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Abstract: We study the robustness of different sweep protocols for accelerated adiabaticity following
in the presence of static errors and of dissipative and dephasing phenomena. While in the noise-free
case, counterdiabatic driving is, by definition, insensitive to the form of the original sweep function,
this property may be lost when the quantum system is open. We indeed observe that, according to
the decay and dephasing channels investigated here, the performance of the system becomes highly
dependent on the sweep function. Our findings are relevant for the experimental implementation of
robust shortcuts-to-adiabaticity techniques for the control of quantum systems.

Keywords: adiabatic evolution; open quantum systems; quantum control

1. Introduction

One of the most successful methods for quantum control is given by the adiabatic
passage [1,2]. The adiabatic passage has its root in the adiabatic theorem of quantum
mechanics [3], which states that if a system parameter is driven in a sufficiently slow
manner in time, resulting in a time-dependent Hamiltonian H0(t), then the populations
of the instantaneous eigenstates of H0(t) are preserved. A system initially prepared, for
instance, in the ground state of H0(tin) is driven by the adiabatic evolution toward the
ground state of H0(tfin), which is the desired state to be prepared assuming that no level-
crossing occurs. Unless the evolution takes place in infinite time, errors due to the finite
duration of the protocol accumulate during the evolution. These errors can be reduced
by optimizing the rate at which the parameters are varied, i.e., by designing appropriate
sweep functions [4,5]. Studies on the performance of some specific sweep functions in the
presence of noise have been performed, for instance, in the context of adiabatic quantum
computing [6,7].

However, in real applications, adiabatic dynamics, which is slow by definition, be-
comes often impractical because it might require evolution times that are longer than
the coherence time of the system. This has motivated the development of the so-called
shortcuts to adiabaticity (STA), namely of a variety of techniques for achieving adiabatic
evolution though in a shorter time [8–10]. For instance, this can be achieved by requir-
ing that the controlled dynamics match the adiabatic one only at the beginning and at
the end of the protocol [11–15]. In general, STA protocols accelerate an adiabatic sweep
through the introduction of additional control fields. These fields are designed in order
to exactly counteract nonadiabatic transitions throughout the evolution, resulting in an
exact following of the instantaneous eigenvectors of the driven Hamiltonian H0(t). The
trade-off for this perfect adiabatic following is that the extra fields are typically very hard
to be realized in practice [8,11,16–20]. This longstanding problem in the field has attracted

Entropy 2021, 23, 897. https://doi.org/10.3390/e23070897 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8630-1944
https://orcid.org/0000-0001-8412-0509
https://orcid.org/0000-0002-8433-1733
https://doi.org/10.3390/e23070897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070897
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070897?type=check_update&version=2


Entropy 2021, 23, 897 2 of 13

much attention and has been tackled from different angles by resorting, for instance, to
Floquet engineering methods [16,21–29].

In this work, we take a different perspective: we take the possibility to realize the
additional fields for granted, and we rather investigate robustness properties of the STA.
The specific question that we address is the following. Provided that H0(t) adiabatically
always connects the initial and target quantum states, for any choice of the sweep function
in H0(t), one can construct the corresponding STA fields. In this way, one can obtain
a protocol that gives the desired state preparation with unit fidelity. At the level of the
isolated and error-free system, there apparently is no preferential choice for the specific time-
dependence in H0(t). Our goal, instead, is to investigate whether this apparent equivalence
of different protocols based on different sweep functions breaks down when control
imperfections or noise is introduced into the system. A similar problem was addressed
in [30], though for a specific scenario different from ours, where the authors optimized
the control pulse for counteracting the effect of the specific noise in an experimental
setup. Moreover, in an open system environment, in ref. [31], the authors investigated
the performance of a population transfer in the presence of collisional dephasing, using
the counterdiabatic protocol for three and four level systems. Other related studies can
be found in [32,33], where the authors explored the effect of dephasing in one adiabatic
protocol and used a different STA technique based on dynamical invariants. We, instead,
perform a systematic study of three different sweep functions in the presence of static errors
and dissipative and dephasing effects, with counterdiabatic driving as the STA method. We
indeed find out that, while for imperfections in the energy gap, the three sweep functions
are all very robust, in the presence of dephasing or decay, one may choose the optimal
sweep function, according to the type of noise affecting the system.

This paper is organized as follows: we first present in Section 2 well-known material
on adiabatic and counterdiabatic driving, as well as the Lindblad master equation used for
studying the open quantum systems in the following. We then analyze in Section 3.1 the
fundamental problem of driving a two-level system through an avoided crossing in the
energy spectrum for the purpose of realizing a population inversion. In this context, we
analyze in the first place the performance of different classes of sweep functions, and the
corresponding STA protocol when imperfections in the system parameters are introduced.
Then, robustness against dissipative and dephasing effects is analyzed by studying the
open system dynamics produced by different coupling schemes of the two-level system
with the environment. To go beyond the prototypical two-state model, Section 3.2 extends
the analysis to a protocol for generating entanglement between two qubits, by investigating
the effect of local qubit dissipation and decoherence on a sample of STA schemes. Finally,
Section 4 sums up our findings.

2. Theoretical Background

In this section, we briefly review first the idea of adiabatic driving in Section 2.1.
Then, in Section 2.2, we introduce counterdiabatic driving, which is known as one of the
first shortcuts-to-adiabaticity techniques, and finally in Section 2.3, the Lindblad master
equation for the description of the open quantum systems.

2.1. Adiabatic Sweep Functions

We analyze control protocols that can be generically described through a Hamiltonian
of the following form:

Ĥ0(t) = f (t)Ĥ1 + Ĥ2 (1)

where f (t) is the sweep function describing the slow parameter variation, which realizes
the adiabatic passage. Depending on the specific problem at hand, the specific choice of
f (t) can mitigate the effects of some particular error sources. We choose the following
sweep functions: (i) linear (Landau–Zener), (ii) polynomial and (iii) Roland–Cerf. While the
linear one (i) is derived from the classical Landau–Zener problem, the other two are found
by following two kinds of approaches: boundary cancellation methods (BCMs) [5] for (ii)
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and local adiabatic drivings (LADs) [4,34] for (iii). BCM are constructed by noting that
higher-order perturbative expansions of the nonadibatic errors depend on higher-order
time derivatives of the Hamiltonian at the beginning and at the end of the protocol. Such
errors can thus be reduced by choosing sweep functions with vanishing time derivatives at
those points. Conversely, LAD keep such errors under control by discretizing the evolution
in small time steps and adapting the sweep rate such that a time-local adiabaticity condition
holds in any such time step. In particular, we designed our polynomial function by setting
to zero the first two derivatives at the beginning and at the end of the evolution as the
BCMs required. The Roland–Cerf function is derived by imposing the local adiabatic
condition as described by the LADs method (see Appendix A). According to the target
we wanted to obtain, the sweep functions were consequently adapted. For the one qubit
case, we considered Ĥ1 = ασ̂z, Ĥ2 = gσ̂x, where α > 0 is the sweep parameter, g the
coupling constant and σ̂i(i = x, y, z) is the Pauli matrices. Then, we designed the functions
to perform a complete population transfer, so that they take the following specific forms:

(i) fL(τ) = f0(1− 2τ) (2)

(ii) fPL(τ) =
f0

13

(
13− 280τ3 + 490τ4 − 336τ5 + 140τ6 − 40τ7

)
(3)

(iii) fRC(τ) =
(1− 2τ) f0√

1 + 4α2
g f 2

0 τ(1− τ)
, (4)

where f (0) = f0 > 0 and τ and αg are, respectively, the time and the sweep parameter in the
dimensionless units defined below, before Equation (9). For the two qubits model, instead,
the sweep functions are the same as in [35], which are already setup for the realization of
an entangling two-qubit gate.

2.2. Counterdiabatic Driving (STA)

The type of STA scheme that we consider is the so-called counterdiabatic or transition-
less quantum driving as conceived by Berry [36] and Demirplak and Rice [37]. Starting
from the system Hamiltonian, we have the following:

H0(t) = ∑
n

En(t) |n(t)〉 〈n(t)| , (5)

where, with instantaneous eigenenergies En(t) and eigenvectors |n(t)〉, it is possible to find
a Hamiltonian H(t) = H0(t) + HCD(t) such that, thanks to the correcting term HCD(t),
the evolution perfectly follows the instantaneous eigenstate |n(t)〉. Such a correcting
Hamiltonian is explicitly written as follows:

HCD(t) = ih̄ ∑
k 6=n

∑
n

|k(t)〉 〈k(t)| ∂tH0(t) |n(t)〉 〈n(t)|
En(t)− Ek(t)

. (6)

The computation of Equation (6) thus requires the knowledge of all instantaneous
eigenstates and eigenvalues of H0(t) for all times of interest. For the two systems that
we consider here, it is possible to compute the corresponding expressions and the two
correcting Hamiltonians analytically as showed in the following sections.

2.3. Lindblad Master Equation

We study in the following the situation in which the driven system interacts with the
surrounding environment, introducing, thus, errors in the control operation. For taking
into account dissipative and dephasing effects, we simulate the open dynamics using a
Lindblad master equation as follows [38]:

dρ(t)
dt

= − i
h̄
[
H{ f (t)}, ρ(t)

]
+ D[ĉ]ρ(t), (7)
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where D[ĉ]ρ(t) = ĉρ(t)ĉ† − 1
2 ĉ† ĉρ(t)− 1

2 ρ(t)ĉ† ĉ is the Lindblad dissipator. Different types
of jump operators ĉ are analyzed below, which capture different types of phenomena.

3. Results

We first analyze in Section 3.1 the one-qubit system in the presence of static imper-
fections in the energy gap, and then with different dephasing and decay channels. After
that, we extend in Section 3.2 our investigation to two coupled qubits, each independently
coupled to the environment.

3.1. Two-Level Avoided Crossing

The “simplest non-simple” [39] system for the study of nonadiabatic effects is a two-
level system whose energy levels are driven through an avoided crossing. The Hamiltonian
of such a system can be written in the following form:

H(t) = α f (t)σ̂z + gσ̂x . (8)

This Hamiltonian physically describes, for instance, two atomic levels driven by a
resonant electromagnetic field in a frame rotating at the drive frequency and in the rotating-
wave approximation [40]. For g = 0, the eigenstates of the system become degenerate
when f (t) = 0, while for g 6= 0, they form an avoided crossing of width 2g.

The temporal profile of the sweep function f (t) controls the evolution speed of the
system eigenstates. In Figure 1a, we can distinguish the time dependence of the three
sweep functions introduced in Section 2.1. We see that, while the linear function maintains
the same slope along the entire evolution, the other two functions are designed such that
they vary with a non-constant rate. In particular, the Roland–Cerf sweep function tends
to be faster when the system is far away from the avoided crossing region, and slower
nearby it in order to avoid non-adiabatic transitions between the eigenstates. Conversely,
the polynomial sweep function tends to be constant at the beginning and at the end of the
evolution, whereas it is faster than all the others in the vicinity of the avoided crossing.

It is convenient to reparametrize the Hamiltonian of Equation (8) introducing a finite
evolution time t f such that the avoided crossing occurs at t f /2. Using h̄ = 1, we rewrite
the parameters in the following natural units τ = t/t f , T = gt f , αg = α/g with α > 0 so
that Equation (8) assumes the following form:

H(τ) = T
[
αg f (τ)σ̂z + σ̂x

]
. (9)

Figure 1. Time dependence, for the one-qubit case, of (a) the three sweep functions in Section 2.1;
(b) the matrix elements of the counterdiabatic term corresponding to the three sweep functions;
(c) the fidelity F1 of Equation (11) for the three sweep functions in the absence of any error and
dissipation (γ = 0). Parameters used for all the simulations are T = 10, αg = 10, f0 = 10, in the
dimensionless units introduced just before Equation (9).

Now, T controls the duration of the evolution and αg is the parameter that controls
the initial energy gap between the two eigenstates of the system, for fixed f (0). The
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counterdiabatic field for the Hamiltonian of Equation (9) can be computed analytically and
reads as follows:

HCD[ f (τ)] = −
αg ḟ (τ)

1 + f 2(τ)

1
2

σ̂y , (10)

where ḟ (τ) stands for the time derivative of f (τ). As a first step, the robustness of the
counterdiabatic protocols HCD{ f (τ)}, which we can observe in Figure 1b for the three
different sweep functions, is investigated against parameter imperfections. To this end,
we introduce a relative error in the parameter αg, αg → αg(1 + ε) while implementing
the counterdiabatic protocol computed in the absence of the error, i.e., for ε = 0. This
error takes account of the potential imprecise or incomplete knowledge of both the actual
coupling between the two levels, on the one hand, and of the exact level spacing at the
beginning and at the end of the sweep. These types of errors are common, for instance, in
experiments controlling single cold-atom collisions [41–43]. To track the impact of such an
error on the performance of the counterdiabatic protocols, the system is initially prepared

in state |0〉 =̇
(

0
1

)
, and the final fidelity F1, i.e., the probability of being in the target state

|1〉 =̇
(

1
0

)
,

F1 = |〈ψ(τ = 1)|1〉|2, (11)

is monitored as a function of the total time evolution and ε. The results are shown in
Figure 2. As evident from that figure, all protocols are not very sensitive to the error and
confirm the effectiveness of STA protocols for control in a closed-system setting.

Figure 2. Final fidelity F1 of the three sweep functions (a) linear, (b) polynomial and (c) Roland–Cerf,
in the presence of the indicated error ε. The behavior of (a) is very similar to that of (b) because the two
corresponding control protocols, linear and polynomial, have a very similar fidelity temporal shape,
as observed in Figure 1c, while, in the Roland–Cerf protocol, we see characteristic oscillations [35].
These are related to accidental cancellations of higher-order non-adiabatic processes that lead to an
accidentally increased performance. The other simulation parameters are the same as in Figure 1.

In the open system scenario, instead, we consider a single decay channel whose jump
operator ĉ is a superposition of the two standard operators σ̂x and σ̂z, typically used in
quantum information theory [44]

ĉθ =
√

γ[cos(θ)σ̂z + sin(θ)σ̂x] , (12)

where γ is measured in units of 1/t f . The effect of this operator can be understood by
considering two limiting cases. In the limit θ = 0, this operator describes pure dephasing—
that is, the populations of the density matrix are preserved, while off-diagonal elements,
i.e., the coherences, decay to zero. This type of noise may result from an off-resonant
interaction with the environment in which energy exchange, and thus absorption/emission,
is strongly unfavored and may also describe the backaction resulting from a quantum
nondemolition measurement of the system state [40,45,46]. For θ = π/2, the decay of
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coherences accompanies population relaxation, leading to a steady state, which can be
viewed as an infinite temperature state, represented by a diagonal density matrix with equal
entries 1/2. Intermediate values of θ interpolate the two limiting situations, essentially
controlling the rate of population relaxation as compared to the dephasing times. In the
following, we considered γ values with upper bounds given by two specific experimental
realization: cold Rydberg atoms [47] and superconducting qubits [48] with maximal γ ∝ 0.1
and ∝ 1 in our units, respectively.

The final fidelity as a function of the angle θ for different sweep functions is depicted
in Figure 3. The different counterdiabatic protocols now behave rather differently. One
can notice that the counterdiabatic protocol for H{ fL}, corresponding to a linear ramp,
gives best fidelities for θ close to zero, namely in the limit of pure dephasing, while it loses
efficiency very quickly for increasing γ as θ goes to π/2. For a rather large region around
θ = 0, the fidelity remains above 0.75, with values above 0.9 for γ, which is small compared
to the level coupling.

Figure 3. Color map of the final fidelity of Equation (11) at the end of the control protocols for the STA
corresponding to fL(τ) in (a), fPL(τ) in (b), fRC(τ) in (c) for the jump operator of the Equation (12)
as a function of θ and of the decay rate γ. The first two control protocol are very stable around θ = 0
and also in this case, (a,b) look very similar for the same reason explained in Figure 2. Panel (c),
instead, presents the opposite behavior, with respect to (a,b), being more robust around θ = π/2.
The other simulation parameters are the same as in Figure 1.

The polynomial-ramp counterdiabatic protocol for H{ fPL} exhibits qualitatively the
same behavior but is able to reach much larger fidelities. Remarkably, the fidelity remains
close to one in the vicinity of θ = 0, even for rather large values of γ. This insensitivity to
the pure σz dephasing (diagonal noise), is explained by the fact that the time scale of the
population transfer given by the linear and the polynomial sweep functions is much faster
than the time scale of the noise 1/γ. In contrast, the Roland–Cerf is very slow around the
avoided crossing, of the order 1/γ. The counterdiabatic protocol for H{ fRC} associated
to the Roland–Cerf sweep function shows a completely different behavior instead. This
protocol gives poor performance when subject to pure dephasing, whilst it is more robust
against transverse noise, i.e., for θ close to π/2. Despite this robustness, the best fidelities
reached in this case for large γ are still rather small as compared to the target value F1 = 1.

The observed behavior of the different counterdiabatic protocols with respect to
the different types of noise described by the varying parameter θ can be explained as
follows, by inspecting the adiabatic states of the system. Let us first recall that, under
counterdiabatic driving, the isolated system perfectly follows the instantaneous eigenstates
of the Hamiltonian H0(t). For the polynomial sweep function fPL(t), these eigenstates
remain for most of the time evolution close to an eigenstate of σ̂z, departing significantly
from initial |0〉 only for a brief interval at the avoided crossing, when the population transfer
abruptly occurs, before the population settles in the |1〉 eigenstate. This can be observed in
Figure 1c. Thus, in the limit of pure dephasing (θ = 0), the system is for the largest part of
the evolution in an eigenstate of the jump operator ĉ ' σ̂z and, as such, is insensitive to the
interaction with the environment. To confirm this interpretation, one can roughly estimate
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the loss in fidelity by coarse-graining the dynamics into two regimes, similarly to what was
done in the adiabatic-impulse approximation [49]. In a first regime, which describes the
evolution before and after the avoided crossing, we assume that the state is exactly in |0〉 or
|1〉 and no fidelity is lost. In a second regime, the state is a superposition of |0〉 or |1〉 and the
decay induces errors. Differently from fL and fPL, the function fRC quickly brings the two
levels close to each other and then slows down the evolution in the vicinity of the avoided
crossing. Then, the system is for most of the evolution in a superposition state a |0〉+ b |1〉
and is thus much more prone to dephasing. We conclude that, while in a closed-system
scenario all the different protocols considered essentially give very similar performance,
the introduction of incoherent processes discriminates different protocols. From Figure 3,
one can clearly conclude that the counterdiabatic method of choice can strongly depend
on the specifics of the incoherent noise acting on the system. For a quantum computing
purpose, where high fidelity is required, in Figure 4, we show a restricted region of Figure 3
with high fidelity (F1 > 0.85). We notice that the hierarchy between the three control
protocols, established from Figure 3, holds also in the high-fidelity region.

Figure 4. Zoom into the high fidelity region (F1 > 0.85) for the data in Figure 3. We see that the
hierarchy established in Figure 3 between the three sweep functions is maintained.

The second type of noise considered is the one given by a thermal bath at zero
temperature, describing, for instance, spontaneous emission of a two-level atom. This is
modeled by the master equation in Equation (7) with dissipator ĉ =

√
γ−σ−, where σ− is

the spin-lowering operator.
The final fidelity at the end of the protocol is depicted in Figure 5 as a function of the

spontaneous emission rate γ−.

Figure 5. Final fidelity at the end of the different STA control protocol as a function of the decay
rate γ− for a jump operator σ̂−, of the three sweep functions linear (blue solid line), polynomial
(dashed red line) and Roland–Cerf (green dashed-dotted line). It can be seen that the linear and the
polynomial control protocol have the same behavior because of the very similar occupation time
of the state |1〉. On the contrary, with the Roland–Cerf, the population of state |1〉 is occupied later
than the other two, and therefore it is more robust. The other simulation parameters are the same as
in Figure 1.
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The linear and polynomial sweep functions give almost indistinguishable results and
the corresponding curves in Figure 5 are essentially overlapping. The Roland–Cerf function
gives instead larger fidelity for all values of γ−. This can be understood by noting that the
decay becomes active when state |1〉 becomes populated. Then, one can see from Figure 1c
that such a state gets populated much more quickly when using the linear or polynomial
ramp. Hence, these protocols are more vulnerable to decay than the Roland–Cerf protocol,
which instead populates state |1〉more slowly.

3.2. Two-Qubit Gate

The second quantum system we consider is given by two interacting qubits with the
following Hamiltonian:

H2q(t) =
ω1

2
σ̂z

1 +
(ω1

2
+ α f (t)

)
σ̂z

2 + g(σ̂+
1 ⊗ σ̂−2 + σ̂−1 ⊗ σ̂+

2 ) , (13)

where {σ̂x
k , σ̂

y
k , σ̂z

k} and {σ̂±k = 1
2 [σ̂

x
k ± iσ̂y

k ]} are the Pauli matrices and the raising and
lowering operators of the k-th qubit (k = 1, 2), respectively, and ω1 is the transition
frequency associated to the qubit levels. The interaction describes an energy-conserving
exchange of excitations between the qubits, which can be exploited to realize an entangling
gate. Indeed, while this interaction does not involve the two-qubit states |00〉 and |11〉,
it implements a rotation in the subspace spanned by states |01〉 and |10〉, which can thus
produce the entangled Bell states |Bell±〉 = 1√

2
[|01〉 ± |10〉]. Therefore, starting from

the initial state |01〉, in this case the fidelity is evaluated with respect to the state |Bell+〉
as follows:

F2 = | 〈ψ(τ = 1)|Bell+〉 |2 . (14)

This system has been studied in the context of closed-systems STA for the specific realiza-
tion by two-coupled superconducting qubits [35]. In this specific implementation [48,50–52],
the interaction of the form given in Equation (13) may arise from a direct capacitive coupling
of the superconducting qubits, or when the qubits are dispersively coupled to a cavity, being
mediated by a cavity through the exchange of virtual photons [50,53,54]. The sweep func-
tion f (τ) describes a modulation of the detuning between the two qubits, and in Figure 6a
the temporal dependence of the sweep functions that we chose is shown. The correspond-
ing counterdiabatic corrections HCD(τ) are depicted in Figure 6b, which ensure the perfect
following of the instantaneous eigenstate time evolution. When f (τ) is large, the qubits
are off-resonant and do not exchange excitations. As f (τ) goes to zero, the interaction
becomes resonant and the states |01〉 and |10〉 enter an avoided crossing of width 2g. The
eigenstates of the system are thus approximately factorized when f (τ) is far from zero,
while two eigenstates are entangled for f (τ) = 0. The adiabatic entangling protocol thus
consists, in this case, in slowly sweeping f (τ) from a large value to zero. Using the same
parametrization for the two-level scheme—see discussion before Equation (9)—also in this
case, we rewrite the Hamiltonian in natural units, leading to the following:

H2q(τ) = T
[

ωg1

2
σ̂z

1 +

[
ωg1

2
+ αg f (τ)

]
σ̂z

2 + [σ̂+
1 ⊗ σ̂−2 + σ̂−1 ⊗ σ̂+

2 ]

]
. (15)

The counterdiabatic Hamiltonian for a generic sweep function f (τ) can be derived
analytically and reads as follows:

HCD(τ) =
αg ḟ (τ)

4[1 + f 2(τ)]

(
σ

y
1 ⊗ σx

2 − σx
1 ⊗ σ

y
2

)
. (16)

The field in Equation (16) is in general difficult to realize experimentally, but it can
be realized using approximate schemes as proposed, for example, in refs. [18,35]. In the
absence of noise, the time evolution of the counterdiabatic terms and the corresponding
fidelities are shown in Figure 6b,c, respectively.
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Figure 6. Temporal profile for the two-qubit case of (a) the same three sweep functions of Section 2.1;
(b) the coefficients of the matrix elements in Equation (16) of the counterdiabatic term, for the three
sweep functions; (c) the fidelity F2 of Equation (14), in the absence of any error and dissipation
(γ = 0). The simulation parameters are ωg1 = 30, T = 10, αg = 10, f0 = 10, γ = 0.

We then study how the presence of dissipative effects reduces the performance of the
control protocol. As a start, the qubits are assumed to be subject to the same type of noise,
namely, they couple with equal strength γ to the environment through a jump operator as
in Equation (12). Following Equation (7), the master equation for our two qubits system
now reads as follows:

dρ(τ)

dτ
= −i

[
H2q{ f (τ)}, ρ(τ)

]
+ D[ĉ1(θ)]ρ(τ) + D[ĉ2(θ)]ρ(τ), (17)

with h̄ = 1 and ĉk(θ) =
√

γ
[
cos(θ)σ̂z

k + sin(θ)σ̂x
k
]
. The final fidelity as a function of θ and γ

is shown in Figure 7. For this type of transfer control, the linear sweep function produces a
steeper state transfer than the other two as we can deduce from Figure 6c, which means that
the time during which the system is in a superposition of states is very short, and in fact
it is more robust against pure dephasing ĉk ' σz

k . On the contrary, with the Roland–Cerf
protocol, the system is for a longer time in a superposition of the participating states |10〉
and |01〉, and in fact it is less robust with respect to the others. Regarding the decoherence
generated by the jump operator ĉk ' σx

k , all the three sweep functions behave in the same
way. None of the protocols shows a resistance against such a decoherence channel when
acting equally on both the atoms. In fact, the eigenstates of the system do not tend to the
eigenstate of the collapse operator, as we have already seen in the one-atom case.

Figure 7. Final fidelity of Equation (14) at the end of the different STA control protocols, (a) linear,
(b) polynomial, and (c) Roland–Cerf, as a function of θ and the common rate γ. In contrast with the
one-qubit case, the linear and the polynomial protocols behave differently because of their different
temporal profile of the fidelity, as shown in Figure 6c. In this case, the linear is more robust than the
other two around θ = 0. The other simulation parameters are the same as in Figure 6.

The effect of spontaneous emissions, described by the jump operators ĉk =
√

γ− σ−k ,
on our two-qubit system that we consider is shown in Figure 8. In this picture, we compare
the effect of different decay rates acting on the two atoms, still for the same three sweep
functions. To explain what we see, we recall that the initial state is |01〉 while the target
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state is |Bell+〉 = 1√
2
(|10〉+ |01〉). We see from Figure 8 that the first qubit becomes more

sensitive as the protocol changes from Figure 8a to Figure 8c. In fact, the first qubit which
starts from the state |0〉 is less sensitive to the decay when the sweep function is initially
very slow and then fast toward the end. As a consequence, the population of the level
|1〉 is low for a very long time such that the first atom is more insensitive to the decay as
shown in Figure 8a. The polynomial protocol in Figure 8b is also quite robust but slightly
less than the linear one. The reason for this can be appreciated from Figure 6c, where we
see that the polynomial sweep populates the state |1〉 of the first qubit shortly before the
linear one. On the contrary, in the Roland–Cerf protocol, the population of the state |1〉
of the first atom starts to be populated early in time, and this is the reason why it suffers
more the effect of the decay by γ

(1)
− . For the second atom, instead, which starts from the

state |1〉, the situation is the opposite. In fact, with the Roland–Cerf protocol, the state
|1〉 loses population before the other two sweep functions, giving a little more robustness
against decay to the second atom as indicated by the tilted contour lines in Figure 8c.
Moreover, looking at the diagonals in Figure 8, we observe very similar behavior when the
two systems are subject to the same decay rate γ

(1)
− = γ

(2)
− .

Figure 8. Final fidelity at the end of the different STA protocols, (a) linear, (b) polynomial and
(c) Roland–Cerf, as a function of the two different local decay rates of the two qubits. The other
simulation parameters are the same as in Figure 6.

4. Discussion and Conclusions

In this work, the performance of control protocols exploiting different shortcut-to-
adiabatic evolutions was investigated in the presence static imperfections, and dissipation
and dephasing. In particular, we first studied for the one-qubit case the robustness of the
STA protocols against static uncertainties in the uncoupled energy gap, against diagonal
and off-diagonal dephasing, and finally against spontaneous emission. Then, we investi-
gated two coupled qubits experiencing the same local dephasing or subject to individual
spontaneous emission. The results show that, while all STA are fairly robust against param-
eter imperfections in the control fields, they give substantially different performance when
the interaction of the system with the environment is included in the picture. Dephasing
and dissipation strongly discriminate the different protocols, making some less efficient
than others.

Our findings indicate a clear path toward the design of robust control protocols for
open quantum systems. This is based on the idea of engineering the rate of the adiabatic
following, which is enforced by the shortcut-to-adiabaticity fields, such as minimizing
the sensitivity of the system to the external perturbation. The latter goal can be achieved,
on the one hand, by minimizing the fraction of the evolution that the system spends in
particularly decay-prone state and, on the other hand, by maximizing the time spent in
states particularly insensitive to the dissipative and incoherent processes. The latter states
are close to a stationary state of the dissipator in the master equation, namely, close to a
state ρψ = |ψ〉〈ψ| such that D[ĉ]ρψ = 0 for a given jump operator ĉ.
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Abbreviations
The following abbreviations are used in this manuscript:

STA shortcuts to adiabaticity
CD counterdiabatic
L linear
PL polynomial
RC Roland–Cerf

Appendix A. Roland–Cerf Sweep Function

In this appendix, following the steps already presented in [34,35,55], we review how
to adapt the Roland–Cerf (RC) function for controlling the evolution in our two-level
system in Section 3.1. This exemplary case illustrates the practically useful procedure for
computing the sweeps for more complex systems. For the purpose, let us start from a
Hamiltonian of the following form:

H(t) = α f (t)σz + gσx , (A1)

where α > 0 and g are the same parameters defined in the text, before Equation (9). Let us
consider the gap between the eigenenergies of systems E+ and E−, corresponding to the
excited |ψ+[ f (t)]〉 and ground states |ψ−[ f (t)]〉, respectively:

∆E[ f (t)] = E+ − E− = 2α

√
f 2(t) +

( g
α

)2
. (A2)

Now, after finding the expression of the two eigenstates and computing ∂ f H, we can
impose the local adiabatic condition as follows [34,56]:∣∣∣∣d f

dt

∣∣∣∣ | 〈e( f )|∂ f H|g( f )〉 |
(∆E)2 < ε . (A3)

Demanding also that f (t) is monotonically decreasing d f
dt ≤ 0, as in Figures 1a and 6a,

this leads to the following:

dt
d f

= − |g|

4εα2
[( g

α

)2
+ f 2(t)

]3/2 , (A4)

where we consider the threshold value from Equation (A3). For convenience, we first
integrate Equation (A4) between f (0) = f0 > 0 and f (t f ) = − f0, obtaining the expression
for the final time as follows:

t f =
f0

2ε|g|
√( g

α

)2
+ f 2

0

. (A5)
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Having the final time t f , we can now find f (t) by integrating again Equation (A4), this
time from f (0) to f (t), and then by inverting the resulting function t( f ). The RC sweep
function then reads as follows:

f (t) =

( t f
2 − t

)
4ε|g|2

α

√
1−

( t f
2 − t

)2
16ε2|g|2

. (A6)

Finally, in order to obtain exactly Equation (4), we just introduce the dimension-
less time τ = t/t f and αg = α/g; rearranging, the RC sweep function now takes the
following form:

fRC(τ) =
(1− 2τ) f0√

1 + 4α2
g f 2

0 τ(1− τ)
. (A7)

The RC sweep function used in Section 3.2 is computed numerically along similar lines.
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