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Celiac disease (CD) is an immune-mediated disorder initiated by the ingestion of gluten

in genetically predisposed individuals. Recent data shows that changes in the gut

microbiome composition and function are linked with chronic inflammatory diseases;

this might also be the case for CD. The main aim of this manuscript is to discuss our

present knowledge of the relationships between gut microbiota alterations and CD and

to understand if there is any role for probiotics in CD therapy. PubMed was used to

search for all of the studies published from November 2009 to November 2019 using

key words such as “Celiac Disease” and “Microbiota” (306 articles), “Celiac Disease” and

“Gastrointestinal Microbiome” (139), and “Probiotics” and “Celiac Disease” (97 articles).

The search was limited to articles published in English that provided evidence-based

data. Literature analysis showed that the gut microbiota has a well-established role in

gluten metabolism, in modulating the immune response and in regulating the permeability

of the intestinal barrier. Promising studies suggest a possible role of probiotics in treating

and/or preventing CD. Nevertheless, human trials on the subject are still scarce and lack

homogeneity. A possible role was documented for probiotics in improving CD-related

symptoms, modulating the peripheral immune response and altering the fecal microbiota,

although the results were not consistent in all of the studies. No evidence was found

that probiotic administration might prevent CD onset. Knowledge of the role of intestinal

bacteria in the development of CD opens new possibilities for its treatment through

probiotic administration, even though further studies are needed to better clarify whether

probiotics can help treat or prevent the disease and to define which probiotics to use, at

what dose and for how long.
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INTRODUCTION

Celiac disease (CD) is an immune-mediated disorder initiated by the ingestion of gluten in
genetically predisposed individuals (1, 2). In patients with CD, immune responses to gliadin
fractions stimulate an inflammatory response. This reaction is mediated by the innate and
adaptive immunity (3). The interaction between gliadin peptides and the G protein-coupled
receptor CXCR3 on enterocytes triggers the release of zonulin, a potent intestinal barrier function
modulator. Consequently, gliadin peptides translocate into the lamina propria and activate the
immune response (4). In the lamina propria, intestinal tissue transglutaminase (tTG) reacts with
gliadin peptides to deamidate them to negatively charged glutamic acid residues that are highly
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immunogenic. After tTG-induced deamidation, gliadin peptides
activate the humoral immune response with antibodies against
gliadin and tTG and to the production of pro-inflammatory
cytokines, such as interferon gamma (IFNγ), interleukin-17 (IL-
17) and tumor necrosis factor-alpha (TNFα) (5).

Many researches have observed that different functions of
macrophages, dendritic cells and neutrophils, which are an
essential part of the innate immune system, are influenced
by the microbiota (6, 7). Gliadin peptides also stimulate an
innate immune response in the intestinal epithelium that is
characterized by increased expression of IL-15 by enterocytes,
resulting in the activation of intra-epithelial lymphocytes
expressing the activating receptor NK-G2D, a natural killer cell
marker (8, 9).

CD does not develop unless a person has alleles that encode
HLA-DQ2 or HLA-DQ8 proteins, products of two of the HLA
genes. However, HLA-DQ2 and HLA-DQ8 haplotypes are not
specific for CD because many people, most of whom do not
have CD, carry these alleles; thus, the DQ2 and DQ8 haplotypes
are necessary but not sufficient for the development of CD
(10, 11). Furthermore, with the introduction of GWAS (genome-
wide association studies), an additional 39 non-HLA regions of
susceptibility have been associated with CD development (12,
13). Several studies have identified more genes associated with
CD that are involved in immune function or related to defects in
intestinal permeability or with bacterial colonization and sensing
(14, 15).

The role of an environmental influence in CD pathogenesis is
supported by the facts that (a) HLA and non-HLA genes explain
only 55% of disease susceptibility, (b) there is a lack of 100%
concordance of CD in monozygotic twins and (c) the incidence
of this condition is increasing (16–18). Based on more recent
epidemiological data, loss of gluten tolerance may occur at the
time of its introduction into the diet or at any time in life, with
several different intestinal and extra-intestinal symptoms (19–
22). These findings suggest that other environmental factorsmust
play a role in CD development. Indeed, environmental factors
that influence the composition of the human gut microbiota,
such as birth gestational age, type of delivery, intestinal infections
and antibiotic exposure, have been associated with the risk of
developing CD (23–26).

Gut bacteria are key regulators of digestion along the
gastrointestinal tract and have a relevant impact in the synthesis
of many nutrients and metabolites (27–29). Furthermore, the
gut microbiota has a crucial immune function, inhibiting
bacterial growth and maintaining intestinal epithelial integrity
(30). Moreover, growing evidence has shown a critical role
for commensal bacteria and their products in influencing
the development, homeostasis, and function of innate and
adaptive immune cells (31, 32). Recent data support the
hypothesis that changes in the gut microbiome composition
and function are linked with chronic inflammatory diseases;
this might also be the case for CD (33). Although a gluten-
free diet (GFD) influences the gut microbiota composition
and diversity and thus represents a confounding factor,
several studies support the hypothesis that the microbiota
plays a role in the pathogenesis, clinical manifestation and

risk of developing CD (34). Moreover, it has been reported
that soluble CD14 (sCD14, i.e., an indicator of innate
immune cell activation in response to mucosal translocation
of Gram-negative bacteria) is increased in untreated patients
with CD, probably because of translocation of commensal
intestinal bacteria (35, 36). Finally, patients with persistent
symptoms on a long-term GFD have an altered microbiota
composition (37).

The evidence of intestinal dysbiosis in CD, together with
the role of the gut microbiota in regulating the immune
response, opens up the possibility of finding new therapeutic
approaches by modulating the intestinal microbiota with the use
of probiotics. The main aim of this manuscript is to discuss our
present knowledge of the relationships between gut microbiota
alterations and CD and to understand if there is any role for
probiotics in CD therapy. PubMed was used to search for all of
the studies published from November 2009 to November 2019
using key words such as “Celiac Disease” and “Microbiota” (306
articles), “Celiac Disease” and “Gastrointestinal Microbiome”
(139 articles), and “Probiotics” and “Celiac Disease” (97 articles).
The search was limited to articles published in English that
provided evidence-based data.

GUT MICROBIOTA AND ENVIRONMENTAL
FACTORS

Each healthy individual has a unique gut microbiota. Core
native microbiota are shaped in early life (i.e., in the first 36
months of age) by gut maturation, which is strongly influenced
by environmental factors such birth gestational age, type of
delivery, method of milk feeding, weaning period, lifestyle,
and dietary and cultural habits (38). When a child is 2–3
years old, a relative stability in gut microbiota composition
has been documented (33, 39). Gut microbiota are represented
by several species of microorganisms, including bacteria, yeast,
and viruses. The two major bacterial phyla are Firmicutes
and Bacteroidetes, which are 90% of the whole gut microbiota
(40). The Firmicutes phylum is composed of ≥ 200 different
genera, and Clostridium genera are 95% of the Firmicutes
phyla. Bacteroidetes consists of predominant genera such
as Bacteroides and Prevotella. Actinobacteria, Proteobacteria,
Fusobacteria, and Verrucomicrobia are the next most numerous
phyla, which are described in a “healthy gut microbiota
composition” (33, 40).

It has been observed that the HLA-DQ genotype can influence
early gut microbiota composition (41). Several studies have
demonstrated that the genotype of infants at family risk of
developing CD, carrying the HLA-DQ2 haplotypes, influences
the early gut microbiota composition. Olivares et al. (42)
reported that infants with a high genetic risk have significantly
higher proportions of Firmicutes and Proteobacteria and lower
proportions of Actinobacteria and Bifidobacteria compared with
low-risk infants. In a study including 164 healthy new-borns with
≥one first-degree relative with CD, De Palma et al. (43) showed
that milk-feeding type in conjunction with HLA-DQ genotype
has an impact in in establishing infants’ gut microbiota.
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Diet represents another key regulator of microbiome
development and homeostasis. Although recent data have shown
that breast-feeding has no protective effect on the development
of CD, studies have reported that genotype-related differences
in microbiota composition are reduced by breast-feeding
(44). Moreover, human milk oligosaccharides enhance overall
barrier integrity by making enterocytes less vulnerable to
bacterial-induced innate immunity (45).

Some observational studies have also shown that elective
cesarean delivery is linked with an increased risk of CD
onset during pediatric age, suggesting the impact of dysbiosis
during early life. The gut microbiota of children born by
elective cesarean section, compared to vaginally delivered
infants’ microbiota, has reduced microbial diversity and fewer
Bifidobacterium species (46, 47). According to some studies,
antibiotic exposure during the first year of life has been linked
with intestinal dysbiosis, reduced fecal microbial diversity, and
early onset of CD (48, 49). However, there are other studies
that did not confirm this result (50, 51), and a recent meta-
analysis found no evidence of an association between prenatal or
postnatal antibiotic exposure and CD (52).

Although it is currently recognized how these environmental
factors influence the composition of the intestinal microbiota,
there are no longitudinal studies that have defined whether and
how the gut microbiota plays a role in the development of CD.
A large, ongoing, multi-center, prospective longitudinal study
called CDGEMM (Celiac Disease, Genomic, Environmental,
Microbiome, and Metabolomic Study) has the goal of identifying
and validating specific microbiome and metabolomic profiles
able to predict loss of tolerance in children genetically at risk of
autoimmunity (53).

GUT MICROBIOTA AND IMPLICATIONS IN
CELIAC DISEASE (CD) PATHOGENESIS

The gut microbiota present in the human colon participates in
gluten metabolism. Lactobacilli and Bifidobacterium spp. may
play a role in the breakdown of gluten and its peptides to
modify their immunogenic potential (54, 55). Caminero et al.
(56) demonstrated that opportunistic pathogens and core gut
commensals produce distinct breakdown patterns of gluten with
increased or decreased immunogenicity that could influence
autoimmune risk. In particular, it has been demonstrated that
Lactobacilli can detoxify gliadin peptides after partial digestion by
human proteases; additionally, immunogenic peptides produced
by Pseudomonas aeruginosa proteases are also further degraded
and rendered less immunogenic in the presence of Lactobacillus.
These findings on the gluten-processing activities of specific
microbial strains could suggest the use of probiotics as
complementary therapy for CD.

Changes in the gut microbiota composition could also
play a role in altering the intestinal barrier and increasing
epithelial permeability (57). Disassembly of zonulin, that is
involved in tight junctions, has a pathogenic role in increasing
the intestinal permeability present in patients with CD. Some
studies have reported that dysbiosis is associated with increasing

zonulin release, disrupting tight junctions, and enhancing the
entry of incompletely digested gliadin peptides into the lamina
propria (4, 58). In addition, it is acknowledged that the gut
microbiota has an important role in the regulation of host
metabolism and immunity (59). Moreover, a recent study has
shown how gut microbiota and their metabolites enhance the
risk of developing autoimmunity through epigenetic processes
(60). To find a microbial agent for disease immunomodulation,
Bifidobacteria and Lactobacilli are the most studied strains.
Bifidobacteria strains have been described to play a role in
reducing the epithelial permeability triggered by gluten (61), in
downregulating the Th1 pathway typical of CD (62), and in
decreasing jejunal architecture damage (63). Furthermore, it has
been reported that Escherichia coli could have a protective effect
on gut barrier function (64) and that Lactobacilli strains have
immunomodulatory properties (65).

In recent years, several cross-sectional studies have evaluated
fecal, salivary, and duodenal microbiota associated with CD.
Patients with CD show a decrease in beneficial species
(Lactobacillus and Bifidobacterium) and an increase in those
potentially pathogenic (Bacteroides and E. coli) in comparison
with healthy subjects (66). In particular, some studies have
reported that Bifidobacterium spp., Bifidobacterium longum,
Clostridium histolyticum, C. lituseburense, and Faecalibacterium
prausnitzii group proportions are less abundant in untreated
patients with CD than in healthy controls (67–69). Ou Gangwei
et al. (70) have shown that rod-shaped bacteria represented a
significant fraction of the proximal small intestine microbiota in
children with CD during the so-called Swedish epidemics. These
bacteria present in the epithelial lining of the small intestine
were observed in children with CD but not in controls. Another
study analyzed the mucosa-associated microbiota of 20 children
with CD, before and after a GFD regimen, and of 10 controls,
with evidence of a peculiar microbial profile and a significantly
higher biodiversity in the duodenal mucosa of patients with CD
(71). Furthermore, Di Cagno et al. (72) demonstrated that a GFD
lasting at least 2 years did not completely restore the microbiota
of children with CD.

Wacklin et al. (34, 73) have shown microbiota alterations,
particularly in subjects with persistent symptoms despite
adherence to a long-term GFD or associated with gastrointestinal
symptoms but not with dermatitis herpetiformis. These
studies highlight that the alterations in gut microbiota are
more pronounced in the active phase of CD, suggesting
that perturbations in the interaction between the host
and the microbiota could influence CD manifestation and
evolution. However, the abovementioned CDGEMM study
could help to understand the role that the gut microbiome
show in the early steps involved in the pathogenesis of
CD (53).

PROBIOTIC SUPPLEMENTATION IN
CELIAC DISEASE (CD)

Probiotics have shown the ability to hydrolyse immunogenic
gluten peptides (56, 74–77), thus reducing their immunogenicity.
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TABLE 1 | Studies on human patients with celiac disease (CD) regarding the efficacy of probiotic supplementation.

Study Author and

Reference

Methods Type of Probiotics Results

Exploratory, randomized,

double-blind, placebo-controlled,

study on the effects of

Bifidobacterium infantis Natren life

start strain super strain in active celiac

disease

Smecuol et al.

(78)

22 patients with CD were given either

probiotics or placebo for 3 weeks

while not following a strict GFD.

Bifidobacterium infantis NLS

super strain

The abnormal baseline intestinal

permeability was not significantly

affected by the treatment. Symptoms

measured by the GSRS questionnaire

were significantly improved in the

group receiving probiotics

(P = 0.0035 for indigestion;

P = 0.0483 for constipation).

Administration of Bifidobacterium

breve decreases the production of

TNF-alpha in children with celiac

disease

Klemenak et al.

(79)

46 children with CD on a GFD

randomized into two groups, one

receiving probiotics and one receiving

placebo for 3 months.

Bifidobacterium breve BR03

and B. breve B632

TNF-alpha levels significantly

decreased from baseline in the

probiotics group at the end of the 3

months (p = 0.020). On follow-up, 3

months after receiving probiotics,

TNF-α levels increased again.

Probiotics and the microbiome in

celiac disease: a randomized

controlled trial

Harnett et al.

(80)

A multi-center RCT conducted in

Australia in 2011 on a group of 45

people with only partial response to

GFD. Participants took 5 drops of

VSL# twice daily for 12 weeks vs.

controls taking 5 placebo drops.

VSL#3 No statistically significant changes in

the fecal microbiota nor clinically

significant improvement in symptoms

was observed between the 2 groups.

Effect of Bifidobacterium breve on the

intestinal microbiota of coeliac

children on a gluten-free diet: A pilot

study

Quagliarello et al.

(81)

40 children with CD on a GFD were

administered either two B. breve

strains or placebo for 3 months.

Microbial DNA was extracted from

feces before and after treatment.

Bifidobacterium breve B632

and BR03 strains

A significant increase in

Actinobacteria was found as well as a

re-establishment of the physiological

Firmicutes/Bacteroidetes ratio (p <

0.01).

Celiac disease by the age of 13 years

is not associated with probiotics

administration in infancy

Savilahti et al.

(82)

Data were taken from a trial on

primary allergy prevention including

1223 babies with a high risk for

allergy. Probiotics vs. placebo were

given to mothers for 4 weeks before

delivery and to infants until the age of

6 months.

Lactobacillus rhamnosus

GG, L. rhamnosus LC 705,

Bifidobacterium breve

Bb99, Propionibacterium

freudenreichi spp.

Probiotics administration did not

affect the risk of developing CD

during the 13-year follow-up.

Early probiotics supplementation and

the risk of celiac disease in children at

genetic risk

Uusitalo et al.

(83)

Multi-center study following 6520

genetically susceptible children for a

median period of 8.7 years, recording

probiotics use by 1 year of age.

Various, mainly

Lactobacillus reuteri and

L. rhamnosus

Exposure to probiotics was not

associated with a different risk of

developing either celiac disease

autoimmunity or celiac disease.

Clinical intervention using

Bifidobacterium strains in celiac

disease children reveals novel

microbial modulators of TNF-α and

short-chain fatty acids

Primec

et al. (84)

Double-blind, placebo-controlled

study of 40 children with CD who

received either probiotics or placebo

for 3 months.

B. breve BR03 (DSM

16604) and B. breve B632

(DSM 24706)

The Firmicutes/Bacteroides ratio was

re-established. Verrucomicrobia,

Parcubacteria and some yet unknown

phyla, which may be involved in the

disease, were highlighted, as

indicated by a strong correlation to

TNF-α.

Modulating the production of

short-chain fatty acids could play a

role in restoring the microbiome.

Effects of L. plantarum and

L. paracasei on the peripheral

immune response in children with CD

autoimmunity: a RCT

Hakansson et al.

(85)

78 children with celiac disease

autoimmunity received either

probiotics or placebo for 6 months.

Phenotyping of peripheral blood

lymphocytes was conducted, and

tTG was measured before and after

treatment.

L. plantarum HEAL9 and

L. paracasei 8700:2

Different subtypes of peripheral

lymphocytes were found in the

probiotics groups vs. placebo group.

The median levels of IgA-tTG

decreased more significantly over

time in the probiotic (p = 0.013) than

in the placebo (p = 0.043) group.
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Moreover, intestinal bacteria have also been implicated in
modulating the immune response, directing the correct
differentiation of anti-inflammatory Treg cells. In patients with
CD who underwent an oral wheat challenge, circulating T cells
were collected, showing an increase in both effector T cells
and Treg FOXP3+ cells (86); however, these FOXP3+ T cells
were found to have a significantly reduced suppressive function.
Serena and colleagues suggested that this impairment may be
related to the presence of an alternatively spliced isoform of
FOXP3 and hypothesized that the intestinal microenvironment
may have an impact in modulating this alternative splicing
(60). Furthermore, studies suggest that the composition of
the intestinal microbiota can affect the permeability of the
intestinal mucosa (87, 88). In addition, probiotics would
encourage the intestinal microbiome to improve the production
of short chain fatty acids such as butyrate that can have
profound effects in modulating proinflammatory activities in
the colonic gut and in inducing health effects on the colonic
epithelia (74).

Considering this established role of microbiota in gluten
metabolism and in modulating the gut immune response, the
manipulation of the microbiome via probiotic administration
opens new possibilities for the treatment of CD and its
related symptoms. Reports on animal models have shown
promising effects of probiotics on CD. Bifidobacterium longum
CECT 7347 has been found to decrease the production of
inflammatory cytokines and CD 4+ T cells in rats (63) as well
as ameliorate gliadin-induced enteropathy (55). Saccharomyces
boulardii KK1 oral administration improved enteropathy and
decreased epithelial cell CD71 expression and local cytokine
production in gluten-sensitized mice (89). Administration of
Lactobacillus casei was found to be effective in rescuing the
normal mucosal architecture in a mouse model of gliadin-
induced villous damage (65). Bifidobacterium breve prevented
intestinal inflammation through the induction of intestinal
IL-10-producing Th1 cells (90) and ameliorated DSS-induced
colitis symptoms in mouse models as well as modulated T
cell polarization toward Th2 and Tregs both in vitro and in
vivo (91). In a recent study, Orlando and colleagues found
that Lactobacillus rhamnosus GG administration to rats could
protect the intestinal mucosa from gliadin peptide-induced
damage (92).

However, despite a number of promising in vitro and in vivo
animal studies on probiotic use, data from human trials are still
scarce and lack homogeneity. We reviewed studies on human
patients with CD published from January 2009 to December 2019
regarding the efficacy and safety of probiotic supplementation
(Table 1). Although no safety issue was observed in patients
with CD treated with probiotics, a few studies have shown that
probiotic administration might be beneficial in improving CD-
related symptoms. Smecuol et al. (78) randomized patients with
CD to receive either the Bifidobacterium Infantis Natren life
start strain or placebo and found a significant improvement
in gastrointestinal symptoms in the group receiving probiotic,
although they were not following a strict GFT. Changes in
intestinal microbiota were also documented in a 2016 study

from Quagliarello et al. (81) who analyzed microbial DNA
extracted from the feces of 40 pediatric patients with CD
before and after probiotic treatment, evidencing an increase in
Actinobacteria as well as a re-establishment of the physiological
Firmicutes/Bacteroidetes ratio. Similar results were obtained by
Primec et al. (84) in a 2019 double-blind placebo-controlled study
of 40 children with CD who were randomized to receive either
probiotics or placebo for 3 months. In contrast, Harnett et al.
(80) found no differences in the fecal microbiota counts or in the
severity of the symptoms between the group receiving probiotic
and the placebo group. Lastly, it has been documented that
probiotic treatment can modulate immunological parameters
such as TNF-α and peripheral T lymphocytes. Klemenak et al.
(79) in a double-blinded, randomized, placebo-controlled trial,
showed the positive effect of B. breve strain administration in
decreasing the production of the pro-inflammatory cytokine
TNF-α in children with CD on a gluten-free diet. The
administration of Bifidobacterium longum CECT 7347 was also
found to significantly decrease peripheral CD3+ T lymphocytes
as well as cause a slight decrease in TNF- α (79). Daily oral
administration of L. plantarum HEAL9 and L. paracasei 8700:2
for 6 months was related to changes in the immune response
in 78 children with celiac disease autoimmunity in a 2019
study from Hakansson et al. (85) interestingly, the difference
in most lymphocyte subsets found in the placebo group was
similar to that found in patients with active celiac disease,
indicating a progression of disease development that was not
observed in the probiotic group. Two studies were conducted
to investigate the ability of probiotics to prevent CD onset.
The first, from Savilahti and colleagues, analyzed data taken
from a trial on primary allergy prevention, including 1,223
babies treated with probiotics until the age of 6 months vs.
placebo, and found no difference in the risk of developing CD
during the 13-year follow-up (82). Later, Uusitalo et al. (83)
conducted a multi-center study following over 6,000 genetically
susceptible children for a median period of 8.7 years and
found that probiotic administration did not change the risk of
developing CD.

CONCLUSIONS

Although the association between alterations in the gut
microbiota and the development of CD has been demonstrated,
a definite microbial signature and the exact role of dysbiosis
in CD pathogenesis are not recognized. Further human studies
will be needed to reach a definitive conclusion on the role
of probiotics in CD using standardized probiotic formulations,
dosages and periods of treatments, as well as homogeneous
patient groups. Currently published data suggest the efficacy
and safety of probiotic supplementation in improving CD-
related symptoms (78), as well as documenting the ability of
some probiotics to alter the fecal microbiota and decrease pro-
inflammatory parameters such as TNF-α levels or peripheral
CD3+ T lymphocyte counts (79, 81). Which probiotics are
more effective, at what dose and how long they should be
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administered are yet to be definitively clarified. However,
the encouraging data on in vitro and in vivo studies, as
well as the knowledge of the mechanisms through which
intestinal bacteria modulate the development of the disease,
prompted us to continue the studies to achieve a better
understanding of the possible role of probiotics in treating and/or
preventing CD.
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