, we must impose the following conditions in
addition to Eq. (56):

∂v̂i
∂xj

+
∂v̂j
∂xi

= 0,
∂T̂tr
∂xj

= 0,
∂T̂int
∂xj

= 0, at x = xw. (57)

However, these conditions are too many for Eq. (6), so that this scheme does not work at the
order of ϵ. This difficulty can be resolved by introducing the Knudsen layer, as is well known
(cf. [58, 59]). As we will see in the next section, the correction of O(ϵ) to Eq. (56) is obtained
by the analysis of the Knudsen layer.
The above argument indicates that the no-slip boundary conditions (56) are not consistent

with the two-temperature Navier–Stokes equations. In classical gasdynamics, the no-slip bound-
ary conditions are usually used for the standard compressible Navier–Stokes equations (with
the single temperature). As pointed out in [40], the no-slip conditions are inconsistent also in
this case.

VI. KNUDSEN LAYER

A. Introduction of Knudsen layer

In Sec. VC, we have seen that the Chapman–Enskog solution, Eq. (44) with Eqs. (45) and
(46), cannot be made to satisfy the kinetic boundary condition (41) at the first order of ϵ. In
order to obtain the solution satisfying the boundary condition, one has to introduce the kinetic
boundary layer, the so-called Knudsen layer, with thickness of the order of ϵ (of the order of
the mean free path in the dimensional physical space) adjacent to the boundary [58, 59].

Let us denote the Chapman–Enskog solution, Eq. (44) with Eqs. (45) and (46), by f̂CE,

the correction term inside the Knudsen layer by f̂K, and the total solution that satisfies the

boundary condition by f̂tot. Then, we write

f̂tot = f̂CE + f̂K. (58)

Correspondingly, we denote the macroscopic quantities by

ĥtot = ĥCE + ĥK, (59)

where ĥ stands for any of the dimensionless macroscopic quantities, ρ̂, v̂i, p̂ij , T̂tr, etc., appeared

in Eqs. (30d)–(30j), (31), and (32), and ĥCE and ĥK indicate these macroscopic quantities
associated with the Chapman–Enskog solution and the Knudsen-layer correction, respectively.

Note that the macroscopic quantities appeared in Sec. V belong to ĥCE although the subscript
“CE” was not used there.
We assume the following properties for the correction term f̂K:

(a) f̂K is appreciable only in the Knudsen layer and vanishes rapidly away from the boundary.

(b) f̂K has the length scale of variation of the order of ϵ (i.e., of the order of the mean free
path l0 in the dimensional physical space) in the direction normal to the boundary, that

is, nj∂f̂K/∂xj = O(f̂K/ϵ).

(c) f̂K has the length scale of variation of the order of 1 (i.e., of the order of the reference
length L in the dimensional physical space) in the direction along the boundary.

(d) f̂K has the time scale of variation of the order of 1 [i.e., of the order of t0 = L/(2RT0)
1/2

in the dimensional time], i.e., ∂f̂K/∂t̂ = O(f̂K).

These assumptions can be justified if such a solution is obtained consistently.
The fact that the Chapman–Enskog solution, Eq. (44) with Eqs. (45) and (46), can be made

to satisfy the boundary condition (41) at the zeroth order in ϵ by the choice (56) indicates that
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the differences v̂− v̂w, T̂tr − T̂w, and T̂int − T̂w are small and of the order of ϵ on the boundary.
Therefore, we put

v̂ − v̂w = ¯̄vϵ, T̂tr − T̂w = ¯̄Ttrϵ, T̂int − T̂w = ¯̄Tintϵ, at x = xw, (60)

where ¯̄v, ¯̄Ttr, and
¯̄Tint are the quantities of O(1). This fact also indicates that f̂K starts at the

order of ϵ, so that we let

f̂K = f̂
(1)
K ϵ+Rf ϵ

2, (61)

where Rf ϵ
2 is the remainder, and Rf is of O(1) and has the properties (a)–(d). Correspondingly,

we put

ĥK = ĥ
(1)
K ϵ+Rhϵ

2, (62)

where Rhϵ
2 is the remainder corresponding to Rf ϵ

2.
We insert Eqs. (58) and (59) with Eqs. (61) and (62) into Eqs. (30d)–(30j), (31), and (32)

(with f̂ = f̂tot and ĥ = ĥtot) and note that f̂CE and ĥCE satisfy the same relations as Eqs. (30d)–

(30j), (31), and (32) (with f̂ = f̂CE and ĥ = ĥCE). In this process, we have to note the following.
From Eqs. (30j) and (5), we have

(T̂rel)tot = αϵT̂tot + (1− αϵ)(T̂int)tot

= αϵ[T̂ + T̂
(1)
K ϵ+O(Rhϵ

2)] + (1− αϵ)[T̂int + T̂
(1)
intKϵ+O(Rhϵ

2)]

= T̂int + αϵ(T̂ − T̂int) + T̂
(1)
intKϵ+O(Rhϵ

2), (63)

where T̂ and T̂int are the Chapman–Enskog quantities. On the other hand, (T̂rel)tot = T̂rel +

T̂
(1)
relKϵ + O(Rhϵ

2) by definition, and T̂rel = T̂
(0)
rel + T̂

(1)
rel ϵ = T̂int + α(T̂ − T̂int) ϵ from Eq. (52).

Therefore, T̂
(1)
relK is identified as

T̂
(1)
relK = T̂

(1)
intK. (64)

Then, picking up the terms of O(ϵ) for ĥ
(1)
K and putting the O(ϵ2) terms in Rhϵ

2, we obtain

the following expressions of ĥ
(1)
K :

ρ̂
(1)
K =

∫∫ ∞

0

f̂
(1)
K dÊdζ, (65a)

v̂
(1)
Ki =

1

ρ̂

∫∫ ∞

0

(ζi − v̂i)f̂
(1)
K dÊdζ, (65b)

p̂
(1)
Kij = 2

∫∫ ∞

0

(ζi − v̂i)(ζj − v̂j)f̂
(1)
K dÊdζ, (65c)

T̂
(1)
trK =

2

3ρ̂

∫∫ ∞

0

[
(ζk − v̂k)

2 − 3

2
T̂tr

]
f̂
(1)
K dÊdζ, (65d)

T̂
(1)
intK =

2

δρ̂

∫∫ ∞

0

(
Ê − δ

2
T̂int

)
f̂
(1)
K dÊdζ, (65e)

T̂
(1)
K =

3T̂
(1)
trK + δT̂

(1)
intK

3 + δ
, (65f)

T̂
(1)
relK = T̂

(1)
intK, (65g)

p̂
(1)
K = ρ̂T̂

(1)
K + ρ̂

(1)
K T̂ , (65h)

q̂
(1)
(tr)Ki =

∫∫ ∞

0

(ζi − v̂i)

[
(ζk − v̂k)

2 − 5

2
T̂tr

]
f̂
(1)
K dÊdζ,

q̂
(1)
(int)Ki =

∫∫ ∞

0

(ζi − v̂i)

(
Ê − δ

2
T̂int

)
f̂
(1)
K dÊdζ,

q̂
(1)
Ki = q̂

(1)
(tr)Ki + q̂

(1)
(int)Ki.


(65i)
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(a) (b)

FIG. 1. Coordinate systems. (a) Coordinate system on the boundary, (b) coordinate system for the
Knudsen layer.

Note again that ρ̂, v̂i, T̂tr, and T̂int here are the macroscopic quantities associated with the
Chapman–Enskog solution though the subscript CE is not attached. It should also be mentioned
that use has been made of the fact that p̂ij = ρ̂T̂trδij + O(ϵ) [Eq. (53a)] in the derivation of
Eq. (65).

If we substitute Eq. (58) with Eq. (61) into Eq. (29) and take into account the fact that f̂CE

is also the solution of Eq. (29), we obtain the following equation for f̂
(1)
K (see Appendix C for

the outline of the derivation):

ϵ
∂f̂

(1)
K

∂t̂
+ ϵζi

∂f̂
(1)
K

∂xi
= Âc(T̂ )ρ̂(Ĝ(1)

K − f̂
(1)
K ) +O(Rf ϵ), (66)

where

Ĝ(1)
K = f̂ (0)

{
ρ̂
(1)
K

ρ̂
+ 2

(ζi − v̂i)

T̂tr
v̂
(1)
Ki +

[
(ζi − v̂i)

2

T̂tr
− 3

2

]
T̂

(1)
trK

T̂tr

+ν

[
(ζi − v̂i)(ζj − v̂j)

T̂tr
− 1

3

(ζk − v̂k)
2

T̂tr
δij

]
p̂
(1)
Kij

ρ̂T̂tr

+

(
Ê
T̂int

− δ

2

)
T̂

(1)
intK

T̂int

}
, (67)

and note that the function Âc(T̂ ) is unexpanded because T̂ is not expanded. Equation (66) is
the starting point of the analysis of the Knudsen layer in the following.

B. Knudsen-layer equation

The analysis of this subsection follows that in Sec. V A 3 in [39], so that we omit the details
and only show the main points referring to [39] occasionally. However, in order to explain the
essence of the coordinate system to describe the Knudsen layer, we need to start with repeating
the explanation in [39].
We first express a point xw on the boundary as a function of coordinates χ1 and χ2 fixed on

the surface of the boundary and of time t̂ [see Fig. 1(a)], i.e.,

xw = xw(t̂, χ1, χ2). (68)

When χ1 and χ2 are fixed, the function xw(t̂, χ1, χ2) of t̂ gives the trajectory of a fixed point on
the boundary, and when t̂ is fixed, the function xw(t̂, χ1, χ2) of χ1 and χ2 gives the parameter
representation of the boundary surface at time t̂. The velocity of the boundary v̂w and the unit
normal vector to the boundary n, which are also the functions of t̂, χ1, and χ2, are expressed
as

v̂w(t̂, χ1, χ2) =
∂xw

∂t̂
, (69a)
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n(t̂, χ1, χ2) = ±
(
∂xw

∂χ1
× ∂xw

∂χ2

) ∣∣∣∣∂xw

∂χ1
× ∂xw

∂χ2

∣∣∣∣−1

, (69b)

where × indicates the vector product, and + sign or − sign is chosen in such a way that n
points into the gas region.
In order to analyze the Knudsen layer, we introduce a new coordinate system that is local

near the boundary and appropriate to describe the rapid change of the physical quantities in
the direction normal to the boundary. We introduce the new variables t̃, η, and ζw by the
following relations [see Fig. 1(b)]:

t̂ = t̃, (70a)

x = ϵ ηn(t̃, χ1, χ2) + xw(t̃, χ1, χ2), (70b)

ζ = ζw + v̂w(t̃, χ1, χ2). (70c)

Here, η is a stretched normal coordinate, and ζw is the molecular velocity relative to the velocity

of the boundary. In accordance with the properties (a)–(d) in Sec. VIA, we assume that f̂K is

a function of (t̃, η, χ1, χ2, ζw, Ê) and vanishes rapidly as η → ∞:

f̂K = f̂K(t̃, η, χ1, χ2, ζw, Ê), (71a)

f̂K → 0, as η → ∞. (71b)

Therefore, Eq. (71) also holds for f̂
(1)
K and Rf in Eq. (61).

We now consider Eq. (66) inside the Knudsen layer, i.e., η = O(1) or (x−xw)·n = O(ϵ). The

x-dependence of f̂ (0) is through ρ̂, v̂, T̂tr, and T̂int, whose length scale is of O(1). Therefore,
inside the Knudsen layer, they can be Taylor expanded around x = xw, that is,

ρ̂ = ρ̂B +O(ϵη), v̂ = v̂B +O(ϵη), T̂tr = (T̂tr)B +O(ϵη), T̂int = (T̂int)B +O(ϵη), (72)

where the subscript B indicates the value on the boundary x = xw or η = 0. Because v̂B =
v̂w +O(ϵ), (T̂tr)B = T̂w +O(ϵ), and (T̂int)B = T̂w +O(ϵ) [Eq. (60)], we can write

ρ̂ = ρ̂B +O(ϵη), v̂ = v̂w +O(ϵ(η + 1)),

T̂tr = T̂w +O(ϵ(η + 1)), T̂int = T̂w +O(ϵ(η + 1)), T̂ = T̂w +O(ϵ(η + 1)).
(73)

Here, the last equation is the consequence of Eq. (30i).
If Eq. (73) is substituted into Eq. (65), the O(ϵη) and O(ϵ(η+1)) terms in Eq. (73) produce

the terms of the order of ϵ(η + 1) times a moment of f̂
(1)
K , which vanish rapidly as η → ∞.

Therefore, we put these terms (times ϵ) into Rhϵ
2 in Eq. (62) to simplify the expressions of

ĥ
(1)
K . To be more specific, we can transform Eq. (65) in the following way:

[Eq. (65)] =⇒ [Eq. (65) with ρ̂ = ρ̂B, v̂ = v̂w, and T̂tr = T̂int = T̂ = T̂w]. (74)

The right-hand side of Eq. (74) is the same as Eq. (63) in [39] except that Eq. (63g) there has

been replaced by the equation T̂
(1)
relK = T̂

(1)
intK.

With the help of Eq. (73), f̂ (0) in Eq. (45) inside the Knudsen layer is expanded as

f̂ (0) = f̂w[1 +O(ϵ(η + 1))], (75)

where

f̂w =
ρ̂BÊδ/2−1

(πT̂w)3/2T̂
δ/2
w Γ(δ/2)

exp

(
− (ζj − v̂wj)

2

T̂w
− Ê
T̂w

)
. (76)

Here, we follow the procedure that was used in [39] in the derivation of Eqs. (66)–(68)
there. That is, we use Eqs. (73) and (75) in Eqs. (66) and (67) and put the terms of O(ϵη) and
O(ϵ(η+1)), which are produced by the terms of O(ϵη) and O(ϵ(η+1)) in Eqs. (73) and (75) and
vanish rapidly as η → ∞, into the remainder ϵRf in Eq. (66). In addition, we take into account
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the fact that the left-hand side of Eq. (66), in terms of the new variables (t̃, η, χ1, χ2, ζw),
reduces to (see Sec. 5.2.2 in [40])

ζwini
∂f̂

(1)
K

∂η
+O(Rf ϵ). (77)

Then, we obtain the following equations corresponding to Eqs. (68), (66b), and (66c) in [39]:

ζwini
∂f̂

(1)
K

∂η
= Âc(T̂w)ρ̂B(Ĝ(1)

K − f̂
(1)
K ) +O(ϵRf ), (78a)

Ĝ(1)
K = f̂w

{
ρ̂
(1)
K

ρ̂B
+ 2

(ζi − v̂wi)

T̂w
v̂
(1)
Ki +

[
(ζi − v̂wi)

2

T̂w
− 3

2

]
T̂

(1)
trK

T̂w

+ν

[
(ζi − v̂wi)(ζj − v̂wj)

T̂w
− 1

3

(ζk − v̂wk)
2

T̂w
δij

]
p̂
(1)
Kij

ρ̂BT̂w

+

(
Ê
T̂w

− δ

2

)
T̂

(1)
intK

T̂w

}
. (78b)

Here, we should mention that Eq. (78) is the same as Eqs. (68), (66b), and (66c) in [39] with

θ = 0 (note that T̂
(1)
relK = T̂

(1)
intK for θ = 0). Therefore, we can utilize the transformation

from Eqs. (68), (66b), and (66c) in [39] to their final form, Eq. (79) there. That is, the final
equation transformed from Eq. (78) is nothing but Eq. (79) in [39] with θ = 0. The equation is
summarized below.
We first introduce new variables Cw and Ēw by

Cw =
ζw

T̂
1/2
w

=
ζ − v̂w

T̂
1/2
w

, Ēw =
Ê
T̂w

, (79)

and denote the normal component and magnitude of Cw by Cwn and Cw, respectively, i.e.,

Cwn = Cwjnj = Cw · n, Cw = (C2
wj)

1/2 = |Cw|. (80)

Then, f̂w can be expressed as

f̂w =
ρ̂B

T̂
5/2
w Γ(δ/2)

E(Cw)Ēδ/2−1
w e−Ēw , (81)

where E(Cw) = π−3/2 exp(−C2
w) as defined in Eq. (40). It should be noted that ρ̂B and T̂w are

functions of (t̃, χ1, χ2), so that f̂w is a function of (t̃, χ1, χ2, Cw, Ēw).
We further introduce the following new normal coordinate y in place of η:

y = ρ̂B
Âc(T̂w)

T̂
1/2
w

η, (82)

and change the independent variables from (t̃, η, χ1, χ2, ζw, Ê) to (t̃, y, χ1, χ2, Cw, Ēw) by
letting

f̂
(1)
K

(
t̃, [ρ̂BÂc(T̂w)]

−1T̂ 1/2
w y, χ1, χ2, T̂

1/2
w Cw, T̂wĒw

)
= f̂w(t̃, χ1, χ2, Cw, Ēw)ϕ(t̃, y, χ1, χ2, Cw, Ēw). (83)

Then, Eq. (78) is transformed into the following equation for ϕ:

Cwn
∂ϕ

∂y
= L0(ϕ) +O(ϵRf/f̂w). (84)
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Here the linear integral operator L0, which is equal to the linearized collision operator L of the
ES model [Eq. (32) in [39]] with θ = 0, is defined as

L0[ϕ(Cw, Ēw)](Cw, Ēw) = ω + 2Cwiui +

(
C2
w − 3

2

)
τtr

+ ν

(
CwiCwj −

1

3
C2
wδij

)
Pij +

(
Ēw − δ

2

)
τint − ϕ, (85)

where

ω = ⟨⟨ϕ⟩⟩, ui = ⟨⟨Cwiϕ⟩⟩, Pij = 2⟨⟨CwiCwjϕ⟩⟩, (86a)

τtr =
2

3

〈〈(
C2
w − 3

2

)
ϕ

〉〉
, τint =

2

δ

〈〈(
Ēw − δ

2

)
ϕ

〉〉
, (86b)

and ⟨⟨ · ⟩⟩ is defined, with an arbitrary function ĝ(Cw, Ēw) of Cw and Ēw, as

⟨⟨ ĝ(Cw, Ēw) ⟩⟩ = [Γ(δ/2)]−1

∫∫ ∞

0

ĝ(Cw, Ēw)E(Cw)Ēδ/2−1
w e−ĒwdĒwdCw. (87)

On the left-hand side of Eq. (85), the arguments Cw and Ēw of ϕ and those of L0(ϕ) are shown
explicitly, the other arguments t̃, y, χ1, and χ2 being omitted. If we neglect the terms of

O(ϵRf/f̂w) in Eq. (84), we obtain the equation for ϕ, i.e., that for f̂
(1)
K .

Here, it is noted that the macroscopic quantities ρ̂
(1)
K , v̂

(1)
Ki , p̂

(1)
Kij , T̂

(1)
trK, and T̂

(1)
intK, which are

given by Eqs. (65a)–(65e) with ρ̂ = ρ̂B, v̂ = v̂w, and T̂tr = T̂int = T̂w [cf. Eq. (74)] and are the
functions of (t̃, η, χ1, χ2), are related to ω, ui, Pij , τtr, and τint in Eqs. (86a) and (86b), which
are the functions of (t̃, y, χ1, χ2), by the following relations:

ρ̂
(1)
K

ρ̂B
= ω,

v̂
(1)
Ki

T̂
1/2
w

= ui,
p̂
(1)
Kij

ρ̂BT̂w
= Pij ,

T̂
(1)
trK

T̂w
= τtr,

T̂
(1)
intK

T̂w
= τint. (88)

In addition, q̂
(1)
(tr)Ki and q̂

(1)
(int)Ki, which are given by Eq. (65i) with v̂ = v̂w and T̂tr = T̂int = T̂w

[cf. Eq. (74)] and are the functions of (t̃, η, χ1, χ2), are expressed as

q̂
(1)
(tr)Ki

ρ̂BT̂
3/2
w

=

〈〈
Cwi

(
C2
w − 5

2

)
ϕ

〉〉
,

q̂
(1)
(int)Ki

ρ̂BT̂
3/2
w

=

〈〈
Cwi

(
Ēw − δ

2

)
ϕ

〉〉
, (89)

where the right-hand sides are the functions of (t̃, y, χ1, χ2).

The operator L0( · ) is the linearized collision operator of the ES collision operator Q̂( · ) in
Eq. (30a) [or Q( · ) in Eq. (18a) ] when θ = 0 and is equal to L( · ) defined by Eq. (32) in [39]
with θ = 0. The solution of L0(ϕ) = 0 (equilibrium solution) is given by the six-parameter
family of the form

ϕ = c0 + c1Cw1 + c2Cw2 + c3Cw3 + c4C2
w + c5Ēw, (90)

where c0, c2, . . . are parameters. This corresponds to Eq. (36). The operator L0 also satisfies
the relation

⟨⟨ϕ̂rL0(ĝ)⟩⟩ = 0, (91)

which corresponds to Eq. (37); here, ϕ̂r (r = 0, ..., 5) are given by Eq. (38) with ζi → Cwi and

Ê → Ēw.
Multiplying Eq. (84) by (1, Cwi, |Cw|2, Ēw), taking ⟨⟨ · ⟩⟩ of the respective equations, and

using the property (91), we obtain ∂⟨⟨Cwnϕ⟩⟩/∂y = ∂⟨⟨CwnCwiϕ⟩⟩/∂y = ∂⟨⟨Cwn|Cw|2ϕ⟩⟩/∂y =
∂⟨⟨CwnĒwϕ⟩⟩/∂y = O(Rhϵ). Since ϕ→ 0 as y → ∞, it follows that

⟨⟨Cwnϕ⟩⟩ = ⟨⟨CwnCwiϕ⟩⟩ = ⟨⟨Cwn|Cw|2ϕ⟩⟩ = ⟨⟨CwnĒwϕ⟩⟩ = O(Rhϵ). (92)
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C. Knudsen-layer boundary condition

Now we consider the boundary condition. We impose the boundary condition (41) to the

total solution f̂tot [Eq. (58)]. Using Eq. (58) with f̂CE = f̂ (0) + f̂ (1)ϵ + O(ϵ2) [Eq. (44)] and

with f̂K = f̂
(1)
K ϵ+O(Rf ϵ

2) [Eq. (61)] in Eq. (41), we obtain the following relation at η = 0 (or
x = xw):

ϵf̂
(1)
K = (1− ac)ϵR̂f̂ (1)K − f̂ (0) − ϵf̂ (1) + (1− ac)R̂(f̂ (0) + ϵf̂ (1)) + ac

ρ̂w
ρ̂B
f̂w +O(ϵ2Rw),

for (ζ − v̂w) · n > 0, (93a)

ρ̂w = −2

(
π

T̂w

)1/2 ∫
(ζ−v̂w)·n<0

∫ ∞

0

(ζ − v̂w) · n(f̂ (0) + ϵf̂ (1) + ϵf̂
(1)
K )dÊdζ +O(ϵ2), (93b)

where Rw is a function of O(1) vanishing rapidly as |ζ| (or |Cw|) → ∞ and as Ê (or Ēw) → ∞.

For instance, f̂w [Eq. (76)] belongs to the class of Rw.

Noting that f̂ (0) and f̂ (1) in Eq. (93) are evaluated at the boundary and following the pro-

cedure in Appendix B in [40] for a monatomic gas, we obtain the following expressions of f̂ (0),

f̂ (1), and ρ̂w contained in Eq. (93):

f̂ (0) =f̂w

{
1 + ϵ

[
2Cwi

¯̄vi

T̂
1/2
w

+

(
C2
w − 3

2

) ¯̄Ttr

T̂w
+

(
Ēw − δ

2

) ¯̄Tint

T̂w

]
+O(ϵ2)

}
, (94a)

f̂ (1) =− 1

Âc(T̂w)ρ̂B
f̂w

{
1

1− ν

(
CwiCwj −

1

3
C2
wδij

)[(
∂v̂i
∂xj

)
B

+

(
∂v̂j
∂xi

)
B

]
+ Cwi

(
C2
w − 5

2

)
1

T̂
1/2
w

(
∂T̂tr
∂xi

)
B

+ Cwi

(
Ēw − δ

2

)
1

T̂
1/2
w

(
∂T̂int
∂xi

)
B

+O(ϵ)

}
, (94b)

ρ̂w
ρ̂B

=1 + ϵ

{
−
√
π

¯̄vi

T̂
1/2
w

ni +
1

2

¯̄Ttr

T̂w

− 1

3

1

Âc(T̂w)

1

1− ν

1

ρ̂B

[(
∂v̂i
∂xj

)
B

+

(
∂v̂j
∂xi

)
B

][
ninj −

1

2
(δij − ninj)

]
− 2

√
π

1

Γ(δ/2)

∫
Cwn<0

∫ ∞

0

CwnϕE(Cw)Ēδ/2−1
w e−ĒwdĒwdCw

}
+O(ϵ2). (94c)

Here, use has been made of Eq. (83) and the new variables Cw and Ēw introduced in Eq. (79),
together with the symbols Cw and Cwn defined by Eq. (80). For the new velocity variable Cw,

the reflection operator (42) is replaced by the following R̃:

R̃ĝ(Cwi) = ĝ(Cwi − 2Cwjnjni), (95)

where ĝ(Cwi) is a function of Cwi. It should be noted that R̃f̂w = f̂w holds.
Then, following the procedure that derived Eq. (93) in [39] from Eqs. (80)–(83) there for the

standard (one-temperature) Navier–Stokes equations, we transform Eqs. (93) and (94) further.
In particular, one can show that

¯̄v · n = O(ϵ), (96)

in the same way as the derivation of Eq. (90) in [39]. In consequence, Eq. (93) is reduced to
the following form in terms of ϕ [cf. Eq. (83)]:

ϕ = (1− ac)R̃ϕ− ac
(
C2
w − 2

) ¯̄Ttr

T̂w
− ac

(
Ēw − δ

2

) ¯̄Tint

T̂w
− 2acCwi(δij − ninj)

¯̄vj

T̂
1/2
w

− 2
√
πac

1

Γ(δ/2)

∫
Cwn<0

∫ ∞

0

CwnϕE(Cw)Ēδ/2−1
w e−ĒwdĒwdCw
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+ (2− ac)
1

Âc(T̂w)ρ̂BT̂
1/2
w

Cwn

[(
C2
w − 5

2

)(
∂T̂tr
∂xi

)
B

ni +

(
Ēw − δ

2

)(
∂T̂int
∂xi

)
B

ni

]

+ ac
1

Âc(T̂w)ρ̂B

2

1− ν

(
C2
wn − 1

3
C2
w − 1

3

)(
∂v̂i
∂xj

)
B

ninj

+ (2− ac)
1

Âc(T̂w)ρ̂B

2

1− ν
CwnCwinl(δij − ninj)

[(
∂v̂l
∂xj

)
B

+

(
∂v̂j
∂xl

)
B

]
+ ac

1

Âc(T̂w)ρ̂BT̂
1/2
w

Cwi(δij − ninj)

(
C2
w + Ēw − 5 + δ

2

)
∂T̂w
∂xj

+O(ϵ),

(y = 0, Cwn > 0). (97)

In the derivation of Eq. (97), use has been made of the formulas (91a) and (91c) in [39], which
are also valid in the present paper, as well as the expressions Cwi = Cwnni + Cwj(δij − ninj)

and R̃Cwi = −Cwnni + Cwj(δij − ninj). In addition, because of the relations T̂tr = T̂w + O(ϵ)

and T̂int = T̂w +O(ϵ) on the boundary [cf. Eq. (60)] and of the fact that (δij −ninj)(∂S/∂xj)B
consists of tangential derivatives of S on the boundary, we can write

(δij − ninj)

(
∂T̂tr
∂xj

)
B

= (δij − ninj)
∂T̂w
∂xj

+O(ϵ), (98a)

(δij − ninj)

(
∂T̂int
∂xj

)
B

= (δij − ninj)
∂T̂w
∂xj

+O(ϵ). (98b)

Note that (δij − ninj)∂T̂w/∂xj is defined only on the boundary. Equation (98) has been used

in the derivation of the term containing (δij − ninj)∂T̂w/∂xj in Eq. (97).

D. Summary

If we omit the terms of O(ϵ) in Eqs. (84) and (97) and take into account Eq. (71b), then we
obtain the problem for ϕ. In order to avoid cumbersome notations, we change the names of the
variables from (Cw, Ēw) to (ζ, Ê) and denote ϕ as a function of (t̃, y, χ1, χ2, ζ, Ê), that is,

Cw → ζ (thus Cwn → ζn and Cw → ζ), Ēw → Ê , (99a)

ϕ(t̃, y, χ1, χ2, Cw, Ēw) → ϕ(t̃, y, χ1, χ2, ζ, Ê). (99b)

Here, (ζ, Ê) should not be confused with (ζ, Ê) used until Sec. VIC. Then, the equation and
the boundary condition for ϕ become as follows:

ζn
∂ϕ

∂y
= L0(ϕ), (y > 0), (100a)

ϕ = (1− ac)R̃ϕ− ac
(
ζ2 − 2

) ¯̄Ttr

T̂w
− ac

(
Ê − δ

2

) ¯̄Tint

T̂w
− 2acζi(δij − ninj)

¯̄vj

T̂
1/2
w

− 2
√
πac

1

Γ(δ/2)

∫
ζn<0

∫ ∞

0

ζnϕE(ζ)Êδ/2−1e−ÊdÊdζ

+ (2− ac)
1

Âc(T̂w)ρ̂BT̂
1/2
w

ζn

[(
ζ2 − 5

2

)(
∂T̂tr
∂xi

)
B

ni +

(
Ê − δ

2

)(
∂T̂int
∂xi

)
B

ni

]

+ ac
1

Âc(T̂w)ρ̂B

2

1− ν

(
ζ2n − 1

3
ζ2 − 1

3

)(
∂v̂i
∂xj

)
B

ninj

+ (2− ac)
1

Âc(T̂w)ρ̂B

2

1− ν
ζnζinl(δij − ninj)

[(
∂v̂l
∂xj

)
B

+

(
∂v̂j
∂xl

)
B

]
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+ ac
1

Âc(T̂w)ρ̂BT̂
1/2
w

ζi(δij − ninj)

(
ζ2 + Ê − 5 + δ

2

)
∂T̂w
∂xj

, (y = 0, ζn > 0), (100b)

ϕ→ 0, (y → ∞), (100c)

where L0(ϕ) is defined by Eqs. (85)–(87) with the change of notations (99) being applied. Here

and in what follows, the reflection operator R̃ indicates R̃ĝ(ζi) = ĝ(ζi − 2ζjnjni) because of
Eqs. (95) and (99).
The problem (100) is a steady boundary-value problem of the linearized ES model for a

polyatomic gas with θ = 0 in the half space y > 0. It looks similar to the corresponding
problem in [39] for the ES model with θ = O(1) [Eq. (95) in [39]]. However, there is a significant

difference. In the latter case, the boundary condition contains two quantities ¯̄T and ¯̄v, instead of

the three quantities ¯̄Ttr,
¯̄Tint, and ¯̄v in Eq. (100b), and the problem has the unique solution only

when ¯̄T and ¯̄v are related to the derivatives (∂T̂ /∂xj)B and (∂v̂i/∂xj)B appropriately. These
relations provided the so-called slip boundary conditions for the standard compressible Navier–
Stokes equations with the single temperature and with the bulk viscosity [39]. This structure
is analogous to the corresponding half-space problem of the linearized Boltzmann equation for
a monatomic gas, which has been studied mathematically [60–64] and whose mathematical
structure, such as the existence and uniqueness of the solution, has been well understood.
Numerical analysis of some relevant problems can also be found in the literature (e.g., [65, 66]).

As mentioned above, the present problem, Eq. (100), contains the three quantities ¯̄Ttr,
¯̄Tint,

and ¯̄v in the boundary condition. This difference from the corresponding problem in [39] is due
to the following fact: The equilibrium solution L0(ϕ) = 0 is the six-parameter family given by

ϕ = c0+c1ζ1+c2ζ2+c3ζ3+c4ζ
2+c5Ê [cf. Eq. (90)], whereas the equilibrium solution L(ϕ) = 0,

where L( · ) is the linearized collision operator of the ES model defined by Eq. (32) in [39] [recall

that L0( · ) = L( · )|θ=0], is the five-parameter family ϕ = c0+ c1ζ1+ c2ζ2+ c3ζ3+ c4(ζ
2+ Ê). In

analogy with the case of [39], we can expect that the problem (100) has the unique solution only

when ¯̄Ttr,
¯̄Tint, and ¯̄v are related to the derivatives (∂T̂tr/∂xj)B, (∂T̂int/∂xj)B, (∂v̂i/∂xj)B, and

(δij − ninj)∂T̂w/∂xj , appropriately. These relations provide the desired boundary conditions
for the two-temperature Navier–Stokes equations, as we will see in the following section.
We have not mentioned the initial condition for the Knudsen-layer equation so far. Since

the time-derivative term is not contained in Eq. (100a), we cannot impose the initial condition
to this equation. However, we can show that the problem (100) is consistent with the initial
condition (55) for the two-temperature Navier–Stokes equations and assumption (v) in Sec. II A.
For the detailed discussion on this point, the reader is referred to Sec. 5.2.4 in [40].

VII. SLIP BOUNDARY CONDITIONS

In this section, we analyze the Knudsen-layer problem (100) to establish the slip boundary
conditions for the two-temperature Navier–Stokes equations (6) basically following the descrip-
tions in [39].

A. Decomposition of Knudsen-layer problem

We first introduce the following reduced velocity distribution functions:[
Φ(t̃, y, χ1, χ2, ζ)

Ψ(t̃, y, χ1, χ2, ζ)

]
=

1

Γ(δ/2)

∫ ∞

0

[
Êδ/2−1

(2/δ)Êδ/2

]
ϕ(t̃, y, χ1, χ2, ζ, Ê)e−ÊdÊ . (101)

Let us integrate each of Eqs. (100a), (100b), and (100c), multiplied by [Γ(δ/2)]−1Êδ/2−1e−Ê ,

with respect to Ê from 0 to ∞ and make use of Eq. (101). Then, we obtain the closed set of
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equation and boundary conditions for Φ of the following form:

ζn
∂Φ

∂y
= LES(Φ), (y > 0), (102a)

Φ = (1− ac)R̃Φ− ac
(
ζ2 − 2

) ¯̄Ttr

T̂w
− 2acζi(δij − ninj)

¯̄vj

T̂
1/2
w

− 2
√
πac

∫
ζn<0

ζnΦE(ζ)dζ

+ (2− ac)
1

Âc(T̂w)ρ̂BT̂
1/2
w

ζn

(
ζ2 − 5

2

)(
∂T̂tr
∂xi

)
B

ni

+ ac
1

Âc(T̂w)ρ̂B

2

1− ν

(
ζ2n − 1

3
ζ2 − 1

3

)(
∂v̂i
∂xj

)
B

ninj

+ (2− ac)
1

Âc(T̂w)ρ̂B

2

1− ν
ζnζinl(δij − ninj)

[(
∂v̂l
∂xj

)
B

+

(
∂v̂j
∂xl

)
B

]
+ ac

1

Âc(T̂w)ρ̂BT̂
1/2
w

ζi(δij − ninj)

(
ζ2 − 5

2

)
∂T̂w
∂xj

, (y = 0, ζn > 0), (102b)

Φ → 0, (y → ∞). (102c)

Here,

LES(Φ) =
1

Γ(δ/2)

∫ ∞

0

L0(ϕ)Êδ/2−1e−ÊdÊ

= ω + 2ζiui +

(
ζ2 − 3

2

)
τtr + ν

(
ζiζj −

1

3
ζ2δij

)
Pij − Φ, (103)

where

ω = ⟨Φ⟩, ui = ⟨ζiΦ⟩, τtr =
2

3

〈(
ζ2 − 3

2

)
Φ

〉
, Pij = 2⟨ζiζjΦ⟩, (104)

and ⟨ · ⟩ is defined, for an arbitrary function ĝ(ζ) of ζ, by

⟨ ĝ(ζ) ⟩ =
∫
R3

ĝ(ζ)E(ζ)dζ. (105)

It should be emphasized here that LES( · ) is nothing but the linearized collision operator of the
ES model for a monatomic gas. It follows from Eq. (91) [with the replacement (99)] that, for
an arbitrary function g(ζi),

⟨LES(g)⟩ = ⟨ζiLES(g)⟩ = ⟨ζ2LES(g)⟩ = 0. (106)

In [40], the slip boundary conditions for the compressible Navier–Stokes equations were derived
for a monatomic gas on the basis of the Boltzmann equation including the BGK model. Al-
though the ES model was not considered there, it is not difficult to see that the problem (102)

is the Knudsen-layer problem for the ES model for a monatomic gas if T̂tr is regarded as the
temperature T̂ [cf. Eqs. (100) and (101) in [40]; note that for a monatomic gas, the ES model
reduces to the BGK model when ν = 0]. Therefore, the problem (102) can be handled in the
same way as in [40].

Next, we integrate each of Eqs. (100a), (100b), and (100c), multiplied by (2/δ)[Γ(δ/2)]−1Êδ/2e−Ê ,

with respect to Ê from 0 to ∞ and make use of Eq. (101). Then, from the resulting equations,
we subtract Eqs. (102a)–(102c), respectively. As the result, we obtain the problem for the
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difference Ψ− Φ, i.e.,

ζn
∂Υ

∂y
= ⟨Υ⟩ −Υ, (y > 0), (107a)

Υ = (1− ac)R̃Υ− ac
¯̄Tint

T̂w
+ (2− ac)

1

Âc(T̂w)ρ̂BT̂
1/2
w

ζn

(
∂T̂int
∂xi

)
B

ni

+ ac
1

Âc(T̂w)ρ̂BT̂
1/2
w

ζi(δij − ninj)
∂T̂w
∂xj

, (y = 0, ζn > 0), (107b)

Υ → 0, (y → ∞), (107c)

where Υ is defined by the difference

Υ(t̃, y, χ1, χ2, ζ) = Ψ(t̃, y, χ1, χ2, ζ)− Φ(t̃, y, χ1, χ2, ζ). (108)

Let us consider the problem (102). As discussed in Sec. 5.3.1 in [40], if the terms containing

the boundary values of the derivatives (∂T̂tr/∂xi)B and (∂v̂i/∂xj)B and the tangential derivative

of the boundary temperature (δij − ninj)(∂T̂w/∂xj) in Eq. (102b) are all set to be zero, then

the problem (102) has a trivial solution Φ = 0, ¯̄Ttr = 0, and ¯̄vi = 0, which should be unique in
analogy with the case of the linearized Boltzmann equation for a monatomic gas [61]. Therefore,

these terms are regarded as the inhomogeneous terms, and ¯̄Ttr and ¯̄vi are a part of the solution.

That is, Φ as well as ¯̄Ttr and ¯̄vi is determined depending on the inhomogeneous terms. Because
of its linearity, the problem (102) can be decomposed in accordance with the form of the
inhomogeneous terms.
Here, we note that ζi(δij − ninj) in the last two lines of Eq. (102b) indicates the tangential

component of ζ, i.e., the projection of ζ onto the plane tangent to the boundary. From the form
of the inhomogeneous terms in Eq. (102b), we assume the solution Φ in the following form:

Φ(t̃, y, χ1, χ2, ζ)

=
1

Âc(T̂w)ρ̂B

[(
∂v̂l
∂xj

)
B

+

(
∂v̂j
∂xl

)
B

]
ζinl(δij − ninj)Φ

I
v(y, ζn, ζ)

+
1

Âc(T̂w)ρ̂BT̂
1/2
w

∂T̂w
∂xj

ζi(δij − ninj)Φ
I
T (y, ζn, ζ)

+
1

Âc(T̂w)ρ̂B

(
∂v̂i
∂xj

)
B

ninj Φ
II
v (y, ζn, ζ)

+
1

Âc(T̂w)ρ̂BT̂
1/2
w

(
∂T̂tr
∂xi

)
B

niΦ
II
T (y, ζn, ζ). (109)

Then, we also set the unknown parameters ¯̄vj and
¯̄Ttr in the form consistent with the form of the

macroscopic quantities in the inhomogeneous terms. To be more specific, the tangential vector
(δij − ninj)¯̄vj should be related to the (macroscopic) tangential vectors in the inhomogeneous

terms, i.e., (δij − ninj)[(∂v̂l/∂xj)B + (∂v̂j/∂xl)B]nl and (δij − ninj)(∂T̂w/∂xj), whereas the

scalar ¯̄Ttr should be related to the (macroscopic) scalars in the inhomogeneous terms, i.e.,

(∂v̂i/∂xj)Bninj and (∂T̂tr/∂xi)Bni. To summarize, we let

¯̄vj

T̂
1/2
w

(δij − ninj) = cIv
1

Âc(T̂w)ρ̂B

[(
∂v̂l
∂xj

)
B

+

(
∂v̂j
∂xl

)
B

]
nl(δij − ninj)

+ cIT
1

Âc(T̂w)ρ̂BT̂
1/2
w

∂T̂w
∂xj

(δij − ninj), (110a)

¯̄Ttr

T̂w
= cIIv

1

Âc(T̂w)ρ̂B

(
∂v̂i
∂xj

)
B

ninj + cIIT
1

Âc(T̂w)ρ̂BT̂
1/2
w

(
∂T̂tr
∂xi

)
B

ni, (110b)
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where cIv, c
I
T , c

II
v , and cIIT are undetermined constants that depend on the properties of the gas

as well as on the accommodation coefficient ac and are determined together with the solutions
ΦI

v, Φ
I
T , Φ

II
v , and ΦII

T .
Similarly, the problem (107) can be decomposed by letting

Υ(t̃, y, χ1, χ2, ζ)

=
1

Âc(T̂w)ρ̂BT̂
1/2
w

∂T̂w
∂xj

ζi(δij − ninj)Υ
I
T (y, ζn, ζ)

+
1

Âc(T̂w)ρ̂BT̂
1/2
w

(
∂T̂int
∂xi

)
B

niΥ
II
T (y, ζn, ζ), (111)

and

¯̄Tint

T̂w
= c̃IIT

1

Âc(T̂w)ρ̂BT̂
1/2
w

(
∂T̂int
∂xi

)
B

ni, (112)

where c̃IIT is an undetermined constant depending on the properties of the gas as well as on the

accommodation coefficient ac and is determined together with the solution ΥII
T . Since ¯̄Tint is

a scalar, it cannot be related to the tangential vector (δij − ninj)(∂T̂w/∂xj). Therefore, ¯̄Tint
must have the form of Eq. (112). In other words, the problem for ΥI

T does not contain any
undetermined constant.
If we substitute Eqs. (109) and (110) into Eq. (102) and substitute Eqs. (111) and (112) into

Eq. (107), we obtain six decomposed problems for ΦI
v, Φ

I
T , Φ

II
v , ΦII

T , ΥI
T , and ΥII

T . Once they
have been determined together with the constants cIv, c

I
T , c

II
v , cIIT , and c̃IIT , Eqs. (110) and (112)

provide the desired slip boundary conditions for the two temperature Navier–Stokes equations.
The assumption that ΦI

v, Φ
I
T , Φ

II
v , ΦII

T , ΥI
T , and ΥII

T are all functions of y, ζn, and ζ will turn
out to be consistent.
Before presenting the decomposed problems, we need a small preparation. Let us introduce

two unit vectors s and t tangent to the boundary and orthogonal to each other, i.e., n · s =
n · t = s · t = 0, and denote the two orthogonal tangential components of ζ by ζs = ζ · s and
ζt = ζ · t. Then, we have the expressions, such as ζi = ζnni + ζssi + ζtti, ζ

2 = ζ2n + ζ2s + ζ2t , and
ninj + sisj + titj = δij . With these relations, it is easy to verify the following relation for any
function g = g(ζn, ζ):

LES[ζi(δij − ninj)g(ζn, ζ)] = ζi(δij − ninj)LS
ES[g(ζn, ζ)], (113)

where

LS
ES[g(ζn, ζ)] = ⟨(ζ2 − ζ2n)g⟩+ 2νζn⟨ζn(ζ2 − ζ2n)g⟩ − g. (114)

Now we list the resulting six decomposed problems for ΦI
v, Φ

I
T , Φ

II
v , ΦII

T , ΥI
T , and ΥII

T .

(i) Problems for (ΦI
κ; c

I
κ) (κ = v, T ):

ζn
∂ΦI

κ

∂y
= LS

ES(Φ
I
κ), (y > 0), (115a)

ΦI
κ = (1− ac)R̃ΦI

κ − 2acc
I
κ +HI

κ, (y = 0, ζn > 0), (115b)

ΦI
κ → 0, (y → ∞), (115c)

where

HI
v = (2− ac)

2

1− ν
ζn, HI

T = ac

(
ζ2 − 5

2

)
. (116)

If we take ⟨ · ⟩ of Eq. (115a) multiplied by ζ2 − ζ2n and note that ⟨ζ2 − ζ2n⟩ = 1, we have
d⟨ζn(ζ2 − ζ2n)Φ

I
κ⟩/dy = 0. Then, it follows from Eq. (115c) that

⟨ζn(ζ2 − ζ2n)Φ
I
κ⟩ = 0. (117)
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(ii) Problems for (ΦII
κ ; cIIκ ) (κ = v, T ):

ζn
∂ΦII

κ

∂y
= LES(Φ

II
κ ), (y > 0), (118a)

ΦII
κ = (1− ac)R̃ΦII

κ − 2
√
π ac

∫
ζn<0

ζnΦ
II
κ E(ζ)dζ − ac

(
ζ2 − 2

)
cIIκ +HII

κ ,

(y = 0, ζn > 0), (118b)

ΦII
κ → 0, (y → ∞), (118c)

where

HII
v = ac

2

1− ν

(
ζ2n − 1

3
ζ2 − 1

3

)
, HII

T = (2− ac)ζn

(
ζ2 − 5

2

)
. (119)

Taking ⟨ · ⟩ of Eq. (118a) multiplied by (1, ζn, ζ
2) and taking account of Eq. (106), we have

d⟨ζnΦII
κ ⟩/dy = d⟨ζ2nΦII

κ ⟩/dy = d⟨ζnζ2ΦII
κ ⟩/dy = 0. Then, from Eq. (118c), we obtain

⟨ζnΦII
κ ⟩ = ⟨ζ2nΦII

κ ⟩ = ⟨ζnζ2ΦII
κ ⟩ = 0. (120)

(iii) Problem for ΥI
T :

ζn
∂ΥI

T

∂y
= −ΥI

T , (y > 0), (121a)

ΥI
T = (1− ac)R̃ΥI

T + ac, (y = 0, ζn > 0), (121b)

ΥI
T → 0, (y → ∞). (121c)

(iv) Problem for (ΥII
T ; c̃IIT ):

ζn
∂ΥII

T

∂y
= ⟨ΥII

T ⟩ −ΥII
T , (y > 0), (122a)

ΥII
T = (1− ac)R̃ΥII

T − acc̃
II
T + (2− ac)ζn, (y = 0, ζn > 0), (122b)

ΥII
T → 0, (y → ∞). (122c)

Taking ⟨ · ⟩ of Eq. (122a) and taking Eq. (122c) into account, we have

⟨ζnΥII
T ⟩ = 0. (123)

B. Further reduction of decomposed problems

The independent variables in the decomposed problems listed in Sec. VIIA are y, ζn, and ζ.
In the present section, we will further reduce the independent variables to y and ζn using the
conventional procedure first introduced for the BGK model [67]. For this purpose, we introduce
the following reduced velocity distribution functions (φII

v , φII
T ), (ψI

v , ψ
I
T , ψ

II
v , ψII

T ), and (υIT ,
υIIT ):

φII
κ (y, ζn) =

1

π

∫ ∞

−∞

∫ ∞

−∞
ΦII

κ (y, ζn, ζ)e
−ζ2

s −ζ2
t dζtdζs, (124a)

ψN
κ (y, ζn) =

1

π

∫ ∞

−∞

∫ ∞

−∞
(ζ2s + ζ2t )Φ

N
κ (y, ζn, ζ)e

−ζ2
s −ζ2

t dζtdζs, (124b)

υNT (y, ζn) =
1

π

∫ ∞

−∞

∫ ∞

−∞
ΥN

T (y, ζn, ζ)e
−ζ2

s −ζ2
t dζtdζs, (124c)

(κ = v, T, and N = I, II).

Here, we have expressed ζ using the components ζn, ζs, and ζt, i.e., ζ = ζnn+ ζss+ ζtt, so that
ζ2 − ζ2n = ζ2s + ζ2t holds.
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Equations (117), (120), and (123) are, respectively, expressed in terms of the reduced velocity
distribution functions as follows:∫ ∞

−∞
ζnψ

I
κe

−ζ2
ndζn = 0, (125a)

∫ ∞

−∞
ζn

 φII
κ

ζnφ
II
κ

ζ2nφ
II
κ + ψII

κ

 e−ζ2
ndζn = 0, (125b)

∫ ∞

−∞
ζnυ

II
T e−ζ2

ndζn = 0, (125c)

(κ = v, T ).

Then, by the use of Eq. (125a), LS
ES(Φ

I
κ) (κ = v, T ) [cf. Eq. (114)] is expressed as

LS
ES(Φ

I
κ) =

1√
π

∫ ∞

−∞
ψI
κe

−ζ2
ndζn − ΦI

κ, (κ = v, T ), (126)

and with the help of Eq. (125b), LES(Φ
II
κ ) (κ = v, T ) [cf. Eq. (103)] is expressed as follows:

LES(Φ
II
κ ) = ω +

(
ζ2 − 3

2

)
τtr + ν

(
ζiζj −

1

3
ζ2δij

)
Pij − ΦII

κ , (κ = v, T ), (127)

with

ω =
1√
π

∫ ∞

−∞
φII
κ e

−ζ2
ndζn, (128a)

τtr = − 1√
π

∫ ∞

−∞
φII
κ e

−ζ2
ndζn +

2

3

1√
π

∫ ∞

−∞
ψII
κ e−ζ2

ndζn, (128b)

Pij =
1√
π

∫ ∞

−∞
ψII
κ e−ζ2

ndζn (δij − ninj). (128c)

Here, we have omitted the subscript κ and superscript II for the macroscopic quantities ω, Pij ,
and τtr to avoid cumbersome notation. In addition, ⟨ΥII

T ⟩ in Eq. (122a) is reduced to

⟨ΥII
T ⟩ = 1√

π

∫ ∞

−∞
υIIT e−ζ2

ndζn. (129)

With these preparations, we consider the problems for (ΦI
κ; c

I
κ) and (ΦII

κ ; cIIκ ) (κ = v, T ) as
well as those for ΥI

T and (ΥII
T ; c̃IIT ) listed in Sec. VIIA.

(i) Problems for (ΦI
κ; c

I
κ) (κ = v, T ):

Let us multiply each of Eqs. (115a) [with Eq. (126)], (115b), and (115c) by (1/π)(ζ2s +

ζ2t ) e
−ζ2

s −ζ2
t and integrate the resulting equations with respect to ζs and ζt from −∞ to

∞ for both variables. In addition, we let

(ψI
v , c

I
v) =

1

1− ν
(ψ̄I

v , c̄
I
v), (ψI

T , c
I
T ) = (ψ̄I

T , c̄
I
T ). (130)

Then, we obtain the following half-space problems for (ψ̄I
κ; c̄

I
κ) (κ = v, T ):

ζn
∂ψ̄I

κ

∂y
=

1√
π

∫ ∞

−∞
ψ̄I
κe

−ζ2
ndζn − ψ̄I

κ, (y > 0), (131a)

ψ̄I
κ = (1− ac)R̃ψ̄I

κ − 2acc̄
I
κ +GI

κ, (y = 0, ζn > 0), (131b)

ψ̄I
κ → 0, (y → ∞), (131c)

where

GI
v = 2(2− ac) ζn, GI

T = ac

(
ζ2n − 1

2

)
, (132)

and R̃ψ̄I
κ(0, ζn) = ψ̄I

κ(0, −ζn).
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(ii) Problems for (ΦII
κ ; cIIκ ) (κ = v, T ):

We multiply each of Eqs. (118a) [with Eq. (127)], (118b), and (118c) by (1/π)(1, ζ2s +

ζ2t ) e
−ζ2

s −ζ2
t and integrate the resulting equations with respect to ζs and ζt from −∞ to ∞

for both variables. Then, we obtain the following half-space problems for (φII
κ , ψ

II
κ ; cIIκ )

(κ = v, T ):

ζn
∂

∂y

 φII
κ

ψII
κ

 = ω

 1

1

+ τtr

 ζ2n − 1

2

ζ2n +
1

2

− 1

3
νPii

 ζ2n − 1

2

ζ2n − 1

−

 φII
κ

ψII
κ

 , (y > 0),

(133a) φII
κ

ψII
κ

 = (1− ac)R̃

 φII
κ

ψII
κ

− 2ac

∫ 0

−∞
ζnφ

II
κ e

−ζ2
ndζn

 1

1


− acc

II
κ

 ζ2n − 1

ζ2n

+ GII
κ , (y = 0, ζn > 0), (133b)

 φII
κ

ψII
κ

→ 0, (y → ∞), (133c)

where

GII
v =

4

3
ac

1

1− ν

 ζ2n − 1

ζ2n − 3

2

 , GII
T = (2− ac)ζn

 ζ2n − 3

2

ζ2n − 1

2

 , (134)

and ω, τtr, and Pii (= Pijδij) contained in Eq. (133a) are defined by Eqs. (128a)–(128c).

(iii) Problem for ΥI
T :

Integrating each of Eqs. (121a)–(121c), multiplied by (1/π)e−ζ2
s −ζ2

t , with respect to ζs
and ζt from −∞ to ∞ for both variables, we obtain the following problem for υIT :

ζn
∂υIT
∂y

= −υIT , (y > 0), (135a)

υIT = (1− ac)R̃υIT + ac, (y = 0, ζn > 0), (135b)

υIT → 0, (y → ∞). (135c)

(iv) Problem for (ΥII
T ; c̃IIT ):

Integrating each of Eqs. (122a)–(122c), multiplied by (1/π)e−ζ2
s −ζ2

t , with respect to ζs
and ζt from −∞ to ∞ for both variables, we obtain the following problem for (υIIT , c̃IIT ):

ζn
∂υIIT
∂y

=
1√
π

∫ ∞

−∞
υIIT e−ζ2

ndζn − υIIT , (y > 0), (136a)

υIIT = (1− ac)R̃υIIT − acc̃
II
T + (2− ac)ζn, (y = 0, ζn > 0), (136b)

υIIT → 0, (y → ∞). (136c)

C. Some remarks on reduced problems

As the result of the analysis in the preceding sections, the Knudsen-layer problem to determine
the slip boundary conditions has been reduced to the half-space problems for (i) (ψ̄I

κ; c̄
I
κ) (κ =

v, T ), i.e., Eqs. (131) and (132); (ii) (φII
κ , ψ

II
κ ; cIIκ ) (κ = v, T ), i.e., Eqs. (133) and (134); (iii)
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υIT , i.e., Eq. (135); and (iv) (υIIT ; c̃IIT ), i.e., Eq. (136). At this point, we give some remarks on
these problems.
We first note that the problem of (ψ̄I

v ; c̄
I
v), i.e., Eqs. (131) and (132) with κ = v, is exactly

the same as the problem of the Knudsen layer for the shear slip based on the linearized BGK
model for a monatomic gas [41, 42] and the Maxwell-type boundary condition. It is one of the
fundamental classical problems in kinetic theory studied by various authors [43, 68–71] [there
are some earlier results [72, 73] for ac = 1 (diffuse reflection)]. In fact, c̄Iv is the slip coefficient
of the problem, which is equal to κ in [69] and ζP in [43]. Therefore, we can easily find the
value of c̄Iv in the literature and can, in principle, recover the solution ψ̄I

v from the data in the
literature. Consequently, we can obtain the reduced distribution function ψI

v of ΦI
v and the

value of cIv of the original problem, Eqs. (115) and (116), immediately from Eq. (130), that is,

ψI
v =

1

1− ν
ψI
vBGK, cIv =

1

1− ν
cIvBGK, (137)

where and in what follows the subscript BGK indicates the corresponding quantities for the
BGK model for a monatomic gas. This reduction from the ES model to the BGK model has
been used in [44] in connection with the analysis of the Knudsen layer in the framework of the
generalized slip flow theory based on the linearized ES model for a monatomic gas.
We next note that the problem of (ψ̄I

T ; c̄
I
T ), i.e., Eqs. (131) and (132) with κ = T , is exactly

the same as the problem of the Knudsen layer for the thermal creep based on the linearized BGK
model for a monatomic gas and the Maxwell-type boundary condition. It is also a fundamental
classical problem that has been investigated in several papers [43, 70, 74, 75] (there is an earlier
work [76] for ac = 1), and c̄IT corresponds to the slip coefficient of the problem, which is equal
to d/2 in [75] and ζT in [43]. Therefore, the numerical value of c̄IT is available, and the reduced
distribution ψ̄I

T associated with ΦI
T can, in principle, be obtained from the literature. From

Eq. (130), this fact can be summarized as

ψI
T = ψI

TBGK, cIT = cITBGK. (138)

This equivalence between the ES model and the BGK model for a monatomic gas is also pointed
out in [44].
Now let us consider the problem for (φII

v , ψ
II
v ; cIIv ), i.e., Eqs. (133) and (134) with κ = v.

This problem is exactly the same as that of the Knudsen layer for the temperature jump, caused
by the normal gradient of the normal component of the flow velocity, based on the linearized
ES model for a monatomic gas and the Maxwell-type boundary condition [cf. the sentences
following Eq. (106)]. It has been studied in [44], and the numerical results for ac = 1 (diffuse

reflection) and ν = −0.5 and 0 (BGK model) are found there (see also [45]), e.g., cIIv (here) = c
(0)
5

(in [44, 45]). However, since no result is available for the general case, a new numerical analysis
of the problem is required.
The problem for (φII

T , ψ
II
T ; cIIT ), i.e., Eqs. (133) and (134) with κ = T is the same as that of

the Knudsen layer for the standard temperature jump based on the linearized ES model for a
monatomic gas and the Maxwell-type boundary condition [cf. the sentences following Eq. (106)].
It has been studied in [44], and the numerical results for ac = 1 and ν = −0.5 and 0 (BGK

model) are found there (see also [45]), e.g., cIIT (here) = c
(0)
1 (in [44, 45]). However, since no

result is available for the general case, we need new numerical computation for this problem.
Finally, we consider the problem for υIT and that for (υIIT ; c̃IIT ), i.e., Eqs. (135) and (136),

respectively. The problem (135) can be solved immediately, that is,

υIT =

{
0, (ζn < 0),

ace
−y/ζn , (ζn > 0).

(139)

By comparing Eq. (136) and Eq. (131) with κ = v, one immediately finds that

υIIT =
1

2
ψ̄I
v =

1

2
ψI
vBGK, c̃IIT = c̄Iv = cIvBGK. (140)

In this way, the problem for (υIIT ; c̃IIT ) has been solved.
In summary, what we only need is to solve the temperature jump problems, i.e., Eq. (133)

with κ = v, T , for specified ν.
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D. Summary and additional remarks

We note that ν and the accommodation coefficient ac are the only parameters that enter
the solution of the problem for (ψI

v , c
I
v) [Eq. (137)] and the solutions of the problems (133) for

(φII
κ , ψ

II
κ ; cIIκ ) (κ = v, T ). In addition, the solution of the problem for (ψI

T , c
I
T ) [Eq. (138)] and

that of the problem for (υIIT , c̃IIT ) [Eq. (140)] are independent of ν. It follows from Eq. (A8)
that Pr = 1/(1− ν + θν) ≈ 1/(1− ν) when θ ≪ 1. Therefore, ν is basically determined by the
Prandtl number.
According to Eqs. (137), (138), and (140), the coefficients cIv, c

I
T , and c̃IIT are obtained

immediately from the slip coefficients for the BGK model for a monatomic gas. The result is
shown in Eq. (10) with Table I.
By contrast, we need a new numerical analysis of the problem (133) (with κ = v, T ) to obtain

the numerical values of cIIv and cIIT . Since the analysis, which is based on a finite-difference
method, is straightforward, we show only its outline in Appendix D. As mentioned in Sec. IID,
the resulting numerical values are shown in Tables II and III. The dependence of cIIv and cIIT
on the parameters ν and ac is discussed in Sec. IID.

With these numerical values of cIv, c
I
T , c

II
v , cIIT , and c̃IIT , the slip boundary conditions for the

two-temperature Navier–Stokes equations (6) follow immediately from Eqs. (60), (96), (110),
and (112). The result is summarized in Eq. (9) in Sec. IID. As noted in [40], Eq. (9) forms
two-dimensional fields on the boundary at each time and is independent of the trajectory of
the points on the boundary.
The initial conditions for Eq. (6) are given by Eq. (55) under assumption (v) in Sec. II A.

However, if we are interested only in the behavior of the gas in the fluid-dynamic time scale
that is much longer than the mean free time and admit the inaccuracy in the initial stage
0 < t̂ < O(mean free time), we may ignore assumption (v) in Sec. II A and assume the more

general initial conditions of the form of Eq. (13), where ρ̂in(x), v̂in(x), T̂ in
tr (x), and T̂ in

int(x)
are appropriately chosen functions and are related to the initial condition for the ES model
specified in the problem under consideration, say

f̂(0, x, ζ, Ê) = f̂ in(x, ζ, Ê), (141)

which may be more general than Eq. (39). The reader is referred to Sec. 5.2.4 in [40] for more
detailed discussion about the initial conditions.

E. Macroscopic quantities inside Knudsen layer

We consider the Knudsen-layer parts of the macroscopic quantities ĥ
(1)
K in Eq. (62) or more

specifically Eq. (65), on the basis of the expressions (88) [with Eq. (86)] and (89). Equation

(92) indicates that v̂
(1)
Ki ni, p̂

(1)
Kijnj , q̂

(1)
(tr)Kini, and q̂

(1)
(int)Kini are all of O(Rhϵ). Other components

of the macroscopic quantities ĥ
(1)
K can be obtained by using Eqs. (101), (108), (109), and (111)

in Eqs. (88) [with Eq. (86)] and (89) and by noting that the change of the names of the variables
(99) has been made in Eqs. (101), (108), (109), and (111). In this process, use is also made of
the relations derived in Sec. VIIC. We summarize the results of the Knudsen-layer corrections

of the macroscopic quantities, i.e., ĥK = ĥ
(1)
K ϵ + O(Rhϵ

2) [Eq. (62)], neglecting the terms of
O(Rhϵ

2). That is,

v̂Kini = 0, (142a)

v̂Kiti = ϵYv(y)
T̂

1/2
w

Âc(T̂w)

1

ρ̂

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
nitj + ϵYT (y)

1

Âc(T̂w)

1

ρ̂

∂T̂w
∂xi

ti, (142b)

ρ̂K = ϵΩv(y)
1

Âc(T̂w)

∂v̂i
∂xj

ninj + ϵΩT (y)
1

Âc(T̂w)T̂
1/2
w

∂T̂tr
∂xi

ni, (142c)

T̂trK = ϵΘv(y)
T̂w

Âc(T̂w)

1

ρ̂

∂v̂i
∂xj

ninj + ϵΘT (y)
T̂

1/2
w

Âc(T̂w)

1

ρ̂

∂T̂tr
∂xi

ni, (142d)
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T̂intK = ϵΘ̃T (y)
T̂

1/2
w

Âc(T̂w)

1

ρ̂

∂T̂int
∂xi

ni, (142e)

T̂K =
3T̂trK + δT̂intK

3 + δ
, (142f)

p̂Kijnj = 0, (142g)

p̂Kijtj = ϵΠv(y)
T̂w

Âc(T̂w)

∂v̂j
∂xk

njnkti + ϵΠT (y)
T̂

1/2
w

Âc(T̂w)

∂T̂tr
∂xj

njti, (142h)

q̂(tr)Kini = 0, (142i)

q̂(tr)Kiti = ϵHv(y)
T̂

3/2
w

Âc(T̂w)

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
nitj + ϵHT (y)

T̂w

Âc(T̂w)

∂T̂w
∂xi

ti, (142j)

q̂(int)Kini = 0, (142k)

q̂(int)Kiti = ϵH̃T (y)
T̂w

Âc(T̂w)

∂T̂w
∂xi

ti, (142l)

q̂Ki = q̂(tr)Ki + q̂(int)Ki, (142m)

where, with κ = v and T ,

Yκ(y) =
1

2

〈
(ζ2 − ζ2n)Φ

I
κ

〉
=

1

2
√
π

∫ ∞

−∞
ψI
κe

−ζ2
ndζn, (143a)

Ωκ(y) =
〈
ΦII

κ

〉
=

1√
π

∫ ∞

−∞
φII
κ e

−ζ2
ndζn, (143b)

Θκ(y) =
2

3

〈(
ζ2 − 3

2

)
ΦII

κ

〉
= − 1√

π

∫ ∞

−∞

(
φII
κ − 2

3
ψII
κ

)
e−ζ2

ndζn, (143c)

Θ̃T (y) =
〈
ΥII

T

〉
=

1√
π

∫ ∞

−∞
υIIT e−ζ2

ndζn =
1− ν

2
√
π

∫ ∞

−∞
ψI
ve

−ζ2
ndζn = (1− ν)Yv(y), (143d)

Πκ(y) =
3

2
[Ωκ(y) + Θκ(y)], (143e)

Hκ(y) =
1

2

〈
(ζ2 − ζ2n)

(
ζ2 − 5

2

)
ΦI

κ

〉
, (143f)

H̃T (y) =
δ

4

〈
(ζ2 − ζ2n)Υ

I
T

〉
. (143g)

Here, ⟨ · ⟩ is defined by Eq. (105). In Eq. (142), the quantities ρ̂, v̂i, T̂tr, and T̂int belong to

the Chapman–Enskog solution, and ρ̂ and the derivatives of v̂i, T̂tr, and T̂int are all evaluated
on the boundary. By the use of Eqs. (137) and (138) and by a similar procedure to that in
Appendix C in [39], we obtain the following relations (the details are omitted here):

Yv(y) =
1

1− ν
YvBGK(y), YT (y) = YTBGK(y), (144a)

Hv(y) =
1

1− ν
HvBGK(y), HT (y) = HTBGK(y), (144b)

H̃T (y) =
1

4
√
π
acδJ0(y), (144c)

where YvBGK(y), YTBGK(y), HvBGK(y), and HTBGK(y) are the corresponding functions for the
BGK model for a monatomic gas, and Jn(y) is the so-called Abramowitz function [77] defined
by

Jn(y) =

∫ ∞

0

zne−z2− y
z dz, (y ≥ 0). (145)

The basic functions YvBGK(y), YTBGK(y), HvBGK(y), and HTBGK(y) versus y are plot-
ted in Fig. 2 in [39] for three different values of the accommodation coefficient ac [note
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FIG. 2. Profile of Ωv(y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.
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FIG. 3. Profile of ΩT (y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.

that ac (here) = α (in [39])], i.e., ac = 1.0, 0.5, and 0.2. These functions vanish rapidly as
y → ∞. Here, it should be noted that [YvBGK(y), YTBGK(y), HvBGK(y), HTBGK(y)] (here) =

[Y
(1)
1 (y), Y

(1)
2 (y), H

(1)
1 (y), H

(1)
2 (y)] (in [44, 45]) and the latter functions for ac = 1 are tab-

ulated in Table 6 in [45]. In addition, the function J0(y) is tabulated in Table V in [39].

Therefore, these data are omitted here. The functions Yv(y), YT (y), Hv(y), HT (y), and H̃T (y)
are recovered from these data once the value of ν is known for the gas under consideration.

In Figs. 2–5, we show the profiles of the functions Ωv(y), ΩT (y), Θv(y), and ΘT (y), re-
spectively, in the case of ac = 1.0, 0.5, and 0.2 for ν = −0.5, −0.3, −0.1, and 0.1. In these
figures, the corresponding profiles for the BGK model for a monatomic gas (ν = 0) are also
shown. We should recall that the functions Ωv(y), ΩT (y), Θv(y), and ΘT (y) are the same
as the corresponding functions for the ES model for a monatomic gas. To be more specific,

[Ωv(y), ΩT (y), Θv(y), ΘT (y)] (here) = [Ω
(0)
5 (y), Ω

(0)
1 (y), Θ

(0)
5 (y), Θ

(0)
1 (y)] (in [44, 45]), and the

latter functions for ac = 1 and ν = −0.5 (Pr = 2/3) and 0 (BGK model) are tabulated in
Tables 4 and 6 in [45]. Corresponding to the fact that cIIT is almost constant with respect to ν,
the functions ΩT and ΘT are almost independent of ν.
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FIG. 4. Profile of Θv(y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.
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FIG. 5. Profile of ΘT (y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.

VIII. TWO-TEMPERATURE NAVIER–STOKES EQUATIONS AND SLIP
BOUNDARY CONDITIONS IN DIMENSIONAL FORM

We first summarize the dimensional form of the two-temperature Navier–Stokes equations
following Sec. III C in [36]. The stress tensor pij and the heat-flow vector qi, which are the
dimensional version of Eq. (53) with the O(ϵ2) terms being neglected, are given by

pij = ρRTtrδij − µtr(T, Ttr)

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)
, (146a)

q(tr)i = −λtr(T, Ttr)
∂Ttr
∂Xi

, q(int)i = −λint(T, Ttr)
∂Tint
∂Xi

, (146b)

qi = q(tr)i + q(int)i, (146c)

where

µtr(T, Ttr) =
1

1− ν

RTtr
Ac(T )

, λtr(T, Ttr) =
5

2
R
RTtr
Ac(T )

, λint(T, Ttr) =
δ

2
R
RTtr
Ac(T )

, (147)

and T = (3Ttr + δTint)/(3 + δ) [Eq. (18i)]. Correspondingly, the dimensional two-temperature
Navier–Stokes equations, which are the dimensional version of Eq. (6), are given by the following
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equations:

∂ρ

∂t
+
∂(ρvj)

∂Xj
= 0, (148a)

∂(ρvi)

∂t
+
∂(ρvivj)

∂Xj
+
∂(ρRTtr)

∂Xi
=

∂

∂Xj

[
µtr(T, Ttr)

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)]
, (148b)

∂

∂t

[
ρ

(
3

2
RTtr +

1

2
v2i

)]
+

∂

∂Xj

[
ρvj

(
5

2
RTtr +

1

2
v2i

)]
− 3

2
θAc(T )ρ

2R(T − Ttr)

=
∂

∂Xj

[
λtr(T, Ttr)

∂Ttr
∂Xj

]
+

∂

∂Xj

[
µtr(T, Ttr)vi

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)]
, (148c)

∂(ρTint)

∂t
+
∂(ρvjTint)

∂Xj
− θAc(T )ρ

2(T − Tint) =
2

δ

1

R

∂

∂Xj

[
λint(T, Ttr)

∂Tint
∂Xj

]
. (148d)

The Ac(T ) in Eqs. (148c) and (148d) can be replaced by an expression in terms of µtr, λtr, or
λint with the help of Eq. (147). However, the terms containing Ac(T ) indicate the relaxation of
the translational temperature and that of the internal temperature. Since [θAc(T )ρ]

−1 is the
time scale of the relaxation of the translational and internal temperatures [cf. Eq. (A10)], it
would be more natural to keep θAc(T ) in Eqs. (148c) and (148d). The dimensional version of
Eq. (54) is omitted here [cf. Eq. (70) in [36]].
Next, we transform the slip boundary conditions (9) into their dimensional form. To be more

specific, we use Eqs. (3) and (8) and eliminate ϵ with the help of Eqs. (4), (A5), and (147) (with
T = Tw and Ttr = Tw) in Eq. (9). Then, we obtain the following dimensional form of the slip
boundary conditions:

(vi − vwi)ni = 0, (149a)

(vi − vwi)ti =

√
2

R1/2
aIv
µtr(Tw, Tw)

ρT
1/2
w

(
∂vi
∂Xj

+
∂vj
∂Xi

)
nitj +

4

5R
aIT

λtr(Tw, Tw)

ρTw

∂Tw
∂Xi

ti, (149b)

Ttr − Tw =
1

R
aIIv

µtr(Tw, Tw)

ρ

∂vi
∂Xj

ninj +
2
√
2

5R3/2
aIIT

λtr(Tw, Tw)

ρT
1/2
w

∂Ttr
∂Xi

ni, (149c)

Tint − Tw =
2
√
2

δR3/2
ãIIT

λint(Tw, Tw)

ρT
1/2
w

∂Tint
∂Xi

ni, (149d)

where

aIv = (1− ν)cIv = cIvBGK, aIT = cIT = cITBGK,

aIIv = (1− ν)cIIv , aIIT = cIIT ,

ãIIT = c̃IIT = cIvBGK.

(150)

Here, Eq. (10) has been used. In Eq. (149), RTw/Ac(Tw) has been eliminated by the use of
the relation RTw/Ac(Tw) = (1 − ν)µtr(Tw, Tw) = (2/5R)λtr(Tw, Tw) = (2/δR)λint(Tw, Tw)
[cf. Eq. (147)]. More specifically, µtr is used in the terms containing the derivative of vi, λtr is
used in the terms containing the derivative of Tw or Ttr, and λint is used in the term containing
the derivative of Tint. This choice follows the analogous choice in the slip boundary conditions
for the ordinary Navier–Stokes equations (with a single temperature) for a polyatomic gas [see
Eq. (139) in [39]]. In the case of the ordinary Navier–Stokes equations in [39], the equations as
well as the slip boundary conditions are expressed in terms of the viscosity µ, bulk viscosity µb,
and thermal conductivity λ [cf. Eqs. (138) and (139) in [39]], the data of which are available
for many gases. Therefore, these data can be input directly in the equations and the boundary
conditions without identifying the function Ac(T ) in practical applications. In contrast, the
two-temperature Navier–Stokes equations (148) contains Ac(T ). In addition, the transport
coefficients µtr, λtr, and λint contained in the equations (148) and in the boundary conditions
(149) are the quantities whose direct measurements would be difficult. Therefore, we need
to identify the function Ac(T ) by the procedure described in Sec. II E. An example of the
procedure is shown in the last paragraphs in Sec. II F.
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The initial condition for Eq. (148) is given by

ρ = ρ0, v = 0, Ttr = Tint = T0, at t = 0, (151)

which corresponds to Eq. (55) under assumption (v) in Sec. IIA, or

ρ = ρin(X), v = vin(X), Ttr = T in
tr (X), Tint = T in

int(X), at t = 0, (152)

which corresponds to Eq. (13) in more general case without assumption (v) and in the case when
we ignore the accuracy for short time (within the scale of the mean free time). Here ρin, vin,
T in
tr , and T

in
int are the density, flow velocity, translational temperature, and internal temperature

obtained from the initial distribution f in corresponding to Eq. (141) (see Sec. 5.2.4 in [40]).

IX. CONCLUDING REMARKS

In [36], four of the present authors derived the two-temperature Navier–Stokes equations from
the ES model for a polyatomic gas under the assumption that the time scale of the relaxation
of the internal modes is much longer than the collisional mean free time. Then, the equations
have successfully been applied to the problem of the structure of a stationary shock wave in
CO2 gas (see also [38]). Incidentally, it is generally understood that gases with slow relaxation
of the internal modes have large bulk viscosities.
In the present study, we tried, as the next step, to derive the appropriate boundary conditions

for the two-temperature Navier–Stokes equations. Since most of practical flow problems contain
solid boundaries, the applicability of the equations will be dramatically enlarged with the
boundary conditions.
As is well known [58, 59, 78, 79], the appropriate boundary conditions, which are in the form

of the slip boundary conditions, for the ordinary Navier–Stokes equations can be obtained only
by the analysis of the Knudsen layer, which is a thin layer with thickness of the order of the
mean free path of the gas molecules adjacent to the solid boundary. The reader is referred to
[40] for the slip boundary conditions for a monatomic gas and [39] for those for a polyatomic
gas.
In the present study, following these references, we have carried out a precise analysis of the

Knudsen layer, in the case where the time scale of the relaxation of the internal modes is much
longer than the collisional mean free time, on the basis of the ES model for a polyatomic gas and
the Maxwell-type boundary condition. As the result, we have derived the slip boundary con-
ditions for the two-temperature Navier–Stokes equations, together with the explicit numerical
values of the coefficients included in the conditions (the so-called slip coefficients).
The boundary conditions for the flow velocity and the translational temperature are essen-

tially the same as the slip boundary conditions for the ES model for a monatomic gas, and the
internal temperature does not appear there. The boundary condition for the internal tempera-
ture only contains the normal derivative of itself and is free from the translational temperature
as well as the flow velocity.
In this way, we have established the handy system consisting of the two-temperature Navier–

Stokes equations and their slip boundary conditions and presented it in the form that is explicit
and immediately applicable to practical flow problems of a polyatomic gas with slow relaxation
of the internal modes (or large bulk viscosity) [see Eqs. (6) and (9) or Eqs. (148) and (149)]. It
is a great advantage of the two-temperature Navier–Stokes equations to have clear boundary
conditions, compared with other macroscopic moment equations. The application of the new
system to some fundamental flow problems will be our forthcoming project. It would also be
possible to extend the present approach, as well as that of [36], to more sophisticated models
than the present ES model, such as the model proposed recently by [25], to derive multi-
temperature Navier–Stokes equations and their slip boundary conditions.
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Appendix A: Basic properties of ES model

1. Basic properties

The ES model (17) has the basic properties listed in the following.

Equilibrium: The vanishing of the collision term Q(f) = 0 is equivalent to the fact that f is
the following local equilibrium distribution [16] (see also Appendix A in [53]):

feq =
ρEδ/2−1

(2πRT )3/2(RT )δ/2Γ(δ/2)
exp

(
−|ξ − v|2

2RT
− E
RT

)
, (A1)

where ρ, v, and T are arbitrary functions of t and X.

Conservations: For an arbitrary function g(t, X, ξ, E), the following relation holds [16] (see
also Appendix A in [53]): ∫∫ ∞

0

φrQ(g)dEdξ = 0, (A2)

where φr (r = 0, ..., 4) are the so-called collision invariants, i.e.,

φ0 = 1, φi = ξi (i = 1, 2, 3), φ4 =
1

2
|ξ|2 + E . (A3)

Entropy inequality: For an arbitrary function g(t, X, ξ, E), the following inequality holds [16]:∫∫ ∞

0

(
ln

g

Eδ/2−1

)
Q(g)dEdξ ≤ 0, (A4)

and the equality sign holds if and only if g = feq in Eq. (A1).

Mean free path: The mean free path l0 of the gas molecules in the equilibrium state at rest at
density ρ0 and temperature T0 is given by

l0 =
2√
π

(2RT0)
1/2

Ac(T0)ρ0
, (A5)

for Eq. (17), since Ac(T0)ρ0 is the collision frequency at this equilibrium state.

2. Transport and relaxation properties

When the mean free path of the gas molecules l0 is small compared with the characteristic
length of the system, we can formally derive the ordinary (compressible) Navier–Stokes equa-
tions for a polyatomic gas from the ES model (17) by the Chapman–Enskog method [16]. The
Navier–Stokes constitutive laws thus obtained are as follows (see Sec. VI of [39] for these forms
and for the entire Navier–Stokes equations):

pij = pδij − µ(T )

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)
− µb(T )

∂vk
∂Xk

δij , (A6a)

qi = −λ(T ) ∂T
∂Xi

, (A6b)



40

where µ(T ), µb(T ), and λ(T ) are, respectively, the viscosity, the bulk viscosity, and the thermal
conductivity and are expressed as follows:

µ(T ) =
1

1− ν + θν

RT

Ac(T )
, (A7a)

µb(T ) =
2

3

δ

θ(δ + 3)

RT

Ac(T )
, (A7b)

λ(T ) =
δ + 5

2

R2T

Ac(T )
. (A7c)

From Eqs. (A7a), (A7c), and (1), the Prandtl number Pr = cpµ/λ is obtained as

Pr = 1/(1− ν + θν), (A8)

and from Eqs. (A7a), (A7b), (A8), and (1), the ratio µb/µ is expressed as

µb

µ
=

2

3

δ

θ(δ + 3)

1

Pr
=

1

θ

(
5

3
− γ

)
1

Pr
. (A9)

Here, it should be noted that the ratio µb/µ does not depend on T and is inversely proportional
to the parameter θ contained in the ES model.
In [36], the relaxation of the internal modes is examined in the space homogeneous case where

f does not depend on X, i.e., f = f(t, ξ, E). As shown in Sec. II D in [36], the temperature Ttr
associated with the translational energy and the temperature Tint associated with the energy
of the internal modes evolve with time as

Ttr = T + (Ttr∗ − T ) e−θAc(T )ρt, (A10a)

Tint = T + (Tint∗ − T ) e−θAc(T )ρt, (A10b)

where T is the temperature that is constant, and Ttr∗ and Tint∗ are, respectively, the initial value
of Ttr and that of Tint at t = 0, which satisfy the relation (3Ttr∗ + δTint∗)/(3+ δ) = T . That is,
Ttr and Tint approach the total temperature T with the time scale 1/[θAc(T )ρ]. Since Ac(T )ρ
is the collision frequency of the gas molecules, 1/[Ac(T )ρ] is the mean free time. Therefore, the
time scale of relaxation of the internal modes is (mean free time)/θ.
In summary, small values of the parameter θ correspond to the case of large µb/µ and to the

case of slow relaxation of the internal modes.

Appendix B: Reduction of two-temperature Navier–Stokes equations to ordinary
Navier–Stokes equations

In this appendix, we try to recover the ordinary Navier–Stokes equations with a single tem-
perature from the two-temperature Navier–Stokes equations (6) following the procedure in [28].
The basic assumption to derive the latter equations is Eq. (5), i.e., α = θ/ϵ = O(1), whereas
the ordinary Navier–Stokes equations are based on the assumption that θ is of the order of
unity [39], which corresponds to α = O(1/ϵ) ≫ 1. In order to consider the situation close to
the case of α = O(1/ϵ) ≫ 1 in the two-temperature Navier–Stokes equations that are valid for
α = O(1), we let

1 ≪ α≪ 1/ϵ, i.e., ϵ≪ θ ≪ 1. (B1)

It is seen from the order of magnitude of each term in Eqs. (6c) and (6d) that

T̂tr − T̂ = O(1/α), T̂int − T̂ = O(1/α). (B2)

Subtracting Eq. (6b) multiplied by 2v̂i from Eq. (6c), using Eq. (6a) occasionally, and dividing
by ρ̂, we obtain

∂T̂tr

∂t̂
+ v̂j

∂T̂tr
∂xj

=− 2

3
T̂tr

∂v̂j
∂xj

+ αÂc(T̂ )ρ̂(T̂ − T̂tr) +
5

6
ϵ
1

ρ̂

∂

∂xj

[
Γλ(T̂ , T̂tr)

∂T̂tr
∂xj

]

+
2

3
ϵ
1

ρ
Γµ(T̂ , T̂tr)

∂v̂i
∂xj

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)
. (B3)
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On the other hand, with the help of Eq. (6a), Eq. (6d) is transformed to the following form:

∂T̂int

∂t̂
+ v̂j

∂T̂int
∂xj

= αÂc(T̂ )ρ̂(T̂ − T̂int) +
1

2
ϵ
1

ρ̂

∂

∂xj

[
Γλ(T̂ , T̂tr)

∂T̂int
∂xj

]
. (B4)

If we neglect the small terms of the order of ϵ in Eqs. (B3) and (B4) and subtract the latter
from the former, then we have

∂

∂t̂
(T̂tr − T̂int) + v̂j

∂

∂xj
(T̂tr − T̂int) = −2

3
T̂tr

∂v̂j
∂xj

− αÂc(T̂ )ρ̂(T̂tr − T̂int). (B5)

Since T̂tr− T̂int = O(1/α) because of Eq. (B2), the left-hand side of Eq. (B5) is of O(1/α), while
its right-hand side is of O(1). Neglecting the left-hand side leads to the following expression of

T̂tr − T̂int:

T̂tr − T̂int = −2

3

1

α

T̂tr

Âc(T̂ )ρ̂

∂v̂j
∂xj

= −2

3

1

α

T̂

Âc(T̂ )ρ̂

∂v̂j
∂xj

+O

(
1

α2

)
, (B6)

where use has been made of Eq. (B2). One can see that the degree of nonequilibrium T̂tr − T̂int
is directly expressed in terms of the divergence of the velocity field.
Using the definition (30i) of T̂ and Eq. (B6), we have

T̂tr − T̂ =
δ

3 + δ
(T̂tr − T̂int) = − 2δ

3(3 + δ)

1

α

T̂

Âc(T̂ )ρ̂

∂v̂j
∂xj

+O

(
1

α2

)
, (B7a)

T̂int − T̂ = − 3

3 + δ
(T̂tr − T̂int) =

2

3 + δ

1

α

T̂

Âc(T̂ )ρ̂

∂v̂j
∂xj

+O

(
1

α2

)
. (B7b)

Let us substitute Eq. (B7a) into Eqs. (6b) and (54) to eliminate T̂tr, neglect the terms of
O(1/α2), and replace 1/α with ϵ/θ. Then, we obtain the following equations:

∂(ρ̂v̂i)

∂t̂
+
∂(ρ̂v̂iv̂j)

∂xj
= −1

2

∂p̂

∂xi
+
ϵ

2

∂

∂xj

[
Γ̃1(T̂ )

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)]
+
ϵ

2

∂

∂xi

[
Γb(T̂ )

∂v̂j
∂xj

]
, (B8a)

∂

∂t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2i

)]
+

∂

∂xj

[
ρ̂v̂j

(
5 + δ

2
T̂ + v̂2i

)]
=

5

4
ϵ
∂

∂xj

[
Γ2(T̂ )

∂T̂

∂xj

]
+ ϵ

∂

∂xj

[
Γ̃1(T̂ )v̂i

(
∂v̂i
∂xj

+
∂v̂j
∂xi

− 2

3

∂v̂k
∂xk

δij

)]
+ ϵ

∂

∂xj

[
Γb(T̂ )v̂j

∂v̂k
∂xk

]
, (B8b)

where p̂ = ρ̂T̂ [Eq. (31)] and

Γ̃1(T̂ ) =
1

1− ν

T̂

Âc(T̂ )
, Γ2(T̂ ) =

(
1 +

δ

5

)
T̂

Âc(T̂ )
, Γb(T̂ ) =

1

θ

2δ

3(3 + δ)

T̂

Âc(T̂ )
. (B9)

Equations (6a), (B8a), and (B8b) coincide with the ordinary Navier–Stokes equations with a
single temperature derived from the ES model, i.e., Eq. (46) in [39], except that in Eqs. (B8a)

and (B8b), Γ̃1(T̂ ) appears in place of

Γ1(T̂ ) =
1

1− ν + θν

T̂

Âc(T̂ )
. (B10)

However, since ϵ ≪ θ ≪ 1, it holds that Γ1(T̂ ) = Γ̃1(T̂ ) + O(θ) ≈ Γ̃1(T̂ ). In this way, the
ordinary Navier–Stokes equations can be recovered from the two-temperature Navier–Stokes
equations. The quantity ϵΓb(T̂ ) corresponds to the bulk viscosity. It should be noted that the
bulk viscosity terms in Eqs. (B8a) and (B8b) originate from the relation (B6).



42

Appendix C: Outline of derivation of Eqs. (66) and (67)

The derivation of Eqs. (66) and (67) is basically the same as the corresponding analysis in
Appendix A in [39], where θ = O(1) and ϵ ≪ 1 are assumed instead of Eq. (5). Therefore, we
give its outline referring occasionally to [39].

We note that the Chapman–Enskog solution f̂CE satisfies Eq. (29). If we substitute Eq. (58)

into Eq. (29) and subtract Eq. (29) with f̂ = f̂CE, then we have

ϵ
∂f̂

(1)
K

∂t̂
+ ϵζi

∂f̂
(1)
K

∂xi
+O(ϵ2Rf ) =

1

ϵ
[Q̂(f̂CE + f̂K)− Q̂(f̂CE)], (C1)

where Eq. (61) has been used on the left-hand side.

In order to calculate the right-hand side of Eq. (C1), we first consider (T̂)ij in Eq. (30c). Let

us use Eq. (59) with Eq. (62) in Eq. (30c) and recall that ĥCE indicates the Chapman–Enskog

macroscopic quantities appeared in Sec. VB [i.e., ĥ in Eq. (49)] though the subscript CE is not
attached there. This operation has been done in Appendix A in [39] for θ = O(1) and led to
the following expression [cf. Eqs. (A2) and (A3) in [39]]:(

T̂|ĥ=ĥtot

)
ij
= (A)ij + ϵ(B)ij +O(ϵ2Rh), (C2)

where

(A)ij =
(
T̂|ĥ=ĥCE

)
ij
= (1− θ)

[
(1− ν)T̂trδij + ν

p̂ij
ρ̂

]
+ θT̂ δij , (C3a)

(B)ij = (1− θ)

[
(1− ν)T̂

(1)
trKδij + ν

1

ρ̂

(
p̂
(1)
Kij − p̂ij

ρ̂
(1)
K

ρ̂

)]
+ θT̂

(1)
K δij , (C3b)

and T̂|ĥ=ĥCE
indicates T̂ evaluated with ĥ = ĥCE. Note that ρ̂, p̂ij , T̂tr, and T̂ in Eq. (C3) are

the Chapman–Enskog macroscopic quantities. Equation (C2) is a decomposition of T̂|ĥ=ĥtot

into the Chapman–Enskog part (A)ij , Knudsen-layer part (B)ij up to O(ϵ), which contains the
Chapman–Enskog macroscopic quantities ρ̂ and p̂ij in the coefficients, and the remainder of
O(Rhϵ

2) originating from the remainder Rhϵ
2 in Eq. (62). Note that (A)ij and (B)ij , which are

of O(1), depend on ϵ and contain higher-order terms in ϵ. For instance, since p̂ij takes the form
of expansion in ϵ, it contains in general higher order terms in ϵ. Equation (C2) with Eq. (C3)
is one of the possible expressions that are correct within the error of O(Rhϵ

2).
Since Eq. (C2) with Eq. (C3) does not contain the explicit form of the Chapman–Enskog

solution, it also holds in the present setting θ = αϵ ≪ 1 [Eq. (5)]. Therefore, Eqs. (A4)–(A11)
in Appendix A in [39] are also the same in the present case.
To be more specific, Eq. (A11) in [39] gives the following expression of the difference appearing

in Eq. (C1):

Q̂(f̂CE + f̂K)− Q̂(f̂CE) = Âc(T̂ ) ρ̂ (Ĝ(1) − f̂
(1)
K )ϵ+O(Rf ϵ

2), (C4)

where Ĝ(1) is given by Eq. (A10b) in [39], i.e.,

Ĝ(1) = Ĝ(0)

(
ρ̂
(1)
K

ρ̂
− 1

2

D(1)

D(0)
− δ

2

T̂
(1)
relK

T̂rel
+ P(1)

)
, (C5)

and Ĝ(0), D(0), D(1), and P(1) are defined by Eqs. (A10a), (A6a), (A6b), and (A8b) in [39],
respectively (the explicit expressions are omitted here).
The difference between [39] and the present case arises from now on. Using the relations

T̂rel = T̂int+O(ϵ), T̂
(1)
relK = T̂

(1)
intK [cf. Eq. (64)], and p̂ij = ρ̂T̂trδij+O(ϵ) [cf. Eq. (53a)], we obtain

the following expressions in place of Eqs. (A12) and (A13) in [39]:

(A)ij = T̂trδij +O(ϵ), (C6a)
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(A−1)ij = T̂−1
tr δij +O(ϵ), (C6b)

(B)ij = T̂trdKij +O(Rhϵ), (C6c)

(A−1B A−1)ij = T̂−1
tr dKij +O(Rhϵ), (C6d)

and

dKij = −ν
ρ̂
(1)
K

ρ̂
δij + (1− ν)

T̂
(1)
trK

T̂tr
δij + ν

p̂
(1)
Kij

ρ̂T̂tr
. (C7)

If these relations are used in Eqs. (A6a), (A6b), and (A8b) in [39], they give the following
expressions of D(0), D(1), and P(1) in place of Eq. (A14) in [39]:

D(0) = T̂ 3
tr +O(ϵ), (C8a)

D(1) = T̂ 3
trdKii +O(Rhϵ), (C8b)

P(1) =
(ζi − v̂i)(ζj − v̂j)

T̂tr
dKij + 2

ζi − v̂i

T̂tr
v̂
(1)
Ki +

Ê
T̂ 2
int

T̂
(1)
intK +O(RhSϵ), (C8c)

where S indicates an appropriate function of ζ and Ê that decays fast enough when multiplied
by a rapidly decaying function of ζ and Ê . Using these expressions in Eq. (C5) and noting that

Ĝ(0) = f̂ (0) +O(ϵf̂CE), we have the following expression of Ĝ(1) in place of Eq. (A15) in [39]:

Ĝ(1) = f̂ (0)

[
ρ̂
(1)
K

ρ̂
− 1

2
dKii −

δ

2

T̂
(1)
intK

T̂int
+

(ζi − v̂i)(ζj − v̂j)

T̂tr
dKij

+2
(ζi − v̂i)

T̂tr
v̂
(1)
Ki +

Ê
T̂ 2
int

T̂
(1)
intK

]
+O(Rf ϵ)

= f̂ (0)

{
ρ̂
(1)
K

ρ̂
+ 2

(ζi − v̂i)

T̂tr
v̂
(1)
Ki +

[
(ζi − v̂i)

2

T̂tr
− 3

2

]
T̂

(1)
trK

T̂tr

+ν

[
(ζi − v̂i)(ζj − v̂j)

T̂tr
− 1

3

(ζk − v̂k)
2

T̂tr
δij

]
p̂
(1)
Kij

ρ̂T̂tr

+

(
Ê
T̂int

− δ

2

)
T̂

(1)
intK

T̂int

}
+O(Rf ϵ). (C9)

Equations (C1), (C4), and (C9) lead to Eqs. (66) and (67).

Appendix D: Outline of numerical analysis

In this appendix, we show the outline of numerical analysis of the half-space problem (133).

1. Strategy

We start with the problem (118), which is the original problem of Eq. (133). The boundary
condition (118b) contains an unknown constant cIIκ as well as the integral

∫
ζn<0

ζnΦ
II
κ E(ζ)dζ,

which is also an unknown constant. It is not preferable to handle the boundary condition
containing unknown quantities in the numerical analysis. Therefore, we will convert the problem
to another form that is more convenient for numerical analysis, following the strategy in [80].
Let us put

Φ̃II
κ = ΦII

κ + β1 + β2

(
ζ2 − 3

2

)
, (D1a)

bIIκ = 2
√
π

∫
ζn<0

ζnΦ
II
κ E(ζ)dζ − 1

2
cIIκ , (D1b)
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where β1 and β2 are undetermined constants. The bIIκ is also interpreted as an undetermined
constant because the integral is not known until the solution ΦII

κ is determined. Then, since
LES(1) = LES(ζ

2) = 0, the problem (118) is recast as

ζn
∂Φ̃II

κ

∂y
= LES(Φ̃

II
κ ), (D2a)

Φ̃II
κ = (1− ac)R̃Φ̃II

κ − ac

[
b∗κ + c∗κ

(
ζ2 − 3

2

)]
+HII

κ , (y = 0, ζn > 0), (D2b)

Φ̃II
κ → β1 + β2

(
ζ2 − 3

2

)
, (y → ∞), (D2c)

where

b∗κ = bIIκ − β1, c∗κ = cIIκ − β2. (D3)

Since ΦII
κ vanishes rapidly as y → ∞ (this can be confirmed by the numerical result), the

following relations hold approximately for a large positive number d:

Φ̃II
κ (d, ζn, ζ) = β1 + β2

(
ζ2 − 3

2

)
, (D4a)

ω̃(d) := ⟨Φ̃II
κ (d, ζn, ζ)⟩ = β1, τ̃tr(d) :=

2

3

〈(
ζ2 − 3

2

)
Φ̃II

κ (d, ζn, ζ)

〉
= β2. (D4b)

Therefore, the following reflection condition holds at y = d:

Φ̃II
κ (d, ζn, ζ) = Φ̃II

κ (d, −ζn, ζ). (D5)

Now we consider the boundary-value problem of Eq. (D2a) in a finite domain 0 ≤ y ≤ d
(d ≫ 1) with the boundary conditions (D2b) and (D5), which is expected to have a unique

solution for specified constants b∗κ and c∗κ [81]. Once the solution Φ̃II
κ is obtained numerically,

the constants β1 and β2 are determined by Eq. (D4b). Then the original solution ΦII
κ and the

slip coefficient cIIκ are obtained from Eq. (D1a) and the second of Eq. (D3), respectively. The
bIIκ , which is determined by the first of Eq. (D3), gives the value of the integral in Eq. (D1b),
which is not relevant to the slip boundary conditions. This is the procedure to obtain the
solution ΦII

κ and the slip coefficient cIIκ of the problem (118).

2. Reduced equations

In the actual computation, we solve the version of the problem (D2a), (D2b), and (D5) that
corresponds to the problem (133). This version can be derived by the procedure used in the

derivation of the problem (133) from that (118). Let us define (φ̃II
κ , ψ̃

II
κ ) by Eqs. (124a) and

(124b) with ΦII
κ = Φ̃II

κ , i.e.,

φ̃II
κ (y, ζn) =

1

π

∫ ∞

−∞

∫ ∞

−∞
Φ̃II

κ (y, ζn, ζ)e
−ζ2

s −ζ2
t dζtdζs, (D6a)

ψ̃II
κ (y, ζn) =

1

π

∫ ∞

−∞

∫ ∞

−∞
(ζ2s + ζ2t )Φ̃

II
κ (y, ζn, ζ)e

−ζ2
s −ζ2

t dζtdζs. (D6b)
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Then, the problem to be solved in place of Eq. (133) is obtained as follows:

ζn
∂

∂y

 φ̃II
κ

ψ̃II
κ

 = ω̃

 1

1

+ τ̃tr

 ζ2n − 1

2

ζ2n +
1

2


+ νP̃ij

(
ninj −

1

3
δij

) ζ2n − 1

2

ζ2n − 1

−

 φ̃II
κ

ψ̃II
κ

 , (0 < y < d), (D7a)

 φ̃II
κ (0, ζn)

ψ̃II
κ (0, ζn)

 = (1− ac)

 φ̃II
κ (0, −ζn)

ψ̃II
κ (0, −ζn)

− acb
∗
κ

 1

1

− acc
∗
κ

 ζ2n − 1

2

ζ2n +
1

2

+ GII
κ , (ζn > 0),

(D7b) φ̃II
κ (d, ζn)

ψ̃II
κ (d, ζn)

 =

 φ̃II
κ (d, −ζn)

ψ̃II
κ (d, −ζn)

 , (ζn < 0), (D7c)

where

ω̃ =
1√
π

∫ ∞

−∞
φ̃II
κ e

−ζ2
ndζn, τ̃tr =

2

3

1√
π

∫ ∞

−∞

[(
ζ2n − 3

2

)
φ̃II
κ + ψ̃II

κ

]
e−ζ2

ndζn,

P̃ij =
1√
π

∫ ∞

−∞

[
2ζ2nφ̃

II
κ ninj + ψ̃II

κ (δij − ninj)
]
e−ζ2

ndζn,

(D8)

and GII
κ is defined by Eq. (134). In contrast to Eq. (125b),

∫∞
−∞ ζ2nφ̃

II
κ e

−ζ2
ndζn is a non-zero

constant in general, so that Eq. (D8) differs from Eq. (128).
In summary, we solve the boundary-value problem in the domain 0 ≤ y ≤ d, i.e., Eq. (D7),

numerically for specified b∗κ and c∗κ. Once φ̃II
κ and ψ̃II

κ are obtained, β1 and β2 are determined
by Eq. (D4b), that is, β1 = ω̃(d) and β2 = τ̃tr(d). Then, the solution (φII

κ , ψ
II
κ ; cIIκ ) of the

original problem (133) is obtained immediately with the help of Eqs. (D1a) and (D3), that is,

φII
κ = φ̃II

κ − β1 − β2(ζ
2
n − 1/2), ψII

κ = ψ̃II
κ − β1 − β2(ζ

2
n + 1/2), and cIIκ = c∗κ + β2.

The P̃ijninj calculated by the third of Eq. (D8) with φ̃II
κ = φII

κ should be zero theoretically
[cf. Eq. (125b)]. However, it does not vanish exactly with the numerical solution φII

κ and takes
small values because of the numerical error. These values provide a measure of accuracy of the
numerical solution (see Appendix D5).

3. Finite-difference scheme

We solve Eq. (D7) or its variants, which are essentially the same as the former, by a finite-
difference method [82, 83]. We write the problem (D7) symbolically as

ζn
∂f

∂y
= L(y, ζn)− f, (0 < y < d),

f(0, ζn) = (1− ac)f(0, −ζn) +G(ζn), (ζn > 0),

f(d, ζn) = f(d, −ζn), (ζn < 0),

(D9)

where f(y, ζn), L(y, ζn), and G(y, ζn) are two-component vectors, and L and G are known [L
in Eq. (D7a) is not known as the function of y; however, it is regarded as a known function in
the scheme shown below].
Let us denote the grid points in y by y(i) (i = 0, 1, · · · , 2N ; y(0) = 0, y(2N) = d), restrict

the range of ζn to a finite interval −Z ≤ ζn ≤ Z, and denote the grid points in ζn by ζ
(j)
n

(j = −2M,−2M + 1, · · · , 0, · · · , 2M ; ζ
(0)
n = 0, ζ

(2M)
n = Z, ζ

(−j)
n = −ζ(j)n ). We denote the
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values of f , L, etc. at the grid points at the nth step of iteration by

f
(n)
ij = f(y(i), ζ(j)n ), L

(n)
ij = L(y(i), ζ(j)n ), Gj = G(ζ(j)n ),

h
(n)
i = h(y(i)) (h = ω̃, τ̃tr, P̃ij),

(D10)

where the right-hand side of each equation indicates the value at the nth iteration. For i = 0,

we specially define f
(n)
0,±0 = f(0, ±0) at the nth step of iteration.

The following finite-difference scheme is applied for Eq. (D9):

ζ(j)n ∇f (n+1)
ij = L

(n)
ij − f

(n+1)
ij , (D11)

where ∇f (n)ij indicates the second-order upwind difference for ∂f/∂y defined by

(a) ζ(j)n > 0

∇f (n)ij =


(
f
(n)
1,j − f

(n)
0,j

)
/d1, (i = 1),

w0(di, di−1)f
(n)
ij − w1(di, di−1)f

(n)
i−1,j + w2(di, di−1)f

(n)
i−2,j , (2 ≤ i ≤ 2N),

(D12a)

(b) ζ(j)n < 0

∇f (n)ij =


(
−f (n)2N−1,j + f

(n)
2N,j

)
/d2N , (i = 2N − 1),

−w0(di+1, di+2)f
(n)
ij + w1(di+1, di+2)f

(n)
i+1,j − w2(di+1, di+2)f

(n)
i+2,j ,

(0 ≤ i ≤ 2N − 2),

(D12b)

where

di = y(i) − y(i−1), w0(a, b) =
2a+ b

a(a+ b)
, w1(a, b) =

a+ b

ab
, w2(a, b) =

a

b(a+ b)
.

4. Process of computation

Suppose that the macroscopic quantities h
(n)
i (thus L

(n)
ij ) at the nth step and f

(n)
2N,j (j =

1, 2, · · · , 2M) at y = d for ζn > 0 are known. Then, the physical quantities at the (n + 1)th
step are obtained by the following procedure:

(i) From the condition at y = d, we set f
(n+1)
2N,j = f

(n)
2N,−j (j = −2M,−2M + 1, · · · ,−1).

(ii) For ζ
(j)
n = 0, we let f

(n+1)
i,0 = L

(n)
i,0 (i = 1, 2, · · · , 2N) and f

(n+1)
0,−0 = L

(n)
0,0 .

(iii) For ζ
(j)
n < 0, we obtain f

(n+1)
ij (j = −2M,−2M +1, · · · ,−1) for i = 2N −1, 2N −2, · · · , 0

successively using the finite-difference scheme (D11).

(iv) From the boundary condition at y = 0, we set f
(n+1)
0,j = (1 − ac)f

(n+1)
0,−j + Gj (j =

1, 2, · · · , 2M) and f
(n+1)
0,+0 = (1− ac)f

(n+1)
0,−0 +G0.

(v) For ζ
(j)
n > 0, we obtain f

(n+1)
ij (j = 1, 2, · · · , 2M) for i = 1, 2, · · · , 2N successively using

the finite-difference scheme (D11).

(vi) Integrating the obtained f
(n+1)
ij by Simpson’s rule, we obtain the macroscopic quantities

h
(n+1)
i .

We repeat the processes (i) to (vi) until the following convergence criteria are fulfilled: For
sufficiently small εe (> 0)

max
i

∣∣∣h(n+1)
i − h

(n)
i

∣∣∣ < εe, (h = ω̃, P̃ := τ̃tr + ω̃). (D13)

We have set εe = 10−10 in the present computation.
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5. Grid systems and accuracy tests

The following grid systems have been used in the computation.

y(i) =
40

1 + c

[
2(i/2N0)

a

1 + (i/2N0)a−1
+ c

i

2N0

]
, (i = 0, 1, · · · , 2N), (D14a)

ζ(j)n =
5

1 + cζ

[(
j

2M0

)3

+ cζ
j

2M0

]
, (j = −2M,−2M + 1, · · · , 0, · · · , 2M), (D14b)

where c = 2.5 × 10−6 and cζ > 0, and a, N0, N, M0, and M are positive integers. Different
sets of values of the parameters in Eq. (D14), which are listed in Tables VI and VII, have been
tried for test computations, and (S1,M1) system has been used to obtain the results shown in
Secs. IID, II F, and VIIE.

TABLE VI. Parameters for y-grid.

a N0 N d [= y(2N)] y(1) y(2N)− y(2N−1)

S1 3 400 420 44.05 2.81(−7)a 1.02(−1)

S2 3 200 210 44.05 1.50(−6) 2.05(−1)

S3 3 400 410 42.01 2.81(−7) 1.01(−1)

S4 4 400 420 45.07 1.25(−7) 1.28(−1)

a Read as 2.81× 10−7.

TABLE VII. Parameters for ζn-grid.

cζ M0 M Z [= ζ
(2M)
n ] ζ

(1)
n ζ

(2M)
n − ζ

(2M−1)
n

M1 0.01 100 104 5.62 2.48(−4)a 8.02(−2)

M2 0.01 50 52 5.62 5.00(−4) 1.60(−1)

M3 0.01 100 102 5.30 2.48(−4) 7.71(−2)

M4 0.005 100 104 5.62 1.25(−4) 8.05(−2)

a Read as 2.48× 10−4.

Our reference grid system is (S1,M1), and the test computation has been carried out by using
the following six different systems: (S2,M1) where the number of y-grid is reduced by half;
(S3,M1) where the range of y is reduced slightly; (S4, M1) where y-grid is more concentrated
around y = 0; (S1,M2) where the number of ζn-grid is reduced by half; (S1,M3) where the
range of ζn is reduced slightly; (S1,M4) where ζn-grid is more concentrated around ζn = 0. Let

max |Pnn| = max
0≤y≤d

{|P̃ijninj | with φ̃II
κ = φII

κ },

Aκ = max
{
[φ̃II

κ ]y=d, [ψ̃
II
κ ]y=d

}
, Bκ = max

{
[φ̃II

κ ]|ζn|=Z , [ψ̃
II
κ ]|ζn|=Z

}
,

(D15)

where

[f ]y=d =

max
|ζn|≤Z

∣∣∣f(d, ζn)e−ζ2
n

∣∣∣
max

0≤y≤d, |ζn|≤Z

∣∣∣f(y, ζn)e−ζ2
n

∣∣∣ , [f ]|ζn|=Z =

max
0≤y≤d

∣∣∣f(y,±Z)e−Z2
∣∣∣

max
0≤y≤d, |ζn|≤Z

∣∣∣f(y, ζn)e−ζ2
n

∣∣∣ . (D16)

See the last paragraph in Appendix D2 about max |Pnn|. The quantities max |Pnn|, Aκ, and
Bκ should be small enough. We have checked the values of cIIκ , max |Pnn|, Aκ, and Bκ with
(S1,M1) system plus the above six systems for various values of the parameters (ν, ac). As
examples, the results for (ν, ac) = (−0.5, 0.1) and (0.5, 1) are shown in Tables VIII and IX. The
results for other values of (ν, ac) are more or less of the same order of magnitude. Considering
all these results, we have used (S1,M1) system for the main computation.
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TABLE VIII. Test for (ν, ac) = (−0.5, 0.1).

κ = v κ = T

grid system cIIv max |Pnn| Av Bv cIIT max |Pnn| AT BT

(S1,M1) 0.22905585 1.9(−7)a 3.4(−9) 5.1(−13) 21.445809 3.6(−7) 4.4(−9) 7.4(−12)

(S2,M1) 0.22905639 3.0(−7) 3.4(−9) 5.1(−13) 21.445867 4.0(−6) 4.3(−9) 7.4(−12)

(S3,M1) 0.22905586 1.7(−7) 3.4(−9) 5.1(−13) 21.445809 3.8(−7) 8.0(−9) 7.4(−12)

(S4,M1) 0.22905584 2.0(−7) 3.4(−9) 5.1(−13) 21.445808 4.1(−7) 3.2(−9) 7.4(−12)

(S1,M2) 0.22905585 1.9(−7) 3.4(−9) 5.1(−13) 21.445809 3.6(−7) 4.4(−9) 7.4(−12)

(S1,M3) 0.22905585 1.9(−7) 3.4(−9) 1.4(−11) 21.445809 3.6(−7) 4.3(−9) 1.9(−10)

(S1,M4) 0.22905585 1.9(−7) 3.4(−9) 5.0(−13) 21.445809 3.6(−7) 4.4(−9) 7.3(−12)

a Read as 1.9× 10−7.

TABLE IX. Test for (ν, ac) = (0.5, 1).

κ = v κ = T

grid system cIIv max |Pnn| Av Bv cIIT max |Pnn| AT BT

(S1,M1) 0.90422215 1.2(−6)a 1.9(−9) 4.6(−13) 1.3049195 1.0(−7) 4.9(−9) 7.5(−12)

(S2,M1) 0.90422374 8.4(−6) 1.9(−9) 4.6(−13) 1.3049232 1.6(−6) 4.8(−9) 7.5(−12)

(S3,M1) 0.90422213 1.2(−6) 3.8(−9) 4.6(−13) 1.3049194 9.1(−8) 9.4(−9) 7.5(−12)

(S4,M1) 0.90422225 1.4(−6) 1.3(−9) 4.6(−13) 1.3049195 1.0(−7) 3.4(−9) 7.5(−12)

(S1,M2) 0.90422215 1.2(−6) 1.9(−9) 4.6(−13) 1.3049195 1.0(−7) 4.9(−9) 7.5(−12)

(S1,M3) 0.90422215 1.2(−6) 1.9(−9) 1.3(−11) 1.3049194 9.9(−8) 4.8(−9) 1.9(−10)

(S1,M4) 0.90422215 1.2(−6) 1.9(−9) 4.5(−13) 1.3049195 1.0(−7) 4.9(−9) 7.3(−12)

a Read as 1.2× 10−6.
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