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Simple Summary: Enteric methane emission (EME) in dairy cows can feasibly be mitigated through
genetic improvement at the population level. This work shows that several EME-related traits, directly
and indirectly predicted from infrared spectra of milk, are heritable and are genetically correlated
with those based on the fatty acid profile of milk. Genetic parameters were estimated using univariate
and bivariate animal models. The results show that easy-to-measure values correlated to EME traits
were identified and seem to have the potential to be exploited in breeding programs to improve the
impact of dairy farming on climate change.

Abstract: This study aimed to infer the genetic parameters of five enteric methane emissions (EME)
predicted from milk infrared spectra (13 models). The reference values were estimated from milk
fatty acid profiles (chromatography), individual model-cheese, and daily milk yield of 1158 Brown
Swiss cows (85 farms). Genetic parameters were estimated, under a Bayesian framework, for EME
reference traits and their infrared predictions. Heritability of predicted EME traits were similar
to EME reference values for methane yield (CH4/DM: 0.232–0.317) and methane intensity per kg
of corrected milk (CH4/CM: 0.177–0.279), smaller per kg cheese solids (CH4/SO: 0.093–0.165), but
greater per kg fresh cheese (CH4/CU: 0.203–0.267) and for methane production (dCH4: 0.195–0.232).
We found good additive genetic correlations between infrared-predicted methane intensities and the
reference values (0.73 to 0.93), less favorable values for CH4/DM (0.45–0.60), and very variable for
dCH4 according to the prediction method (0.22 to 0.98). Easy-to-measure milk infrared-predicted
EME traits, particularly CH4/CM, CH4/CU and dCH4, could be considered in breeding programs
aimed at the improvement of milk ecological footprint.

Keywords: mid-infrared (MIR) spectra; genetic parameters; ecological footprint; greenhouse gases;
global warming

1. Introduction

Ruminants seem to be responsible for up to 18% of global greenhouse gas emissions [1,2], and dairy
cows produce a significant proportion of those emissions. In its efforts to mitigate the effects on climate
change of enteric methane emissions (EME) from dairy cattle populations, the dairy industry is looking
at strategies for improving the feeding efficiency, but also at the genetic selection of animals [3], also
because demand for milk and dairy products is increasing at world level. Although EME traits are
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governed by microbial activity in the rumen, they have also been shown to be dependent on the
animal’s genetics, leading to the concept of indirect heritability [4].

Direct quantification of greenhouse gases (GHG) in respiration chambers (the gold standard in
EME analysis) is not feasible individually for a large number of lactating cows. Moreover, respiration
chamber environment and management are very different from those of commercial dairy farms.
Predictions of EME at the farm level using detectors placed within automatic milking or feeder systems
to analyze air methane and carbon dioxide concentrations is also problematic: they do not measure the
daily volume of methane emitted and, despite having been proposed as a method for selecting dairy
cows [5], they have shown a low reproducibility and correlation with respiration chambers and other
methods [6–8], opening a wide debate in the scientific community [9–11].

As reviewed by Negussie et al. [12], the analysis of milk fatty acid (FA) profiles, along with the proper
combination of FAs, is also considered an effective, promising method for predicting GHG, which van
Gastelen and Dijkstra [13] have suggested for use in field conditions. It exploits the physiological links
between EME, the type of fermentation in the rumen, and the proportions of volatile FAs produced
in the rumen, absorbed by the intestines and used for de novo synthesis of FAs in the udder [14,15].
Combining data obtained through a meta-analysis of the results from eight experiments carried out
in respiration chambers and taking account of 30 different diets, van Lingen et al. [16] devised two
equations: one for predicting methane yield per unit of DMI (CH4/DM, g/kg), and one for predicting
methane intensity per unit of fat/protein-corrected milk (CH4/CM, g/kg). The R2 from these equations
was, respectively, 0.54 and 0.47, lower than accuracy found in some studies carried out on single
experiments, but acceptable considering that it has been produced from a meta-analysis, so much
more representative in terms of sources of variation included (countries, diets, research centers, years,
cows and replicates). In a previous study [17], we used these equations to identify the sources of
variation (dairy system, herd, parity and lactation stage) in these traits estimated from a large survey
of 1158 Brown Swiss cows from 85 herds; we assessed methane production per cow (dCH4, g/d) by
multiplying CH4/CM by the daily corrected milk yield (dCMY, kg/d), and associated these data to the
cheese yield of individual cows to estimate methane intensity per unit of fresh cheese (CH4/CYCURD,
g/kg) and per unit of cheese solids (CH4/CYSOLIDS, g/kg). Even though the breed of cows and the
environmental conditions were different, the average predicted EME was similar and the effects
of herd, parity, lactation stage and milk yield on EME traits were following the expected patterns
according to nutritional and physiological knowledge. We also found all of these EME traits to have a
genetic background, with a heritability of 0.12 to 0.25 according to the different traits [18], as did other
researchers using different methods (0.17 to 0.25 according to the different traits, as summarized by
Brito et al. [19]). The milk FA-based EME predictions seem to have correlation coefficients with the
respiratory chamber gold standard values in the same range of the methods analyzing methane at
farm level. On the other side, this indirect method is based on a causative relation between the milk FA
profile and the rumen fermentation pattern. However, the need for gas chromatography analysis of
milk samples remains an obstacle to including EME traits in dairy cattle selection programs because of
the cost and manpower required.

The wide availability of milk Fourier-transform infrared (FTIR) spectra obtained from samples
collected for milk recording schemes motivated researchers to use these to devise proper calibrations
for EME traits. However, controversial results were reported [20–22] when milk FTIR spectra were
used for prediction of EME traits. In all these cases, the EME reference values were not obtained with
the gold standard respiratory chamber methods, but from analyses of air sampled near the nostrils
of cows in the practice conditions. On the other side, data obtained in respiratory chambers, even
though precise, referred to a small number of cows and diets and rearing conditions very different
from commercial milk yield to yield robust FTIR calibrations and even weaker validations. A large
effort for using respiration chambers reference data, developing milk FTIR calibrations and predicting
daily methane production, combined the results of 148 cows from research facilities of five European
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countries and, including in the equations also the constant, linear and quadratic Legendre polynomials
of days in milk, an R2 of calibration of 0.64 was obtained [23].

Taking a different approach, we used FA-derived EME estimates as reference values and obtained
FTIR calibrations with validation accuracies [24] similar to those of the original equations from
respiration chamber data (R2 0.47 and 0.54) [16]. In addition to the FTIR calibrations directly predicting
the five EME traits investigated (direct predictions), we also tested eight indirect methods based on
FTIR predictions of milk FAs, percentage cheese yield and daily milk yield (dMY, kg/d) with variable
results. It is clear that the number, representativeness, and accuracy of reference data remains the
major unsolved problem of any FTIR based EME prediction.

To give a further contribution to the knowledge of the complex relationships between rumen
fermentation, milk composition and absorbance properties and environmental impact of dairy cows,
in the present study, we use the information obtained from the FTIR calibrations and genetic estimates
of reference EME traits obtained from gas-chromatographic analysis of milk FA profile with the
aims of: (i) estimating the heritability of five EME traits obtained directly from milk FTIR spectra,
and of eight EME traits obtained indirectly from milk FTIR spectra; (ii) estimating the additive
genetic, phenotypic, herd and residual correlations between the five GC FA (fatty acids obtained by
gas-chromatography)-based reference and the 13 directly and indirectly FTIR-predicted EME traits;
and (iii) assessing their possible use for selective and non-selective purposes.

2. Materials and Methods

2.1. Animals, Samples and Analyses

Details of the animals and farms can be found in our previous study [17]. Briefly, we carried out
the study using milk samples taken during the evening milking of 1158 Brown Swiss cows, across
different parities and lactation stages, reared in 85 herds (15 cows per herd, with few exceptions)
located in Trento Province (northeastern Italian Alps), representing different dairy farming systems,
from traditional to modern ones.

Detailed FA profiles of all the milk samples were obtained by the gas-chromatographic (GC)
method described in detail in previous studies [25–27]. Briefly, FA methyl esters were prepared
using the direct extraction and alkali-catalyzed trans-methylation procedure. FA composition was
determined using a ThermoQuest gas chromatograph (Thermo Electron Corp., Waltham, MA, USA)
fitted with a flame-ionization detector and a high polar fused-silica capillary column (Chrompack
CP-Sil88 Varian, Middelburg, the Netherlands; 100 m, 0.25 mm i.d.; film thickness 0.20 µm). Inter- and
intra-assay coefficients of variation were also calculated using a butter reference standard (BCR 164;
Commission of the European Communities, Community Bureau of Reference, Brussels, Belgium) with
the analytical limit of detection set at 0.001% above that of the total amount of FAs. Milk FA composition
was expressed in grams per 100 g of total FAs. In conformity with van Lingen et al.’s [16] equations,
we examined the following FAs: 4:0 (butyric acid), 16:0iso (iso-palmitic acid), 18:1t10 (iso-oleic acid),
18:1t11 (vaccenic acid), 18:1c9 (oleic acid), and 18:2c9,c12 (linoleic acid).

2.2. Definition of EME Phenotypes Used as Reference

In accordance with Bittante et al. [17], the EME traits used here as reference values to build the
models of prediction from FTIR spectra (GC-Reference) were derived from GC measured FA profile
as follows:

• Methane yield: EME (g) per kg DMI (CH4/DMIFAGC), predicted from the FAs obtained by gas
chromatography according to van Lingen et al.’s [16] equation:

CH4/DMFAGC (g/kg) = 23.39 + 9.74 × C16:0iso − 1.06 × C18:1trans-10 + trans-11 − 1.75 × C18:2cis-9,cis12

where C16:0iso is iso-palmitic acid, C18:trans-10 + trans-11 is the sum of the iso-oleic and vaccenic
acids, and 18:2cis-9,cis-12 is the linoleic acid of milk, all expressed as % of the sum of all milk FAs.
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• Methane intensity-milk: EME (g) per kg CM (CH4/CMFAGC), predicted according to van Lingen
et al.’s [16] equation:

CH4/CMFAGC (g/kg) = 21.13 − 1.38 × C4:0 + 8.53 × C16:0iso − 0.22 × C18:1cis-9 − 0.59 × C18:1trans-10 + trans-11

where C4:0 is butyric acid, and C18:1cis-9 is oleic acid, all expressed as % of the sum of all milk FAs.
• Methane production: daily EME (g) per cow (dCH4), calculated as:

dCH4 (g/d) = CH4/CMFAGC × dCMY

• Methane intensity-cheese: EME (g) per kg of fresh cheese (CH4/CYCURD), calculated as:

CH4/CYCURD (g/kg) = dCH4/dCYCURD

where dCYCURD is the daily yield of cheese per cow (kg/d).
• Methane intensity-cheese solids: EME (g) per kg of cheese solids (CH4/CYSOLIDS), calculated as:

CH4/CYSOLIDS (g/kg) = dCH4/dCYSOLIDS

where dCYSOLIDS is the daily yield of cheese dry matter per cow (kg/d).

2.3. Infrared Spectra Acquisition and Editing

Details of the milk spectra acquisition, editing, calibration and validation procedures were
described in our previous study [24]. Briefly, within 20 h of milking, the full FTIR spectrum of
absorbance was retrieved from an FTIR spectrometer (FT 6000; Foss Electric, Hillerød, Denmark),
and 1060 absorbance values were recorded for each milk sample, covering the infrared wave numbers
ranging from 5000 × cm−1 (corresponding to a wavelength of 2.0 µm) in the near-infrared (NIR) or
short-wavelength infrared (SWIR) subdivision of the infrared region, through the mid-infrared (MIR)
region, to wave number 930 × cm−1 (corresponding to a wavelength of 10.8 µm) in the long-wavelength
infrared (LWIR) subdivision [28]. After centering and standardization, the spectra were not subjected
to any further mathematical pretreatment.

2.4. Prediction of EME Traits Directly from FTIR Milk Spectra

The simplest way of predicting EME traits from FTIR milk spectra is to consider the GC reference
EME traits as the dependent variables to be regressed on the FTIR absorbance spectra, considered
as independent variables. As each of the 5 GC-reference EME traits is obtained as the result of
equations combining different sources of information (4 quality traits, 4 daily yield traits and 6 milk
FA proportions), this approach tries to predict directly the product of equations, losing the details,
specificities and accuracies of each term of the equation. Separate models were fitted for the 5 EME
traits considered here. We used a Bayesian model (BayesB model) implemented in the BGLR package
of the R software, as previously described by Ferragina et al. [29]. Phenotypes were regressed on
standardized spectra covariates using the linear model:

yi = β0 +
∑1060

j=1
xijβj + εi

where β0 is an intercept,
{
xij

}
are standardized FTIR spectra-derived wavelength data ( j = 1, . . . , 1060),

βj are the effects of each of the wavelengths and εi are model residuals assumed to be iid (independent
and identically distributed) with normal distribution centered at zero with variance σ2

ε. The accuracy
of the model and the prediction equation were assessed with a 10-fold training-testing procedure [24].

The above-described Bayesian approach was used for direct (Direct IR) prediction of the 5 EME
traits, where “Direct” refers to the use of the 5 GC-Reference EME data as dependent variables regressed
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against the 1060 absorbance values of each FTIR spectrum (R2
CV: coefficient of determination of

cross-validation; RMSECV: root mean square error of cross-validation [24]):

- Predicted methane yield (CH4/DMIIR, g/kg; R2
CV: 0.49; RMSECV: 1.18);

- Predicted methane intensity-milk (CH4/CMIR, g/kg; R2
CV: 0.57; RMSECV: 1.17);

- Predicted methane intensity-fresh cheese (CH4/CYCURD-IR, g/kg; R2
CV: 0.55; RMSECV: 11.2);

- Predicted methane intensity-cheese solids (CH4/CYSOLID-IR, g/kg; R2
CV:0.47; RMSECV: 22.6);

- Predicted daily methane production (dCH4-IR, g/d; R2
CV: 0.36; RMSECV: 86.0).

2.5. Prediction of EME Traits Indirectly Based On FTIR Prediction of Other Milk Traits

An alternative to the previously described direct IR (infrared) predictions is not to predict from
milk spectra directly the products of GC reference equations, but to predict each term of equations and
then to obtain the product of equations based on IR-predicted terms. The same IR model previously
described for direct IR predictions was also applied to predict the 14 informative traits used for
calculating the reference EME traits (4 quality traits, 4 daily yield traits and 6 milk FA proportions) [24].
The reference milk fat and protein contents shown in Table 1 were obtained by the spectrometer through
the calibration equations pre-installed by the supplier company according to ICAR (International
Committee for Animal Recording) official methods [30], whereas the cheese yields, expressed as the
weight of fresh cheese (%CYCURD) or cheese solids (%CYSOLIDS) as percentages of the weight of the milk
processed, were obtained as previously described by Cecchinato et al. [31]. The dCY were obtained by
multiplying dMY by the corresponding %CY.

Table 1. Descriptive statistics for the milk quality and daily yield traits.

Item Mean SD CV, % 1

Quality traits, % 2

Milk fat 4.22 0.70 16
Milk protein 3.70 0.43 12
%CYCURD 14.96 1.89 13
%CYSOLIDS 7.21 0.93 13

Daily yield traits, kg/d 3

dMY 24.8 8.0 32
dCMY 25.8 8.2 32

dCYCURD 3.69 1.17 31
dCYSOLIDS 1.76 0.58 33

1 CV = coefficient of variation; 2 %CYCURD = wt of fresh cheese as % of processed milk; %CYSOLIDS = wt of cheese
solids as % of processed milk; 3 Daily yield traits: dMY = daily milk yield; dCMY = daily fat and protein corrected
milk yield, obtained multiplying dMY by a correcting factor (CF) where CF=0.337 + 0.116 ×milk fat (%) + 0.06 ×milk
protein (%); dCYCURD = daily production of fresh cheese per cow; dCYSOLIDS = daily production of cheese solids.

The IR predictions of informative traits were used to develop 8 “indirect” procedures for EME
prediction (r; Pearson correlations with the corresponding reference values [24]):

- CH4/DMIFAIR (r: 0.78), using van Lingen et al.’s [15] same equations as for calculating the GC
reference data, but with FAIR instead of FAGC;

- CH4/CMFAIR (r: 0.82), again using van Lingen et al.’s [15] equations, but with FAIR instead of FAGC;
- CH4/CYCURD-IR-IR (r: 0.67), using the same procedure as for the reference values, but substituting

the reference CH4/CMFAGC with its direct IR prediction (CH4/CMIR), and the measured %CYCURD

with its IR prediction;
- CH4/CYSOLIDS-IR-IR (r: 0.62), using the same procedure as for the reference values, but substituting

the reference CH4/CMFAGC with its direct IR prediction (CH4/CMIR), and the measured %CYSOLIDS

with its IR prediction;
- dCH4-CM-IR (r: 0.96), by multiplying the measured corrected milk yield (dCMY) by the direct-IR

methane intensity-milk (CH4/CMIR);
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- dCH4-CM-FAIR (r: 0.96), by multiplying the dCMY by the indirect-IR methane intensity-milk based
on FAIR (CH4/CMFAIR);

- dCH4-IR-IR (r: 0.65), by multiplying the IR-predicted daily corrected milk yield (dCMIR) by the
CH4/CMIR;

- dCH4-IR-FAIR (r: 0.63), by multiplying the dCMIR by the CH4/CMFAIR.

2.6. Databases for Genetic Analyses

Two databases were created for the genetic analyses: the first with the phenotypes, the second
with pedigree information.

An important issue was to avoid possible inflation of the genetic parameters as a result of
employing, for genetic analyses, the infrared predictions used to develop the calibration equations.
Every prediction used for equation calibration (training subsets) was excluded from genetic analyses.
The database was created using only the independent predicted phenotypes used for validation of
equations (testing sub-sets). As the training–testing procedure used 80% of the samples for training
and 20% for testing and was repeated 10 times randomly for each trait, about 10% of the milk samples
were never used in the testing procedure and were not included in the database of phenotypes for
genetic analyses, whereas in the case of samples used more than once for testing, the averages of these
phenotypes were included.

Data concerning the cows and herds were provided by the Superbrown Consortium of Bolzano
and Trento (Italy), and pedigree information was supplied by the Italian Brown Swiss Cattle Breeders
Association (ANARB, Verona, Italy). We included cows with phenotypic records available for the
investigated traits and all known ancestors. Each sampled cow had at least 4 generations of known
ancestors, and the pedigree file included 8845 animals. The number of sires was 1326; of these, 264 had
progeny with records in the data set (each sire having between 2 and 80 daughters).

2.7. Statistical Analysis

The statistical models used for estimating the genetic parameters of directly and indirectly
FTIR-predicted EME traits was described in detail in our previous study on the genetics of reference
EME traits [18]. For all traits, the model accounted for the non-genetic effects of herd/date (85 levels),
days in milk (Days in milk, DIM: class 1, <60 d; class 2, 60 to 120 d; class 3, 121 to 180 d; class 4, 181 to
240 d; class 5, 241 to 300 d; class 6, >300 d), and parity (1 to 4 or more).

The genetic determinism of the EME traits and their predictors (y) was investigated by analyzing
the data with the following hierarchical model:

y = Xb + Z1h + Z2a + e (1)

where y is the vector of phenotypic records with dimension n; X, Z1 and Z2 are the appropriate
incidence matrices for systematic effects (b), herd/date effects (h), and polygenic additive genetic
effects (a), respectively. The priors for b and the variance components were assumed to be flat.

A standard Bayesian approach was used to analyze all the models [18].
We estimated the phenotypic, additive genetic, herd/date and residual correlations between the

directly or indirectly predicted EME traits and the corresponding reference values by conducting a set
of bivariate analyses that implemented model [1] in its multivariate version.

In this case, the traits involved were assumed to jointly follow a multivariate normal distribution,
along with the additive genetic, herd/date and residual effects. The corresponding prior distributions
for these effects were:

a|G0, A ∼ MVN
(
0, G0,

⊗
A
)

h|H0, ∼ N
(
0, H0,

⊗
In

)
e|R0, ∼ N

(
0, R0,

⊗
Im

)
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where G0, H0 , R0 are the corresponding variance-covariance matrices between the traits involved
and a, h and e are vectors of dimension equal to the number of animals in the pedigree (n and m) times
the number of traits considered.

Marginal posterior distributions of all unknowns were estimated using the Gibbs sampling
algorithm. The TM program (http://snp.toulouse.inra.fr/~alegarra) was used for all Gibbs sampling
procedures. The chain lengths and burn-in period were assessed by visual inspection of the trace plots.
After some preliminary analyses, chains of 850,000 samples were kept, and the burn-in period was set
at 50,000, after which every 100th sample was retained.

The posterior mean was used as the point estimate for all parameters. The lower and upper
bounds of the highest 95% probability density regions (HPD95%) were obtained from the estimated
marginal densities of heritability estimates. For the phenotypic, genetic, herd and residual correlations,
in addition to calculating the mean of each marginal posterior distribution, we also estimated the
probability of each mean being greater than 0 when the mean was positive, or lower than 0 when the
mean was negative (p). We considered all estimates with p greater than 95% as “relevant” correlations.

Intra-herd heritability (h2) was computed as:

h2 =
σ2

a

σ2
a + σ2

e

The proportion of the total variance due to herd/date (hherd) was computed as:

hherd =
σ2

h

σ2
a + σ2

h + σ2
e

where σ2
a, σ2

h and σ2
e are the additive genetic, herd/date and residual variances, respectively.

We also computed the phenotypic (rP), additive genetic (rG), herd/date (rH) and residual (rE)
correlations between a given predicted trait and its corresponding reference trait.

3. Results

3.1. Variance Components, and Estimates of Heritability and Herd Incidence

Point estimates of the marginal posterior densities for the additive genetic, herd/date and residual
variances were lower in the case of the direct IR and indirect IR predictions than the GC reference values
for both methane yield and methane intensity—milk (Table 2). In the case of methane intensity—fresh
cheese, methane intensity—cheese solids (Table 3), and daily methane production (Table 4), there was
greater variation in the variances according to each trait.

The intra-herd heritabilities (h2) of the traits also varied according to the proportions of the
variance components in the different cases. For methane yield and intensity—milk, the direct IR
predictions were slightly less heritable than the GC reference phenotypes, whereas the indirect FAIR
predictions were more heritable. About 10 percentage points separated the heritabilities of direct IR
and of indirect FAIR (fatty acids obtained by infrared spectroscopy) predictions, in favor of the latter,
for both EME traits.

We obtained different results for methane intensity—fresh cheese and methane intensity—cheese
solids (Table 3). In the case of the former EME trait, heritability was greater for the infrared predictions
than for the GC reference values, whereas the reverse was found for CH4/CYSOLIDS. For both traits,
better results were obtained with the direct IR methods than with the indirect IR method.

In the case of daily methane production per cow, the heritability estimates of all the infrared-based
predictions were greater than the GC reference phenotype (Table 4). The variability in heritability was
greater for the predicted traits that the GC reference traits when expressed as the standard deviation,
but smaller in terms of the variability coefficient.

http://snp.toulouse.inra.fr/~alegarra
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Table 2. Estimates of additive genetic (σ2
a), herd/date (σ2

h), and residual (σ2
e) variances, heritability,

and herd/date effect of GC reference values based on GC FA profile, and of direct IR and indirect IR
predictions of methane yield and methane intensity milk based on milk FTIR spectra, and additive
genetic (rG), herd (rH), residual (rE), and phenotypic (rP) correlations between GC reference and IR
predicted methane emission traits 1.

Item

Methane Yield Methane Intensity Milk

GC Reference
CH4/DMI

Direct IR
CH4/DMIIR

Indirect IR
CH4/DMIFAIR

GC Reference
CH4CM

Direct IR
CH4CMIR

Indirect IR
CH4CMFAIR

Cows, N 958 958 958 958 958 958
Descriptive statistics:

Mean 21.30 21.34 21.34 14.18 14.19 14.18
SD 1.61 1.23 1.13 1.77 1.46 1.33

Variances:
σ2

a 0.204 0.114 0.135 0.228 0.122 0.162
σ2

h 1.819 0.952 0.859 1.486 0.902 0.826
σ2

e 0.539 0.367 0.250 0.963 0.642 0.443
Heritability:

Mean 2 0.274 0.237 0.351 0.191 0.160 0.267
HPD95 3 0.08; 0.46 0.05; 0.42 0.11; 0.58 0.002; 0.37 0.01; 0.32 0.07; 0.46

Herd/date effect:
Mean 2 0.706 0.661 0.687 0.551 0.537 0.574
HPD95 3 0.63; 0.77 0.58; 0.73 0.61; 0.75 0.46; 0.63 0.44; 0.62 0.48; 0.66

Correlations 4 with GC-Reference:
rP - 0.73 0.73 - 0.72 0.72
rG - 0.45 0.60 - 0.88 0.73
rH - 0.93 0.92 - 0.92 0.93
rE - 0.22 0.16 - 0.38 0.38

1 Heritability defined as intra-herd/date heritability h2 = σ2
a /(σ2

a + σ2
e ); herd/date effect defined as hherd =

σ2
h/(σ2

a + σ2
h + σ2

e); Direct FTIR predictions are based on specific calibrations of FTIR milk spectra, whereas indirect
ones are based on FTIR predictions of the concentration in milk of 6 informative fatty acids used to estimate methane
emission traits through equations from a meta-analysis of data from dairy cows in respiration chambers [17];
2 Mean = mean of the marginal posterior distribution; 3 HPD95 = bounds of the 95% high posterior density interval;
4 Boldface indicates correlations with >95% of posterior probability accumulated above 0 (positive estimates) or
below 0 (negative estimates).

Table 3. Estimates of additive genetic (σ2
a), herd/date (σ2

h), and residual (σ2
e) variances, heritability,

and herd/date effect of GC reference values based on GC FA profile, and of direct IR and indirect IR
predictions 1 of methane intensity fresh cheese and cheese solids based on milk FTIR spectra; and
additive genetic (rG), herd (rH), residual (rE), and phenotypic (rP) correlations between GC reference
and IR-predicted methane emission traits 1.

Item
Methane Intensity Fresh Cheese: Methane Intensity Cheese Solids:

GC Reference
CH4/CYCURD

Direct IR
CH4/CYCURD-IR

Indirect IR
CH4/CYCURD-IR-IR

GC Reference
CH4/CYSOLIDS

Direct IR
CH4/CYSOLIDS-IR

Indirect IR
CH4/CYSOLIDS-IR-IR

Cow, N 931 931 857 952 952 873
Descriptive statistics:

Mean 100.1 100.0 99.4 208.5 207.9 206.9
SD 16.4 13.4 14.7 30.8 23.0 27.7

Variances:
σ2

a 18.7 15.7 27.1 73.1 28.1 46.1
σ2

h 152.4 90.0 76.9 506.9 252.7 268.2
σ2

e 86.0 54.5 100.9 318.6 179.7 393.3
Heritability:

Mean 2 0.178 0.223 0.211 0.187 0.135 0.105
HPD95 3 0.01; 0.34 0.02; 0.41 0.01; 0.40 0.01; 0.38 0.01; 0.29 0.01; 0.21

Herd/date effect:
Mean 2 0.584 0.559 0.373 0.560 0.545 0.376
HPD95 3 0.49; 0.66 0.47; 0.64 0.28; 0.46 0.47; 0.64 0.45; 0.63 0.28; 0.46

Correlations 4 with GC-Reference:
rP - 0.75 0.62 - 0.66 0.52
rG - 0.93 0.87 - 0.63 0.63
rH - 0.94 0.92 - 0.89 0.90
rE - 0.39 0.25 - 0.35 0.14

1 Heritability defined as intra-herd/date heritability h2 = σ2
a /(σ2

a + σ2
e ); herd/date effect defined as hherd =

σ2
h/(σ2

a + σ2
h + σ2

e); Direct FTIR predictions are based on specific calibrations of FTIR milk spectra, whereas indirect
ones are based on FTIR predictions of methane intensity milk (see Table 2) and FTIR predictions of percentage yield
of fresh cheese and of cheese solids; 2 Mean = mean of the marginal posterior distribution; 3 HPD95 = bounds
of the 95% high posterior density interval; 4 Boldface indicates correlations with >95% of posterior probability
accumulated above 0 (positive estimates) or below 0 (negative estimates).
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Table 4. Estimates of additive genetic (σ2
a), herd/date (σ2

h), and residual (σ2
e) variances, heritability,

and herd/date effect of GC reference values based on GC FA profile, and of direct IR and indirect IR
predictions 1 of daily methane production based on milk FTIR spectra; and additive genetic (rG), herd
(rH), residual (rE), and phenotypic (rP) correlations between GC reference and IR predicted methane
emission traits 1.

Item

Methane Production (g/d):

GC
Reference Direct IR Measured Milk Yield (dCM)

×

IR Predicted Milk Yield (dCMIR)
×

dCH4 dCH4-IR CH4/CMIR CH4/CMFAIR CH4/CMIR CH4/CMFAIR

Cows, N 949 949 850 850 850 850
Descriptive statistics:

Mean 361 358 361 362 358 359
SD 110 67 107 109 70 71

Variances:
σ2

a 786 412 960 1081 663 741
σ2

h 4679 1519 4542 4729 1547 1649
σ2

e 4762 1679 4358 4529 1571 1631
Heritability:

Mean 2 0.142 0.197 0.180 0.193 0.300 0.312
HPD95 3 0.01; 0.29 0.01; 0.37 0.01; 0.34 0.03; 0.35 0.09; 0.50 0.09; 0.53

Herd/date effect:
Mean 2 0.454 0.418 0.457 0.454 0.406 0.407
HPD95 3 0.36; 0.54 0.32; 0.50 0.36; 0.54 0.36; 0.54 0.31; 0.49 0.31; 0.49

Correlations 4 with GC-Reference:
rP - 0.54 0.95 0.95 0.53 0.55
rG - 0.42 0.98 0.96 0.22 0.29
rH - 0.82 0.98 0.98 0.83 0.84
rE - 0.31 0.91 0.92 0.31 0.34
1 Heritability defined as intra-herd/date heritability h2 = σ2

a /(σ2
a + σ2

e ); herd/date effect defined as hherd =
σ2

h/(σ2
a + σ2

h + σ2
e); Direct FTIR predictions are based on specific calibrations of FTIR milk spectra, whereas indirect

ones are based on direct (CH4/CMIR) and indirect (CH4/CMFAIR) FTIR predictions of the methane intensity milk
(see Table 2) multiplied for measured or FTIR predicted daily milk yield; 2 Mean = mean of the marginal posterior
distribution; 3 HPD95 = bounds of the 95% high posterior density interval; 4 Boldface indicates correlations with
>95% of posterior probability accumulated above 0 (positive estimates) or below 0 (negative estimates).

The herd/date variance component was always very large and often similar to or greater than the
residual variance, so that the contribution of the herd/date effect to total phenotypic variance varied
from 37% to 71%. Methane yield (Table 2) was the most affected by herd/date, followed by the methane
intensities (Tables 2 and 3), and then by methane production (Table 4). The herd/date effects on the
direct and indirect EME trait predictions were similar to those on their corresponding GC reference
traits, with the exception of the indirect IR, IR predictions of methane intensity—fresh cheese and
methane intensity—cheese solids, which exhibited lower herd/date effects than in the case of the direct
IR and reference predictions due to their larger residual variances.

3.2. Phenotypic, Additive Genetic, Herd and Residual Correlations

Tables 2–4 show the point estimates of the marginal posterior densities of the phenotypic,
additive genetic, herd and residual correlations between the infrared-predicted EME traits and their
corresponding reference values. The two indirect predictions of methane production obtained by
multiplying the measured daily milk yield (dCMY) by the direct IR- or indirect FAIR-predicted
methane intensity—milk presented very high (0.91 to 0.98) phenotypic, genetic, herd/date and residual
correlations with their corresponding reference methane production values, obtained by multiplying
the dCMY by the GC reference methane intensity-milk. This is because the measured dCMY is present
in both EME traits and is characterized by a much larger variability coefficient respect to the two
methane intensity—milk traits. All the other predictions obtained directly and indirectly from milk
FTIR spectra presented moderate–high (0.52 to 0.75) phenotypic correlations with their corresponding
reference values (Tables 2–4), more variable (0.22 to 0.93) genetic correlations, high (0.82 to 0.94)
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herd/date correlations, and low–moderate (0.16 to 0.39) residual correlations. The high variability in
the genetic correlations was due to the fact that, unlike the two methane production values obtained
from the measured trait, the two values obtained from IR-predicted daily milk yield had very low
(0.22–0.29) genetic correlations with the reference values (Table 4).

4. Discussion

The importance of different EME traits for the genetic improvement of dairy cattle to mitigate
climate change depends on their overall effect and on the cost/revenue ratio. On the one hand, a simple,
rapid, precise and inexpensive method of prediction at the population level needs to be available,
while on the other hand, the relationships with the overall selection goals of the population in question
must be taken into account. From the results of nine experiments carried out in respiration chambers,
van Gastelen et al. [32] concluded that calibrations for prediction of EME traits based on milk fatty
acid profile have a greater potential (+0.01 to +0.07 in the R2 according to the predicted trait) than
those based on milk FTIR spectra. They also concluded that both models are robust but that additional
measurements are needed for improving accuracy and robustness of both methods. Infrared prediction,
on the other side, is the simplest, fastest and least expensive among the available methods for indirectly
predicting the traits of concern to the dairy cattle industry. These predicted traits could be used at
population level at very low additional cost, as they could be provided for the animals registered in milk
recording schemes for which the composition of milk is routinely analyzed by FTIR spectrometry [31].
The heritability estimates of the predictions of EME traits obtained in this work fall within the range of
the 36 different estimates reported in 10 studies on dairy cows that were the subject of a meta-analysis
proposed by Brito et al. [19].

As with every other type of indirect prediction, the effectiveness of infrared predictions should
be evaluated on the basis of their genetic parameters. Comparing the heritability of predicted traits
with their corresponding reference traits is clearly important, but it should be borne in mind that
they are affected by the number of observations used to establish the calibration equations and to
validate them [33]. Moreover, they depend on the repeatability and reproducibility of the gold standard
analysis employed.

Heritability is not, on its own, a sound evaluation of the effectiveness of substituting the reference
trait with the predicted trait for genetic selection as it does not provide any information on the
relationship between the reference and the predicted trait [34]. It is only with the genetic correlations
between the measured and predicted values that a clear picture of the traits of concern emerges.
The major limit of EME trait predictions is the unsolved problem of the reference method. In fact,
the gold standard method based on respiration chambers, as previously said, is precise, but can
generally be applied on few cows and few diets, and the chamber conditions are very different from
that of commercial farms. As seen, the prediction methods that can be used at population level for
measuring the ratio between methane and carbon dioxide near the head of cows are much less precise
and present correlations with the gold standard not much different from those characterizing the
indirect prediction method based on milk FA profile. This last method is characterized by strong
causal relationships with rumen fermentations and the ability to capture and quantify the expected
environmental effects of a cow’s feeding, parity and lactation stage [17]. In any case, the results
obtained need to be treated with great prudence and comparisons with other reference data should
be made.

4.1. Infrared Prediction of Methane Yield per Unit of Dry Matter Consumed

The methane yield estimated from this dataset using the GC reference method (h2 = 0.274; Table 2)
showed that this EME trait had the highest intra-herd heritability, which was slightly higher than
the average value (h2 = 0.23 ± 0.03), summarized by Brito et al. [19]. However, the usefulness of the
infrared prediction of this trait is questionable because, even though the heritability is high, the genetic
correlation with the values obtained using the reference method is only moderate (0.45–0.60; Table 2).
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In any case, if GC FA profile is not available, indirect IR prediction of the proportions of informative FAs
in the milk fat and the use of van Lingen et al.’s [16] equation seems preferable to direct IR prediction
of methane yield from milk FTIR spectra as the heritability is higher and the genetic correlation with
the GC reference trait is stronger.

In terms of its application in the dairy chain, methane yield seems to be more useful for non-genetic
purposes, e.g., for evaluating the ecological footprints of different feeding regimes within different
dairy systems and farms (rH 0.92–0.93, Table 2). It worth noting that the dairy system, and specifically
feeding regime, affects the phenotypic expression of all EME traits [17], but it influences the heritability
value only of CH4/DMI [18]. This is further confirmed by the very high herd/date effect exhibited by this
trait, which shows it to be highly dependent on the environment, management and feeding practices of
individual farms, and by the high herd/date correlation between the prediction and reference methods.
Moreover, its usefulness for the genetic improvement of dairy cows is hampered by the lack of daily
feed intake records for individual animals at the field level, precluding estimation of actual daily
enteric GHG emissions, and because of poor knowledge of the relationship between this trait and feed
intake and efficiency of utilization at the individual animal level.

4.2. Infrared Prediction of Methane Intensity per Unit of Milk or Cheese Produced

With respect to the contribution made by EME to the dairy industry’s overall environmental
impact, reducing methane intensity per unit of dairy product may be considered the ultimate goal.
The main determinant of the dairy chain’s size and impact is the market’s demand for fluid milk
and/or other dairy products, whereas, given the market’s needs, the number of cows and farms needed
depends on their respective levels of productivity and size.

In this study, we found the heritability of methane intensity—milk to be slightly lower than
that of methane yield, and almost identical to the average value reported by Brito et al. [19] in their
meta-analysis. On average, infrared predictions of this trait have similar heritabilities and favorable
genetic correlations with the values obtained using the GC reference method. Again, the Indirect
FAIR method returns a greater heritability than the direct IR method, but the latter’s lower value is
compensated for by a greater genetic correlation with the reference values, so that no one method has a
clear advantage over the other.

A very preliminary trial investigating the potential of predicting methane intensity—milk using
milk FTIR spectra was carried out by Dehareng et al. [20] using a different reference method. Instead
of using a respiration chamber, they released an SF6 tracer into the rumen then analyzed the air
between the nostrils and the noses of 11 cows. The results were encouraging, so the authors increased
the number of cows to 142 and made 446 air analyses [21]. The resulting heritability coefficient of
methane intensity (after logarithmic transformation) estimated at the population level was very similar,
on average, to our direct IR predictions; they also found that heritability increased over the course of
lactation [35]. Denninger et al. [36] found that cows categorized as high and low emitters on the basis
of FTIR predictions continue to maintain emission differences between the two groups with time, both
in terms of FTIR predicted and of GreenFeed measured EME values.

For countries like Italy and some other European countries, where the dairy chain is predominantly
oriented to cheese production rather than fluid milk, the final goal should be to reduce methane
intensity-cheese, leaving aside any differences in the cheese-making efficiencies of milk from different
dairy systems, farms, breeds and individual animals within breed [37]. When based on the GC
reference method, the heritability of methane intensity—cheese, whether fresh cheese or cheese solids,
is lower than that of fluid milk (Tables 2 and 3). It should be noted that, with respect to IR predictions,
direct IR prediction of methane intensity-fresh cheese has a favorable heritability (0.267) and good
genetic correlations (0.93) with the reference values. This method is, therefore, probably preferable to
the indirect IR-IR method with respect to this trait, and to both the methods for predicting methane
intensity-cheese solids (Table 3).
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4.3. Infrared Prediction of Daily Methane Production per Cow

The daily methane production of individual cows may seem to be the most suitable EME trait for
the genetic improvement of dairy populations, and indeed it has often been proposed as the main
selection goal for mitigating climate change [38]. There are, however, two major obstacles to using this
trait as a selection goal: one theoretical, and one practical.

The first obstacle to the use of daily methane production in selective breeding is the positive
genetic correlation with daily milk and cheese yields [18,39,40]. This obviously means that including
this trait, with a negative sign, in a selection index together with daily milk/fat/protein yields would
reduce the efficiency of the selection and slow down the genetic improvement of milk-to-cheese traits.
In a large survey on commercial dairy farms cows with low methane production, as identified through
milk FTIR spectra, daily methane production was showed to be associated with lower milk yield,
lower milk quality, suboptimal reproduction and health performance, higher culling rate and lower
economic gross margin per cow and per liter milk [41]. Methane intensity, on the other hand, exhibited
much smaller, non–relevant correlations with milk production [38,42,43].

The second obstacle is the fact that a dairy cow’s daily methane production depends, first of all,
on the quantity (and quality) of the feed ingested, which in turn depends, in particular, on the cow’s
size and production level [44]. Trying to directly predict the daily methane emission of a cow using the
FTIR spectrum of a sample of the milk it produces and without any other information is, in the first
place, like trying to estimate a cow’s size, production level and feed intake from the characteristics
of its milk. This explains the modest validation performance of the direct calibration of methane
production from FTIR spectra [24]. The fact that the heritability of predicted methane production
is greater than that of the reference values could be interpreted as due to the good repeatability of
infrared milk spectra [34], and to the fact that this heritability could have more to do with that of the
infrared absorbance spectrum in itself [28] than that of the reference trait. This interpretation finds
further support in the modest genetic, but also phenotypic, correlations between the predicted and GC
reference values.

An approach similar to that taken in this study was previously used by Kandel et al. [45], who
adopted the four prediction equations proposed by Chilliard et al. [46], and was probably the first study
to look at the possibility of predicting EME traits from the milk fatty acid profile for genetic purposes.
These equations, which were not obtained in a respiration chamber, were derived from a single
experiment on cows fed the same diet, which included different linseed products. Kandel et al. [45]
used only the equations based on FAs de novo synthesized in the udder (saturated linear chain even
FAs, 6:0 to 16:0) because they are very easily predicted by FTIR, but it is now known that these FAs tend
to overestimate CH4 production and are not easily applicable to different conditions [13,47]. In any
case, their direct IR predictions of methane production had moderate–medium heritability values, but
the genetic correlations between the reference and predicted values were not reported, so the results
should be treated with caution.

As expected, the situation in our study did not improve when we substituted the direct
FTIR prediction of methane production with contemporary predictions of milk yield and methane
intensity—milk, and their values multiplied by each other (Table 4). As we have seen, the situation
changes completely when measured milk yield is multiplied by predicted methane intensity—milk
(Table 4): the heritabilities of these indirect predictions are still greater than those of the GC reference
values, but their genetic (and phenotypic, and herd/date and residual) correlations are close to unity.
This has to do with the fact that milk yield has a much greater variability than CH4/CMIR, and it was
used both in GC reference and IR-predicted traits. Similar good estimates of daily methane production
have been obtained by Engelke et al. [48] using FTIR predicted fatty acids and daily corrected milk
yield. It makes no practical sense to try to predict a cow’s milk production from an infrared spectrum
of its milk when the measured yield is available.

It worth noting that Vanlierde et al. [21] improved (R2
CV = 0.70) the preliminary FTIR prediction

of methane production obtained by Dehareng et al. [20] by increasing the number of cows sampled,
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and including a third order DIM function in the prediction equation, thereby indirectly taking into
account the variation in daily milk yield; the heritability coefficient of methane production they
found with this method was intermediate between our direct IR predictions and those obtained by
multiplying dMY by methane intensity-milk [35]. This genetic parameter was found to be relatively
constant during lactation.

4.4. Use of FTIR Predictions of EME Traits in Genetic Improvement of Dairy Cattle

As seen, the gold standard EME phenotypes from respiration chambers cannot be obtained on a
large number of cows and in field conditions. The predictions of gold standard EME traits obtainable
on large numbers of cows in conditions similar to the practice are based on two different approaches:
the analysis of the ratio between CH4 and CO2 of the air sampled (for few minutes, a few times per
day) near the nostrils of the cows (“sniffers” in automatic feeding or milking stations, portable laser
detectors, portable infrared gas detectors, etc.), or the analysis of the fatty acid profile of milk as an
indicator of rumen fermentations [3,12]. None of these methods actually measures EME produced by
cows because they do not measure the quantity of gas daily emitted by cows, but they are calibrated,
with variable accuracy, on gold standard data obtained in respiration chambers [12,13]. Even though
these methods are feasible at farm level, they require expensive instrumentations (air analyzers) or
milk sampling and laborious analyses (fatty acid profile). The predictions based on FTIR spectra of
milk samples, on the contrary, could be obtainable on all samples analyzed during milk recording
on the entire recorded dairy cattle population at every test date with the only additional cost the
calibration equations and their periodic maintenance. The FTIR predictions based on gold standard
respiration chambers data [23] are based on a limited number of precise phenotypes recorded in an
environment far from the practice. On the other hand, the predictions based on predictions obtained
on commercial farms, like those used in the present study or obtained from air analyses, could rely
on much more numerous and cheap reference values, but are predictions of predictions. The EME
predictions (based air analysis or milk fatty acid profiles) are often scarcely correlated among them [8]
or can yield biased results [49], whereas the FTIR predictions based on different reference methods are
not yet compared. The improvement of accuracy of FTIR predictions of EME traits, their validation
with respiration chambers data and their comparison represent important fields for future research.

In any case, the rapid availability of a very large number of EME predictions with negligible
costs represents an opportunity that dairy sector cannot loose, also because of the ethical commitment
toward society and environment. Even though their accuracy could be modest, their heritability and
genetic correlations with reference data, as found also in this study, seem to indicate their effective
possible contribution to the mitigation of global climate change. The last question, representing a
limitation to their inclusion in selection indice’s is the knowledge of the genetic correlations between
EME traits and the other traits included in selection indices (or better, objective of selection).

In previous research on the genetics of EME predictions based on milk fatty acid profile [18],
we concluded that daily milk and cheese yield traits were all, as expected, highly positively (unfavorably)
correlated with estimated daily methane production from the phenotypic, genetic, herd and residual
point of view. In contrast, milk production and quality traits were negatively (favorably) correlated
with the estimated methane yield and intensities [18]. In this study on milk FTIR spectra-based
predictions, we estimated genetic correlations with production traits that showed patterns similar to
those based on milk fatty acid profile (data not shown). The overall economic impact of inclusion of
EME traits on selection indices is dependent on which EME trait is included in the selection program.

In particular, on the base of this study, it appears that methane yield per kg of dry matter ingested
by the cows can be easily predicted, and the best results are not obtained through direct prediction from
milk FTIR spectra, but rather from an indirect method based on the prediction of some informative
FAs in milk fat, i.e., a prediction from a prediction. In any case, this EME trait seems to have greater
value for non-genetic purposes, especially for evaluating feeding practices.
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Reducing methane intensity per unit of milk produced should be the major objective of genetic
mitigation of the contribution made by cows to climate change at the level of the overall dairy chain,
provided that fluid milk is the main product. In this case, both direct FTIR prediction and indirect
prediction through informative FAs should be considered as they are highly correlated with the
predictions based from milk fatty acid profile. If the dairy chain operates mainly within a market
requiring large amounts of cheese, methane intensity could be directly predicted per kg of fresh cheese
produced with good prospects. The inclusion of these EME traits in selection indices is favored also by
the small but favorable correlations with cow’s productive traits [18].

Lastly, daily methane production per cow, although seemingly attractive, does not appear to be a
feasible objective of selection due to positive (unfavorable) correlations with milk production [39] and
low genetic correlations between the measured and predicted values [18]. However, if this EME trait
has to be obtained, a much better option appears to be multiplying the measured milk yield by the
predicted methane intensity—milk, instead of predicting directly the daily methane production.

It is worth noting that the inclusion of FTIR-based predictions in selection programs is favored also
by the fact that the new phenotype could be simply treated as a new additional trait in the databases of
production and quality traits obtained during milk recording operations [50]. Therefore, it would be
very easy to estimate the breeding values at population levels with few modifications of the statistical
procedures normally used. The contribution of the genome-wide approach to selection should be
better evaluated [51], but it seems rather simple from the technical point of view.

5. Conclusions

In conclusion, within all the limits of this field of research, from this study, it appears that FTIR
of milk spectra could yield predictions that are heritable and genetically correlated with EME traits
estimated on the basis of milk fatty acid profile. This, coupled with the high throughput, rapidity, low
cost and ease of use of the novel phenotypes, makes FTIR predictions candidates to be rapidly included
in the selection programs of dairy cows’ populations. Further research on large populations at the field
level and experimental validation with other direct EME prediction methods, and particularly with
respiration chamber balances, is required to test these preliminary results in different conditions and
with different breeds.
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