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Abstract 14 

Milk samples from 1,264 cows in 85 farms were authenticated for different farming-systems 15 

using a 10-fold cross-validated linear-discriminant-analysis using Fourier-transform infrared spectra 16 

(FTIRS) and gas-chromatographic fatty-acid (FA) profiles. FTIRS gave correct classification 17 

greater than FAs (97.4% vs. 81.1%) during calibration, but slightly worse in validation (73.5% vs 18 

77.3%) and their combination improved the results. All milk samples were processed into ripened 19 

model-cheeses, and analyzed by near-infrared-spectrometry (NIRS), by proton-transfer-reaction 20 

time-of-flight mass-spectrometry for their volatile organic compound (VOCs) fingerprint and by 21 

panel sensory profiling (SENS). Farming-system authentication on cheese samples was less 22 

efficient than on milk, but still possible. The instrumental methods yielded similar validation 23 

results, better than SENS, and their combination improved the correct classification rate. The 24 

efficiency of the different technics was affected by specific farming systems. In conclusion, dairy 25 

products could be discriminated for farming-systems with acceptable accuracy, but the methods 26 

tested differ in sampling procedure, rapidity and costs. 27 

Key-words: food origin discrimination; food authentication; food quality monitoring, volatile 28 

organic compound; silage feeding. 29 
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1. Introduction 30 

Consumers now demand greater transparency concerning the origin of their foods. As an 31 

example, in the case of dairy products this includes access to information on the diets of cows and 32 

the systems in which animals are farmed (Abbas et al., 2018; Cossignani et al., 2019). The 33 

authentication of food has considerable importance (Valdes et al., 2018; Esteki et al., 2018; Medina 34 

et al., 2019), especially when it comes to labeled products, as the raw materials used in 35 

manufacturing them have to conform to regulatory specifications. Certain farming practices have a 36 

significant effect on the quality of milk and dairy products (Martin et al., 2005; Bovolenta et al., 37 

2014; Bergamaschi et al., 2015). In recent years, several sources of information have been used to 38 

discriminate between foods obtained from different farming systems. For example, Coppa et al. 39 

(2015) showed that the fatty acid (FA) profile can be used to discriminate milk from fresh forage 40 

feeding systems. Plant secondary metabolites, such as terpenes and carotenoids, have been used to 41 

discriminate between pasture-derived and cereal-derived milk and cheese (Slots et al., 2009; 42 

Tornambé et al., 2006). However, the traditional reference methods for analyzing milk and cheese 43 

components to provide information useful for farming system traceability, e.g. gas chromatography 44 

(GC; Capuano et al., 2014; Coppa et al., 2015) and sensory analyses (Bérodier et al., 1997; Martin 45 

et al., 2005) are expensive and time consuming, require highly skilled operators, and are not easily 46 

adapted to online monitoring and routine analysis on a large scale. Hence, the new challenge is to 47 

develop rapid, low-cost screening techniques able to authenticate food products with characteristics 48 

that meet consumer expectations. Fourier transform infrared (FTIR) spectroscopy, near infrared 49 

(NIR) spectroscopy, and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) 50 

for analyzing, respectively, liquids (milk), solids (cheese) and volatile organic compounds (VOCs) 51 

are acknowledged tools for meeting this challenge. These techniques are characterized by high 52 

throughput and the ability to rapidly collect a large amount of information that can be used to 53 

fingerprint many food samples. Needing no sample preparation, they are also non-destructive, 54 
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simple, and rapid. As an example, in the dairy industry, specific FTIR calibrations have been 55 

developed for monitoring many of the chemical and technological characteristics of milk (ICAR, 56 

2012; Bittante, Penasa, & Cecchinato, 2012). Recently, NIR has been used also to discriminate 57 

some cheese varieties (Lucas, Andueza, Ferlay, & Martin, 2008). PTR-ToF-MS has been used to 58 

determine the volatile fingerprint of a wide number of model cheeses in order to study individual 59 

phenotypic (stage of lactation, parity, and milk yield) and genetic factors (Bergamaschi et al., 2015 60 

and 2016a).  61 

The ability to discriminate food products of animal origin depends on several sources of 62 

variation, such as the animals’ genetics, herd management, farming system, food manufacturing 63 

process, and ripening conditions. So far, no-one has compared the different sources of information 64 

available for authenticating milk and cheese derived from different farming systems on a large scale 65 

and on the same food samples and using the same statistical method. Moreover, validation has not 66 

always been carried out on samples different from those used to define the discriminant analysis 67 

functions. 68 

The aim of the present study was to compare the effectiveness of different sources of 69 

information for discriminating foods origin in relation to the farming system of production using 70 

milk and cheese as a case study.  We compared the sources of information most commonly used to 71 

distinguish milk (FTIR spectra, and fatty acid profiles by GC) and cheeses (NIR spectra, flavor 72 

fingerprinting by PTR-ToF-MS, and sensory description by a trained panel) according to farming 73 

system. Our specific objectives were: a) to compare all 5 sources of information using a large 74 

number of milk and cheese samples from several farms; b) to use cheeses to compare the 3 latter 75 

sources of information produced from the same milk samples used to compare the two former 76 

sources of information; c) to standardize all the sampling, processing and analyzing procedures in 77 

order to minimize potentially confounding sources; and d) to adopt the same statistical method, 78 

based on cross-validation, to analyze all sources of information.  79 

2. Material and methods  80 
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2.1. Experimental setup 81 

The present study is part of the Cowability-Cowplus project widely described in Bittante et 82 

al. (2015) and Stocco et al. (2017). Briefly, we sampled a total of 1,264 Brown Swiss cows from 85 83 

herds located in Trento Province (northeastern Italian Alps). The farming systems were classified 84 

into 5 groups: the first two groups comprised cows reared in traditional Alpine dairy systems (tied 85 

cows milked at stalls, fed mainly hay and some compound feed), but differing according to whether 86 

or not automatic feeders (AF) were used to distribute the compound feed at the stall; the third 87 

comprised animals kept in modern dairy systems (loose-housed in larger, modern facilities with 88 

milking parlors, and with feedstuffs distributed separately in the mangers and without the use of 89 

total mixed rations (TMR). The fourth and fifth dairy systems were modern farms using TMR, 90 

without or with corn silage, respectively. In order to devise appropriate strategies for authenticating 91 

dairy systems, we also merged the 5 original groups into 3. The two groups of traditional systems 92 

(with and without AF) were pooled into one, and the modern dairy systems were reclassified 93 

according to whether or not the diets included silages (the modern group using hay and compound 94 

feed was pooled with that using TMR without silage). The individual cows presented different 95 

numbers of lactation (1 to 5), days in milk (5 to 449), and daily milk yields (24.3±7.9 kg×d−1) 96 

(Table 1).  97 

2.2. Milk sampling 98 

On a given day, only 1 herd (generally 15 cows per herd) was sampled during the evening 99 

milking. Two milk subsamples were taken from each cow and immediately refrigerated at 4 °C 100 

without any preservative. One subsample (50 mL) was taken to the milk quality laboratory of the 101 

Breeders Federation of the Province of Trento (Trento, Italy) for chemical composition analysis. 102 

The other subsample (2,000 mL) was taken to the cheese-making laboratory of the Department of 103 

Agronomy, Food, Natural Resources, Animals and Environment of the University of Padova 104 

(Legnaro, Italy); an aliquot (1,500 mL) of this subsample was used for cheese production, and the 105 



6 
 

remainder was analyzed for its fatty acid profile. All samples were processed for analysis and model 106 

cheese manufacture within 20 h of collection (Cecchinato and Bittante, 2016). 107 

As this study summarizes the results of a large research project and compares 5 different 108 

sources of information that have been used for characterizing the milk and cheese samples in 109 

relation to farming systems, animal’s genetics and health, environmental impact, etc., it is not 110 

possible to describe in great detail each of the analytical method used, but for each one the most 111 

important issues are presented and a specific reference article, easily accessible, with all the details 112 

is cited.  113 

2.3. FTIR analysis  114 

All individual milk samples were analyzed by Fourier-transform infrared spectroscopy 115 

(MilkoScan FT6000, Foss, Hillerød, Denmark) over the spectral range from wavenumber 5,011 to 116 

925 cm−1, corresponding to wavelengths 2,000 to 10,800 nm, yielding a total of 1,060 waves (Table 117 

2), according to the procedure described by Ferragina et al. (2015). Spectra were stored as 118 

absorbances (A) using the transformation A = log(1/T), where T is the transmittance. Before data 119 

analysis, 10 replicate spectra obtained from 2 aliquots averaged to obtain one spectrum for each 120 

milk sample.  121 

2.4. Gas chromatography analysis 122 

Fatty acid analysis was performed as described in detail by Mele et al. (2016). Briefly, each 123 

milk sample was centrifuged at 5,000 × g for 30 min at 4 °C. Thirty milligrams of fat were collected 124 

in a vial, and mixed with 3 mL of hexane and 0.3 mL of 2 M methanolic solution of KOH. The 125 

mixture was incubated for 5 min at room temperature after the addition of 0.25 mg of NaHSO3 × 126 

H2O. The samples were then centrifuged at 3,000 × g for 3 min at 4 °C, and the upper layer was 127 

collected for GC analysis. Fatty acid composition was determined using a ThermoQuest gas 128 

chromatograph (ThermoElectron Corp., Waltham, MA, USA) equipped with a flame-ionization 129 

detector and a high polar fused-silica capillary column (Chrompack CP-Sil88 Varian, Middelburg, 130 

the Netherlands; 100 m, 0.25 mm i.d.; film thickness 0.20 μm). The carrier gas was helium at a flow 131 
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rate of 1 mL/min. A split/splitless injector was used. A sub-sample was injected under the following 132 

GC program: the initial oven temperature (60 °C) was held for 1 min, then increased to 173 °C at a 133 

rate of 2 °C/min and held for 30 min, increased to 185 °C at 1 °C/min and held for 5 min, and 134 

finally increased to 220 °C at a rate of 3°C/min and held for 19 min. The injector temperature was 135 

set to 270 °C, and the detector temperature was set to 300 °C. Individual FAME were identified by 136 

comparison with a standard mixture (52 Component FAME Mix, GLC-674; Nu-Chek Prep Inc., 137 

Elysian, MN, USA). The isomers of C18:1 were identified with reference to commercial pure 138 

standards (47199, 46903, 46905; Supelco, Bellefonte, PA). A butter reference standard (BCR 164; 139 

Commission of the European Communities, Community Bureau of Reference, Brussels, Belgium) 140 

was used to estimate correction factors for the short-chain fatty acids, as previously described by 141 

Mele et al. (2016). A total of 47 fatty acids were identified in each milk sample and expressed as 142 

grams per 100 g of the total fatty acid content.  143 

2.5. Model cheese making 144 

An individual model cheese was produced from the milk of every cow sampled according to 145 

the cheese-making procedure described by Cipolat-Gotet et al. (2013). Briefly, 1,500 mL of raw 146 

milk from each cow was heated to 35 °C in a stainless-steel micro vat, and a formulation of 147 

thermophilic starter culture was added (Delvo-Tec TS-10A DSL; DSM Food Specialties, Delft, the 148 

Netherlands). A commercial rennet (Hansen standard 160, with 80 ± 5% chymosin and 20 ± 5% 149 

pepsin; 160 international milk clotting units/mL, Pacovis Amrein AG, Bern, Switzerland) was then 150 

added, and the resulting curd from each vat was cut, drained, shaped into wheels, pressed, salted, 151 

and weighed. The model cheeses were ripened for 60 d then analyzed for chemical composition.  152 

2.6. NIR analysis 153 

Cheese samples were placed in a 100 mm diameter ring cup. This NIR instrument 154 

(FoodScan, Foss Electric A/S, Hillerød, Denmark) operates in transmittance mode with a moving 155 

monochromator (Table 2) scanning the region from wavelength 850 to 1,048 nm (corresponding to 156 

wavenumbers 11,764 to 9,524 × cm-1) with data points at intervals of 2 nm, giving a total of 100 157 
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waves. From every cheese sample, 16 replicated entire spectra were acquired and averaged before 158 

statistical analysis.  159 

2.7. PTR-ToF-MS analysis  160 

Volatile organic compound analysis was performed as described by Bergamaschi et al. 161 

(2015 and 2016). Briefly, 3 g of each cheese sample, hitherto stored at -80 °C, were thawed at 20 °C 162 

for 6 h then placed in glass vials (20 ml, Supelco, Bellefonte, USA), capped with PTFE/Silicone 163 

septa (Supelco), then measured with a PTR-ToF-MS 8000 instrument (Ionicon Analytik GmbH, 164 

Innsbruck, Austria) (Table 2). The conditions in the drift tube of the PTR were as follows: 165 

temperature 110 °C, drift pressure 211 Pa, drift voltage 500 V. Internal calibration and 166 

spectrometric peak extraction were performed according to the procedures described by Cappellin 167 

et al. (2010, 2012), resulting in the identification of 619 spectrometric peaks per cheese sample. 168 

Headspace volatile organic compound concentrations, expressed as parts per billion by volume, 169 

were estimated using the method described by Lindinger, Hansel, & Jordan (1998).  170 

2.8. Sensory profile 171 

Sensory analysis was performed by a trained panel as described in detail by Cipolat-Gotet et 172 

al. (2018), while the reference standard and the protocol scorecard were in accordance with 173 

Bérodier et al. (1997) and Lavanchy et al. (1993). Briefly, 14 panelists (6 females and 8 males, age 174 

35.6±11.8 years) were selected and trained in cheese evaluation under the direction of a panel 175 

leader. Their task was to assess the cheese samples according to 7 main sensory descriptors: 176 

intensity of smell, intensity of flavor, intensity of salt and sour tastes, elasticity, firmness, and 177 

moisture. These traits were ranked on a 13-point discontinuous scale (from 1 to 7, including half 178 

points). A further level of sensory description was introduced for smell and flavor: after assessing 179 

their overall intensities, the assessors had to evaluate on a 4-point discontinuous scale the intensities 180 

of 4 families of descriptors, each composed of several detailed attributes, giving a total of 20 traits 181 

for smell and 20 for flavor.  182 

2.9. Statistical analysis 183 
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2.9.1.  Data processing 184 

The absorbance values of every wavelength in the FTIR spectra (1,060 waves) of the milk 185 

(1,222 samples), and in the NIR spectra (100 waves) of the cheese (915 samples) were centered and 186 

standardized to a null mean and a unit sample variance. Next, we calculated Mahalanobis distances 187 

using the standardized FTIR and NIR spectra data to detect outliers. Having decided from 188 

examining the plot to exclude only spectra with a very high probability of being outliers, we 189 

discarded those with a Mahalanobis distance greater than 3 times the standard deviation. To 190 

increase the normality of distribution of absorbance value and improve LDA, first-derivative 191 

Savitzky-Golay was also applied to the spectra as a mathematical pretreatment (Savitzky & Golay, 192 

1964) for both FTIR spectra of milk and NIR spectra of cheese.  193 

The 47 FAs were centered, and values greater than three times the standard deviation were 194 

discarded as outliers. 195 

The 619 spectrometric peaks characterizing the volatile profile of each model cheese (1,075 196 

samples) were standardized within each day of analysis (15 days) to equalize any data variability 197 

resulting from the effect of this environmental factor on the proton transfer reaction peaks, then 198 

analyzed according to the procedure described in detail by Bergamaschi et al (2015). Some highly-199 

correlated peaks (r > 0.95; P < 0.001), corresponding to isotopes of the same volatile organic 200 

compounds, were removed from the dataset before the statistical analyses. 201 

 The sensory descriptors were edited according to the procedure described by Cipolat-Gotet 202 

et al. (2018). As each cheese sample was evaluated by several panelists, one record per cheese 203 

sample was obtained by analyzing the 6,612 scorecards using the SAS Mixed Model procedure 204 

(SAS Institute Inc., Cary, NC) with the 1,224 model cheeses/cows included in the statistical model 205 

as fixed effects, and the 14 panelists as random effects: the least square means of each cheese/cow 206 

were then extracted and used as independent observations for the multivariate analysis. 207 

2.9.2. Linear discriminant analysis 208 



10 
 

The linear discriminant analysis (LDA) was used for testing the authentication of farming 209 

systems of origin of milk and cheese as it is one of the most frequently used methods adopted for 210 

food authentication (Granato et al., 2018a; Jiménez-Carvelo et al., 2019). Five LDAs, one per 211 

source of information, were carried out using the MASS package in R to determine which 212 

combination of variables contributed most to the differences in the milk and cheese samples from 213 

the various farming systems. Briefly, we categorized the farming systems into a group of 5 and a 214 

group of 3, as described above. A 10-fold cross-validation procedure was used to estimate the 215 

discrimination capability of the LDAs, to avoid overfitting, and from this we identified the 216 

minimum number of variables (waves, fatty acids, spectrometric peaks, or sensory descriptors) 217 

required to authenticate the various dairy systems. The data in each dataset were divided randomly 218 

into 2 sub-sets: a training set (approximately 75% of the data), which was used to calibrate the 219 

model, and a testing set comprising the remaining data (25%), which was used for cross-validation. 220 

This process was repeated 10 times, using different sub-sets each time. Two additional LDAs were 221 

carried out on the combined instrumental information from the analyses of milk (FTIRS + FAs) and 222 

of cheese (NIRS + VOCs), considering only those samples for which both types of data were 223 

available. 224 

2.9.3. Comparison of discriminant ability of LDA models by logistic regression 225 

The discriminating ability of a model is usually evaluated through a graphical representation 226 

of data of each model. In this case, the large number of models tested (5 sources of information + 2 227 

combination × 2 number of farming systems to be discriminated = 14 LD analyses), the large 228 

number of samples analyzed (915 to 1,124 per source) and the possibility to plot only two latent 229 

variables make unfeasible this approach. To test the differences in the discrimination ability of the 230 

14 models compared here considering the specific distribution and variability of each source of 231 

information, a logistic regression was carried out. Correct classification rates for all the LDA 232 

models were coded as binary variables (0, 1), where 1 indicated correct classification of the milk or 233 
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cheese sample. This new variable was analyzed by logistic regression using the SAS LOGISTIC 234 

procedure (SAS Institute, 2012) according to the following model: 235 

 236 

where π = Pr(Y = 1|x), which is the response probability (odds ratio) of correct 237 

classification; α is the intercept of the parameter; β = (β1,…, βi), which is the vector of the i slope 238 

parameters; and x is a vector for the fixed effects of the methods: source of information (7 levels), 239 

dairy system (3 or 5 levels), and the source-dairy system interaction (21 or 35 levels). The odds 240 

ratio estimates together with their confidence intervals for each source of information were used to 241 

plot these across the different dairy systems (Figure 1 a and b). For a better understanding of the 242 

nature of the information available through the infrared spectra, a principal component analysis was 243 

carried out on the milk FTIR spectra and on cheese NIR spectra. 244 

  245 

3. Results and discussion 246 

Only few published papers compared different instruments with the same pool of samples, 247 

and none compared, as the present study does, several sources of information on a large scale to 248 

discriminate milk and cheese according to the farming system in which cows were reared. 249 

Scampicchio et al. (2016) studied the possibility of discriminating 189 milk samples using 4 sources 250 

of information and their combination: chemical components of milk predicted from FTIR spectra 251 

(they did not used the absorbance values for discrimination); NIR absorbance spectra; FA profiles 252 

from GC; and stable isotopes (13C/12C and 15N/14N). They aimed at discriminating milk samples 253 

according to region (40 samples from North Tyrol, 130 from South Tyrol and 19 from other origin 254 

“Europa”), season (71 spring, 42 summer, 14 autumn, 43 winter, and 19 unknown) and heat 255 

treatment (90 raw milk, 77 HTST, and 19 UHT). Using a principal component analysis, they 256 

obtained very poor results whether using each one of the four sources of information for 257 

discriminating region, season or treatment. It worth noting that the distribution of sample was 258 
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strongly unbalanced because samples from “Europa” were all and the only ones UHT treated and 259 

with unknown season of production. From North Tyrol, only raw milk was sampled whereas from 260 

South Tyrol both raw and HTST milk was sampled. Using PLS-DA discriminant analysis the 261 

incidence of samples not assigned to the region of production was 24%, 6%, 5%, and 18%, and the 262 

correct classification of assigned samples was 64%, 93%, 92% and 87% using stable isotopes, milk 263 

composition predicted by FTIRS, fatty acid profile, and NIRS spectra, respectively. Combining all 264 

the sources of information the unassigned samples were 4% and correct classification of assigned 265 

was 96%. These values are similar to ours, but were all obtained from a training (calibration) 266 

dataset and no testing (validation) results were available, so that it is not possible to evaluate the 267 

rate of over-fitting of discrimination (Granato et al., 2018a).  268 

3.1. FTIR spectra of milk vs. NIR spectra of cheese to discriminate dairy systems 269 

The discrimination abilities of the two infrared spectroscopy technologies we used to analyze 270 

milk before processing and the corresponding ripened cheeses were very different, especially with 271 

the training subsets, with milk always more efficient than cheese. When discriminating between the 272 

3 farming systems, 97.4% of milk samples vs. 75.9% of cheese samples were correctly classified 273 

during training, and 73.5% vs. 67.1%, respectively, during testing (Table 3). When discriminating 274 

between the 5 farming systems, we obtained corresponding values of 98.6% vs. 66.8% during 275 

training, and 65.0% vs. 52.1% during testing (Table 3). When we looked at the discrimination 276 

abilities of specific farming systems, we obtained better results with milk than with cheese only for 277 

the traditional farming system and the modern system with silage when discriminating between the 278 

3 farming systems (Table 4), whereas the results with milk were always better when discriminating 279 

between the 5 farming systems, with the only exception modern farms not using TMR (Table 5).   280 

The underpinning mechanism responsible for fingerprinting and samples authentication by 281 

infrared spectroscopy rely on the chemical modification of milk produced in different dairy system 282 

and of the cheese obtained processing that milk. 283 
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As seen in a previous study on this same or other datasets, the fatty acid profile of milk is 284 

affected by dairy system (Mele et al., 2016), and could be used for dairy system authentication (as 285 

described in the next section). Moreover, fatty acid profile of milk can be predicted by infrared 286 

spectroscopy (Ferragina et al. 2015), and this is a base for expecting that infrared spectra of milk 287 

could be effective in dairy system authentication. But dairy system affects also other aspects of 288 

chemical composition of milk that could find a correlation on milk spectrum: detailed protein 289 

profile, amino acids, some minerals, some enzymes, etc. all these changes are causing derived 290 

modification on the composition of cheese. The differences among dairy systems found in the 291 

detailed volatile profile of cheese is a testimony (Bergamaschi et al. 2015). So, also the infrared 292 

spectrum of cheese is expected to reflect the effect of dairy system on some aspects of the cheese 293 

composition. 294 

It is not possible to know whether the differences in terms of discriminating ability in favor of 295 

milk spectra arise from the characteristics of the dairy product analyzed or the type of infrared 296 

spectrometry used, given that different infrared spectrometers are used for analyzing liquid and 297 

solid materials. In our study, we compared the tools most commonly used for analyzing milk and 298 

cheese (González-Martín et al., 2011; Ferragina et al., 2015). For milk, this was a Fourier-transform 299 

infrared spectrometer (MilkoScan FT6000, Foss, Hillerød, Denmark) (Table 2), commonly used 300 

throughout the world in laboratories that analyze samples as part of milk recording schemes. This 301 

instrument can cover a very wide spectrum (more than 1,000 individual waves) ranging from part of 302 

the near-infrared region (NIR or SWIR), mid-infrared (MIR or MWIR) to part of the far-infrared 303 

region (FIR or LWIR), as discussed in a previous study (Bittante and Cecchinato, 2013). For 304 

cheese, we used a NIR spectroscopy system (Table 2), also manufactured by Foss specifically for 305 

analyzing samples of solid foods. This instrument operates over a narrow range (recording 100 306 

waves) of the NIR region of the electromagnetic spectrum. The large superiority of information 307 

given by FTIRS than by NIRS during training is probably due, in particular, to the greater number 308 

of data points available for the calibration equations. This statistical advantage is, in large part, lost 309 
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during testing, showing that a large number of data points is not strictly necessary and it can cause 310 

over-fitting during calibration. 311 

It is worthwhile of noting that McQueen et al. (1995) compared NIR and MIR spectroscopic 312 

techniques (different from ours) to predict the protein, fat and moisture contents of cheese, and 313 

found prediction by NIR spectroscopy to be more precise. 314 

Obviously, the differences may also be explained by the fact that we sampled the milk on the 315 

farm at the time of milking, and analyzed it within a few hours, during which time the sample was 316 

kept sealed and refrigerated. This means that it fully reflects the conditions of the different farming 317 

systems considered and the individual farms within system. The model cheeses were all made in the 318 

same laboratory following a standardized procedure (Cipolat-Gotet et al., 2013) with the aim of 319 

controlling all external sources of variation as much as possible. The cheeses were then sampled 320 

after 2 months of ripening, during which many physical, biochemical and microbiological changes 321 

had taken place (Fox et al., 2004). We then analyzed them to look after two months for residual 322 

effects of the differences in the raw materials from which they were manufactured. Interestingly for 323 

dairy industry, our results show that after 2 months of ripening the cheeses still exhibited the effects 324 

of farming system on the raw materials (milk) from which they were made (Table 3).  325 

As supportive evidence based on multivariate analysis are available for milk fatty acid 326 

profile (Mele et. al., 2016) and volatile organic profile of cheese (Bergamaschi et al., 2015), but not 327 

for infrared spectra, the main results of a principal component analysis was carried out also on the 328 

milk FTIR spectra and on cheese NIR spectra and the results are available as supplementary 329 

material (Supplementary Figures S1 and S2). Principal component analysis is a useful instrument 330 

for understanding the relationships among many variables, like infrared absorbencies, to reduce the 331 

dimensionality of a large database, and also to visualize different groups of samples (O’Callaghan 332 

et al., 2017), but it is also criticized because it provides only a qualitative view of the data and it is 333 

not specific for discriminating analyses (Granato et al., 2018b). 334 

 335 
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3.2. GC fatty acid profile vs. FTIR spectra for discriminating milk samples 336 

A summary of the overall results of the 10-fold cross-validated LDAs of the FTIR spectra 337 

and the FA profiles of milk are presented in Table 3. When discriminating between 3 farming 338 

systems, we found FTIRS to have a much higher average rate of correct classification in training 339 

than the FAs (97.4% vs. 81.1%).  During testing, however, the rate of correct classification by 340 

FTIRS was much lower (73.5%), and with FAs almost unchanged (77.3%), so the odds ratio of the 341 

FAs was much lower than that of FTIRS in training, but higher in testing (in both cases the 95% 342 

confidence interval of the odds ratio did not include 1.00, the reference value attributed to FTIRS).  343 

Combining both sources of information, we obtained a further increase in the percentage of 344 

milk samples correctly classified during training (99.6%), but the improvement was only marginal 345 

during cross-validation (77.9%) compared with FAs alone (Table 3). 346 

Compared with the 3-system classification, when we tried to discriminate milk samples 347 

classified into 5 different farming systems, we found that the LDAs of the training subset resulted in 348 

lower percentages for FAs (70.0%), but not for FTIRS (98.6%) nor for FTIRS+FAs (99.8%). 349 

However, with the testing subset, we found that, overall, fewer milk samples were correctly 350 

classified with both methods individually (both at 65%), and also combined (70.3%).  351 

The results of the LDAs for each individual farming system are shown in Table 4 (the 3-352 

system classification) and Table 5 (the 5-system classification). More precisely, FTIRS spectra of 353 

the milk samples in the training datasets always resulted in very high rates of correct classification, 354 

whether discriminating the 3- or the 5-system classifications (95.8 to 99.7%). With the FAs the 355 

percentages of correct classification were lower and more variable (68.8 to 88.9%), and lower still 356 

for the two traditional farming systems (62.2% without AF, and only 37.9% with AF), which are 357 

not easily distinguishable from each other. 358 

The results of the LDAs using FAs were slightly lower with the testing datasets than the 359 

training datasets for both the 3- and 5-dairy system classifications. In contrast, the FTIRS LDA 360 
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yielded fewer correct classifications with the testing datasets than the training datasets, and it was 361 

often less efficient than the FA LDAs. 362 

FTIR and GC analyses have previously been used to discriminate milk origin. For example, 363 

Capuano et al. (2014) combined FTIR spectra with chemometric techniques to develop a 364 

classification model for authenticating milk according to whether the cows were grass fed, pasture 365 

grazed, or organically farmed. Of the 116 tank milk samples they analyzed, an average of 80% were 366 

correctly classified in cross-validation. Some specific FAs, such as cyclopropane, have been 367 

identified as markers of milk from farms using maize silage (Caligiani, Marseglia, & Palla, 2014). 368 

There have also been reports (Ferlay et al., 2008; Hurtaud, Dutreuil, Coppa, Agabriel, & Martin, 369 

2014) of a large effect of FA profile (especially odd- and branched-chain) when discriminating 370 

between milk from dairy systems using hay and fresh herbage and milk from systems using maize 371 

silage-based diets. The milk derived from systems using corn silage (50 bulk milk samples) had 372 

lower contents of polyunsaturated fatty acids than milk derived from systems using herbage (50 373 

bulk milk samples), and was not misclassified by leave-one-out cross-validation (Hurtaud et al., 374 

2014). Our rates of discrimination using fatty acids were similar to those of Coppa et al. (2015), 375 

who correctly classified 32 samples of bulk milk from cows fed diets with over 50% of the dry 376 

matter content constituted by maize silage. In our experiment, validation using milk FAs generally 377 

yielded slightly better rates of correct classification than validation using FTIR spectra. It should be 378 

evidenced that this small superiority probably does not compensate, at industry level, the major 379 

costs, complexity and time needed for GC analysis respect to infrared spectra acquisition. The dairy 380 

systems using fresh herbage (not tested in this study) are more easily distinguishable, as confirmed 381 

by Capuano et al. (2014), who reported that bovine milk FAs had greater sensitivity and specificity 382 

(about 100% in external validation) than milk FTIR spectra.  383 

3.3. NIR spectra vs. volatile fingerprinting for discriminating cheese samples 384 
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The overall results of the 10-fold cross-validated LDAs using the NIR spectra and VOCs of 385 

cheese are given in Table 3. When discriminating between the 3 farming systems, we found the 386 

average correct classification rate in training to be greater with VOCs (83.1%) than NIRS (75.9%). 387 

The results of the cross-validation show that both techniques had lower rates of correct 388 

classification and were similar to each other (NIRS, 67.1%; VOCs, 66.9%). Combining the two 389 

sources of information (NIRS+VOCs) increased the levels of correct classification of the cheese 390 

samples during the training analysis (94.3%), and also during cross-validation, although to a lesser 391 

degree (71.5%) (Table 3). When we tried to discriminate the cheese samples from the 5 different 392 

farming systems, the results of the LDA of the training subset revealed lower percentages for NIRS 393 

(66.8%) and for VOCs (75.1%), but not for NIRS+VOCs (95.3%), compared with discrimination of 394 

cheese samples from the 3 farming systems. With regards to the testing subset, we observed a 395 

decrease in the overall rates of correct classification of cheese samples with both methods 396 

individually (52.1% for NIRS, 48.2% for VOCs), and also in combination (57.3%).  397 

The results of the LDAs for discriminating each individual farming system from cheese 398 

characteristics are reported in Tables 4 and 5. In particular, the rate of correct classification of 399 

cheese samples based on VOCs and the training dataset was higher than that based on NIRS, for 400 

both the 3- and 5-dairy system classifications. The LDAs based on NIRS and VOCs yielded slightly 401 

better results with the training datasets than with the testing datasets, for all 3 or 5 farming systems. 402 

It is well documented that infrared spectra reflect the chemical compositions of specific milk 403 

and cheese samples, and they have been utilized mainly for prediction purposes (Wojciechowski 404 

and Barbano, 2016; Margolies and Barbano, 2017). NIRS has also been used for discrimination 405 

purposes, mainly to distinguish between cheese samples derived from pasture-based vs. silage-406 

based systems, and derived from hay vs. silage-based systems. Andueza, Agabriel, Constant, Lucas, 407 

& Martin, (2013) reported classification rates higher than 90% when discriminating Abondance (n 408 

= 92), Tomme de Savoie (n = 107) and Cantal cheeses (n = 109) obtained from the milk of cows fed 409 

at pasture or on preserved forage using a 4-fold cross-validated partial least square discriminant 410 
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analysis. The slightly lower rate of correct classification of the samples in our study is clearly a 411 

consequence of not having included pasture-based systems. Support for this explanation comes 412 

from reports (Martin, et al., 2005; Valenti et al., 2013) of the difficulty of distinguishing between 413 

dairy products derived from cows fed on hay and from cows fed on maize silage using spectra and 414 

terpenes as variables. It could be interesting, at industry level, the fact that flavor profile could be 415 

used to discriminate cheeses in relation to the residual effect of the farming system of the milk used 416 

for cheese-making, even after two months of ripening. But it is also of interest the fact that VOCs 417 

profile is not superior to NIRS spectrum in this regard. 418 

 419 

3.4.  Sensory traits for discriminating cheese samples 420 

The results of the 10-fold cross-validated LDA using the sensory traits (SENS) of cheese are 421 

reported in Table 3. Whether discriminating between the 3 or the 5 farming systems, we found the 422 

average rate of correct classification in training with SENS (89.1% and 89.7%, respectively) to be 423 

much greater than with NIRs and VOCs, but much lower with the combination NIRS+VOCs 424 

(94.0% for the 3-system group, 94.3% for the 5-system group). On the contrary, the results of the 425 

cross-validation showed that a smaller percentage of samples were correctly classified by SENS 426 

than by any of the instrumental sources of information, as clearly shown in Figure 1. With respect 427 

to the individual farming systems, the rates of correct classification of cheese samples by SENS 428 

with the training datasets were very similar for all the farming systems (Tables 4 and 5) and 429 

particularly low when discriminating cheeses derived from cows fed on silages during cross-430 

validation (Table 4 and 5). 431 

Using the same model cheeses as in this study, we recently found that those derived from 432 

farms using silage were perceived as having greater firmness and less moisture (Cipolat-Gotet et al., 433 

2018). Other authors (e.g., Martin et al., 2005) also reported that cheese was influenced by the 434 

presence or absence of maize silage in the cows’ diets. However, we also found a large effect of 435 
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individual herd within dairy system on 47 sensory descriptors, which varied from just under 15% to 436 

70%. The other large source of variation observed in our previous study was the panelists. 437 

Evidently, the large variation among different types of farm and among panelists precludes 438 

obtaining a high rate of discrimination according to dairy system using the sensory profiles of 439 

cheeses. So, this methodology could be interesting as a research tool, but not at level of the dairy 440 

industry. 441 

3.5. Future application of food authentication  442 

The results of the present study confirmed that several chemical methods can be used for 443 

authenticating the milk and dairy products in relation to the dairy system of origin. The efficiency 444 

of discriminating analyses is not so high to allow an official certification on individual samples, but 445 

these technics could be used for a preselection of samples to be further studied and/or for 446 

monitoring milk or cheese suppliers with time. This could be particularly useful for dairy products 447 

with some process certification, like the protected designation of origin (PDO) cheeses of the 448 

European Union, whose norms of production define not only the area of production but also the 449 

dairy system and cows’ feeding regime in relation to the use or not of grazing, silages, hay, 450 

concentrates (Bertoni et al., 2005). Also, the authentication of milk, cheeses and other typical dairy 451 

products obtained during the summer grazing on the highlands Alpine pasture could benefit from 452 

these methods (Buchin et al., 1999; Coppa et al., 2011; Bergamaschi et al 2016b).  453 

The methods used on fluid milk (FTIR spectrum and GC FA profile) could be used to 454 

control the bulk milk supplied to dairies by individual farmers or commercial traders or the 455 

packaged milk supplied to retailers’ chains by different dairies. The use of FTIR spectra for dairy 456 

system authentication is much more practical and less expensive than GC FAs, and could be used 457 

for characterizing milk for many chemical composition traits (ISO-IDF (2013) and technological 458 

properties (Bittante et al., 2012). On the other hand, FAs could be used also for a better certification 459 

of nutritional properties of milk in relation to human health (Shingfield et al., 2013; Mele et al., 460 

2016). 461 
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The instrumental methods used for cheese authentication (NIR spectrum and VOCs profile) 462 

have demonstrated that also after 2-month ripening, still some influence of dairy farming system of 463 

origin of milk could be captured. In this case the possible interest is at level of cheese factory for 464 

monitoring cheese batches obtained from milk of different suppliers, but also at level of different 465 

PDO consortia or retailer chains for comparing different cheese producers. If, also in this case, the 466 

use of NIR spectra is much more practical and less expensive (Andueza et al., 2018), the use of 467 

VOCs profile could offer other information and certification of cheese flavor and possibly replace 468 

the use of sensory description actually mandatory according to the norms of production of some 469 

PDO cheeses (Bittante et al., 2011a and b; Ojeda et al., 2015). 470 

 471 

4. Conclusions  472 

In this study, we compared different sources of information for discriminating different 473 

farming systems from a large number of individual milk samples and from the individual model 474 

cheeses obtained from processing these same milk samples according to a standardized procedure. 475 

Our findings with regards to discriminating different farming systems were that: a) the results from 476 

the training subsets (calibration) were often high, especially for those sources of information with 477 

many data points; b) the results from the testing subsets (validation) were lower, and not much 478 

influenced by the number of data points available; c) discrimination between a larger number (5) of 479 

farming systems tended to be less efficient than between fewer (3) farming systems; d) the 480 

information from instrumental techniques is more effective than that obtained from the sensory 481 

descriptors developed by trained panelists; e) the information from instrumental techniques for 482 

analyzing milk was more effective than that from techniques for analyzing cheese, although after 483 

two months of ripening the cheeses still showed the influence of farming system; f) fatty acid 484 

profiles tended to be more effective than infrared spectra for milk sample validation, and combining 485 

them further increases discrimination ability; g) infrared spectra and volatile fingerprints are equally 486 

effective for cheese sample validation, and combining them further increases discrimination ability. 487 
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In terms of cost, rapidity and simplicity of acquisition of the information, the infrared spectra (FTIR 488 

for milk and NIR for cheese) coupled with LDA have proven to be valuable instruments for adding 489 

information on the farming system in which the food is produced. This could be used for a rapid 490 

identification of food batches presenting some discrepancies with declared origin to be further 491 

investigated. The accuracy of discrimination could be further improved combining them with other 492 

sources of information. In any case a proper validation of results is needed to avoid the risk of large 493 

over-fitting of calibration equations. 494 
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Table 1 686 

Descriptive statistics of productive traits, and milk and cheese composition of sampled cows according to different farming systems. 687 

  3 FARMING SYSTEMSa:   5 FARMING SYSTEMSa: 

  
Traditionalb Modern   Traditional    Modern  

No-silagec Silaged
 

  
No-AF AF   No-TMR 

TMR 
  No-silagec Silaged 

Farms, n 28 48 9   15 13   31 17 9 
Cow/milk and cheese 
samples, n 420 714 130 

  225 195   461 253 130 

Animal  tied loose loose   tied tied   loose loose loose 
Milking at stalls parlor parlor   at stalls at stalls   parlor parlor parlor 
Major forage hay hay hay/silage   hay hay   hay hay hay/silage 
Major concentrate compound compound cereal mix   compound compound   compound cereal mix cereal mix 
Forage:concentrate 0.69:0.31 0.61:0.39 0.47:0.53  0.73:0.27 0.65:0.35  0.64:0.36 0.52:0.48 0.47:0.53 
Productive traits:                   

Milk yield, kg×d-1 20.6±6.9 26.0±7.6 27.4±8.2   19.4±7.1 22.1±6.3   24.7±7.0 28.3±8.1 27.4±8.2 
Days in milk, d 179±114 180±109 176±109   175±119 184±108   184±110 174±106 176±109 
Parity, n 2.86±1.99 2.62±1.64 2.55±1.54   2.82±1.97 2.90±2.03   2.74±1.73 2.42±1.43 2.55±1.54 

Milk composition:                  
Protein, g/100g 3.66±0.45 3.79±0.41 3.84±0.42   3.67±0.47 3.66±0.42   3.78±0.41 3.82±0.42 3.84±0.42 
Fat, g/100g 4.21±0.78 4.39±0.89 4.94±1.07   4.16±0.82 4.26±0.74   4.38±0.94 4.41±0.77 4.94±1.07 
SCSe, U 2.96±2.03 3.02±1.77 2.84±1.79   3.07±2.04 2.83±2.02   3.13±1.74 2.83±1.80 2.84±1.79 
pH 6.64±0.09 6.64±0.08 6.64±0.09   6.63±0.10 6.65±0.08   6.63±0.08 6.64±0.07 6.64±0.09 

Cheese composition:                
Protein, g/100g 26.5±4.2 27.5±4.0 25.7±4.2   26.3±4.1 26.6±4.3   27.5±4.1 27.4±3.9 25.7±4.2 
Fat, g/100g 38.5±4.2 37.6±4.3 39.9±4.7   38.5±4.2 38.6±4.3   37.7±4.3 37.5±4.4 39.9±4.7 
pH 5.19±0.18 5.15±0.18 5.22±0.14   5.20±0.19 5.17±0.17   5.13±0.20 5.18±0.14 5.22±0.14 

aAF = automatic feeders at mangers to control individually concentrate distribution; TMR = total mixed ration; modern TMR no silage = water 688 
added in the mixer wagon to enhance mixing; productive traits as well as milk and cheese composition are expressed as mean and standard 689 
deviation (in parenthesis); bTraditional = cluster of herds composed by traditional farming systems with and without AF; cModern no silage = 690 
cluster of herds composed by modern farming systems with hay plus compound feed and modern TMR without silage; dModern silage = cluster of 691 
herds that used TMR and corn silage; eSCS = log2(SCC/100,000) + 3. 692 
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Table 2 693 

Main characteristics of the sources of information used for the authentication of milk and cheese from different farming systems. 694 

 Milk:  Cheese: 

 
FTIR spectrum 

(FTIRs) 

Fatty acid profile 

(FAs) 

 NIR spectrum 

(NIRs) 

Volatile fingerprint 

(VOCs) 

Sensory profile 

(SENS) 

Samples analyzed:       

Number of farms 85 83  62 72 83 

Number of cows/samples 1,222 1,175  915 1,075 1,224 

Sample used 50 mL 10 mL  30 g 3 g 80 g 

Sample preparation None Methylation  Grinding Grinding Slicing 

Chemicals used No Yes  No No No 

Replicates per sample 20 1  16 1 6 

Instrument used:       

Type Infrared 

spectrometer 

Gas  

chromatograph 

 Infrared 

spectrometer 

PTR-ToF  

mass spectrometer 

Trained sensory 

test panel 

Denomination FT 6000 ThermoQuest  FoodScan PTR-ToF-MS 8000 - 

Producer Foss Electric A/S Thermo Electron Corp.  Foss Electric A/S Ionicon Analytik 

GmbH 

DAFNAE 

Address Hillerød Waltham  Hillerød Innsbruck Padova 

Country Denmark USA  Denmark Austria Italy 

Output obtained:       

Type Absorbance Fatty acids  Transmittance VOCs Descriptors 

Unit  Log (T−1) Percentage  Log (A−1) ppbv Scores 

Data per sample 1,060 47  100 619 47 

 695 
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Table 3 696 

Summary of overall correct classification of milk or cheese samples from 3 or 5 dairy systems 697 
applying 10-fold cross-validation linear discriminant analysis and odds ratio of each source of 698 
information respect to FTIRs. 699 

Source of 
information 

Total Training  Testing 
Samples 

N. 
Samples 

N. 
% Correct 

classification 
Odds ratioa  Samples 

N. 
% Correct 

classification  
Odds 
ratioa 

 

3 farming systems:  
         

FTIRs 1,222 972 97.4 1.00b  250 73.5 1.00b  

FAs 1,175 940 81.1 0.11  235 77.3 1.23  

FTIRs+FAs 1,130 903 99.6 7.17  227 77.9 1.27  

NIRs 903 720 75.9 0.08  183 67.1 0.74  

VOCs 1,075 860 83.1 0.15  215 66.9 0.74  

NIRs+VOCs 767 614 94.0 0.41  153 71.5 0.96  

SENS 1,224 970 89.1 0.22  254 60.2 0.54  

5 farming systems:         

FTIRs 1,222 972 98.6 1.00b  250 65.0 1.00b  

FAs 1,175 940 70.0 0.03  235 65.1 1.02  

FTIRs+FAs 1,130 903 99.8 5.43  227 70.3 1.28  

NIRs 903 720 66.8 0.28  183 52.1 0.59  

VOCs 1,075 860 75.1 0.04  215 48.2 0.49  

NIRs+VOCs 767 614 94.3 0.26  153 57.3 0.72  

SENS 1,224 970 89.7 0.12  254 42.7 0.40  

aThe odds ratio in bold are characterized by 95% credibility regions not including 1.00 and then 700 
considered superior (>1.00) or inferior (<1.00) respect to reference (FTIRs); b = reference method. 701 

 702 
 703 
 704 
 705 
  706 
 707 
 708 

 709 
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Table 4 710 
Correct classification and odds ratio estimates of milk or cheese samples from 3 farming systems 711 
applying 10-fold cross-validation linear discriminant analysis using the information obtained using 712 
the methods summarized in Table 2. 713 

Source of  
information 

Training   Testing 
Samples 

N. 
% Correct 

classification 
Odds 
ratioa

   
Samples 

N. 
% Correct 

classification 
Odds 
ratioa 

Traditional system:       

FTIRs 322 95.8 1.00b  83 67.9 1.00b 
FAs 295 68.8 0.10  72 66.1 0.92 
FTIRs+FAs 286 99.2 5.94  68 73.4 1.30 
NIRs 264 70.0 0.10  71 61.8 0.76 
VOCs 252 71.2 0.11  63 57.3 0.63 
NIRs+VOCs 200 91.0 0.44  50 67.3 0.98 
SENS 329 77.4 0.15  87 41.2 0.33 

Modern without silage:        
FTIRs 545 98.0 1.00b

  144 77.5 1.00b 
FAs 546 86.7 0.13  139 82.4 1.36 
FTIRs+FAs 525 99.8 10.7  135 79.8 1.14 
NIRs 361 83.7 0.11  87 78.5 1.06 
VOCs 522 90.4 0.19  133 77.1 0.98 
NIRs+VOCs 329 95.4 0.42  83 74.8 0.98 
SENS 550 94.6 0.36  142 81.0 1.24 

Modern with silage:        
FTIRs 104 99.5 1.00b

  24 69.7 1.00b 
FAs 99 86.7 0.03  24 82.2 2.00 
FTIRs+FAs 92 100.0 9.99  24 79.8 1.75 
NIRs 95 62.1 0.01  25 43.4 0.34 
VOCs 86 73.2 0.11  19 30.5 0.19 
NIRs+VOCs 85 95.7 0.11  20 68.5 0.95 
SENS 92 98.5 0.32  24 6.5 0.03 

aThe odds ratio in bold are characterized by 95% credibility regions not including 1.00 and then 714 
considered superior (>1.00) or inferior (<1.00) respect to reference (FTIRs); b = reference method. 715 



33 
 

Table 5 716 
Correct classification and odds ratio estimates of milk or cheese samples from 5 farming systems 717 
applying 10-fold cross-validation linear discriminant analysis using the information obtained using 718 
the methods summarized in Table 2. 719 

Source of  
information 

Training   Testing 
Samples 

N. 
% Correct 

classification 
Odds 
ratioa

   
Samples 

N. 
% Correct 

classification 
Odds 
ratioa 

Traditional without AFc:        

FTIRs 172 99.7 1.00b
  45 66.9 1.00b 

FAs 163 62.2 0.01  39 60.4 0.76 
FTIRs+FAs 158 100.0 4.61  36 75.7 1.55 
NIRs 162 67.2 0.01  43 54.9 0.60 
VOCs 104 69.5 0.01  31 39.5 0.33 
NIRs+VOCs 110 92.4 0.04  25 55.5 0.62 
SENS 175 90.4 0.03  46 39.7 0.33 

Traditional with AFc:        
FTIRs 150 98.9 1.00b

  38 54.6 1.00b 
FAs 133 37.9 0.01  32 25.4 0.28 
FTIRs+FAs 128 99.9 13.79  32 61.5 1.33 
NIRs 102 46.4 0.01  28 28.5 0.33 
VOCs 148 70.5 0.03  32 48.5 0.28 
NIRs+VOCs 90 95.1 9.69  25 46.0 0.71 
SENS 154 85.0 0.06  41 18.6 0.67 

Modern: hay + compound feed:        
FTIRs 348 97.6 1.00b

  95 66.3 1.00b 
FAs 351 79.3 0.09  90 74.4 1.48 
FTIRs+FAs 339 99.6 5.89  85 69.8 1.17 
NIRs 239 77.5 0.08  58 70.8 1.24 
VOCs 351 82.0 0.11  95 58.0 0.70 
NIRs+VOCs 238 95.0 0.46  59 64.8 0.40 
SENS 355 90.4 0.23  90 67.7 1.06 

Modern: TMRd without silage:        
FTIRs 198 98.8 1.00b

  48 67.1 1.00b 
FAs 193 72.0 0.03  51 68.4 1.06 
FTIRs+FAs 186 99.7 3.79  50 68.4 1.06 
NIRs 122 61.7 0.02  29 42.7 0.37 
VOCs 171 66.8 0.03  38 38.4 0.31 
NIRs+VOCs 91 91.5 0.13  24 43.8 0.38 
SENS 196 87.4 0.09  51 35.0 0.26 

Modern: TMRd with silage:        
FTIRs 104 99.5 1.00b

  24 69.3 1.00b 
FAs 100 88.9 0.04  23 86.5 2.86 
FTIRs+FAs 92 100.0 4.44  24 80.4 1.83 
NIRs 95 67.6 0.01  25 43.6 0.35 
VOCs 86 78.0 0.02  19 36.8 0.26 
NIRs+VOCs 85 96.5 0.13  20 68.0 0.95 
SENS 92 98.5 0.31  24 8.1 0.04 

aThe odds ratio in bold are characterized by 95% credibility regions not including 1.00 and 720 
then considered superior (>1.00) or inferior (<1.00) respect to reference (FTIRs); b = reference 721 
method. cAF = automatic feeder; dTMR = total mixer ration. 722 

 723 
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Figure 1. 725 

[a] 726 

 727 

[b] 728 
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Caption 730 

Figure 1.  731 

Odds ratio estimates and credibility region (95%) for the correct classification of milk or cheese 732 

samples from three [a] and five [b] dairy systems applying 10-fold cross-validated linear 733 

discriminant analysis respect to FTIRs considered as reference method (odds ratio = 1.00). 734 

 735 

Supplementary materials 736 

Supplementary Figure S1.  737 

Figure S1. Principal component analysis (PCA) of FTIR spectra measured from 1223 milk sample 738 

collected in dairy farms classified as traditional farms, modern farms without the use of silages, and 739 

modern farms using silages. Components 1 and 2 explain 34.30 and 8.56% of the variance, 740 

respectively. 741 

Supplementary Figure S2.  742 

Figure S1. Principal component analysis (PCA) of NIRS spectra measured from 904 cheese sample 743 

originated from milk sample collected in dairy farms classified as traditional farms, modern farms 744 

without the use of silages, and modern farms using silages. Components 1 and 2 explain 70.29 and 745 

24.97% of the variance, respectively. 746 

 747 




